

Pro ASP.NET 2.0
Website Programming

■ ■ ■

Damon Armstrong

6293_FM.fm Page i Tuesday, November 15, 2005 7:29 PM

Pro ASP.NET 2.0 Website Programming

Copyright © 2005 by Damon Armstrong

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-546-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis
Technical Reviewer: Damien Foggon
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason

Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Denise Santoro Lincoln
Copy Edit Manager: Nicole LeClerc
Copy Editor: Julie McNamee
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Composition, proofreading, and indexing: Argosy Publishing
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail

orders-ny@springer-sbm.com

, or
visit

http://www.springeronline.com

.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail

info@apress.com

, or visit

http://www.apress.com

.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at

http://www.apress.com

 in the Source Code section.
You will need to answer questions pertaining to this book to successfully download the code.

6293_FM.fm Page ii Tuesday, November 15, 2005 7:29 PM

for Teresa

6293_FM.fm Page iii Tuesday, November 15, 2005 7:29 PM

6293_FM.fm Page iv Tuesday, November 15, 2005 7:29 PM

v

Contents at a Glance

Foreword

. .xv

About the Author

 . xvii

About the Technical Reviewer

. xix

Acknowledgments

. xxi

Introduction

 . xxiii

■

CHAPTER 1

Configuration Strategy

 . 1

■

CHAPTER 2

Exception Management

. 45

■

CHAPTER 3

Master Pages, Themes, and Control Skins

 . 93

■

CHAPTER 4

Developing Reusable Components: The Skinned
Page-Message Control

. 111

■

CHAPTER 5

User Management Tools and Login Controls for
Forms Authentication

. 151

■

CHAPTER 6

Managing Profiles

. 211

■

CHAPTER 7

Building Portals Using the Web Parts Framework

. 249

■

CHAPTER 8

Effective Search Tools and Techniques for Your
Business Applications

 . 327

■

CHAPTER 9

Building a Reusable Reporting Framework

. 391

■

CHAPTER 10

Web-Based Wizards: Avoiding Duplicate Data Entry

 437

■

CHAPTER 11

Uploading Files

. 473

■

CHAPTER 12

Security and Encryption

. 495

■

CHAPTER 13

Using HTTP Handlers: Request Processing,
Image Generation, and Content Management

 557

■

INDEX

. 613

6293_FM.fm Page v Wednesday, November 16, 2005 10:12 AM

vi

Contents

Foreword

. .xv

About the Author

 . xvii

About the Technical Reviewer

. xix

Acknowledgments

. xxi

Introduction

 . xxiii

■

CHAPTER 1

Configuration Strategy

 . 1

New Configuration Tools in ASP.NET 2.0

 . 2

Web Site Administration Tool

 . 2

ASP.NET Property Page in IIS

 . 6

Configuration Basics

 . 9

Application Settings

 . 9

Connection Strings

. 10

Configuration Guidelines

 . 11

Strongly Typed Configuration Classes

. 12

The Strongly Typed Configuration Sample Application

 13

Adding the Web.config File

 . 13

The Config Class

. 13

Using the Config Class in Your Code

 . 16

Error Handling in the Config Class

 . 17

Caching Application Settings and Connection Strings

 18

Custom Configuration Sections

 . 19

Configuration Section Architecture

. 19

Storing Configuration Settings in a Database

. 33

When to Avoid the Web.config File

. 33

Creating a Database Table to Store Configuration Settings

. 34

Avoiding SQL Injection Attacks

 . 35

Creating the DataConfig Class

 . 37

Reading Configuration Values from the Database

 37

Writing Configuration Values to the Database

. 38

Properties of the DataConfig Class

. 39

Serializing and Deserializing Objects in the Database

. 41

Summary

 . 43

6293_FM.fm Page vi Tuesday, November 15, 2005 7:29 PM

■

C O N T E N T S

vii

■

CHAPTER 2

Exception Management

 . 45

Exception Management Basics

 . 46

What Are Exceptions?

 . 46

Handling Exceptions with the Try Catch Statement

 46

Using Multiple Catch Statements

 . 48

Catching Specific Errors Using the When Clause

 51

Using the Finally Keyword

. 52

Throwing Exceptions

 . 53

Creating Custom Exception Classes

. 54

Inner Exceptions and Exception Wrapping

. 57

Error Propagation

 . 59

Global Error Handling

. 62

IIS versus ASP.NET Errors

 . 62

Defining a Default Error Page for ASP.NET

 . 62

Using an ASPX Page as the Default Error Page

. 63

Defining Custom Error Pages in ASP.NET

 . 64

Defining Custom Error Pages in IIS

. 64

Using the Application Error Event

. 66

Logging Exceptions for Analysis

. 67

Choosing an Exception Logging Tool

 . 67

Architecture Overview

 . 68

Creating the ExceptionLog Table to Store Data

. 69

ExceptionLog Class

. 70

ExceptionLogCollection Class

 . 77

ExceptionLogger Class

. 80

Using the ExceptionLogger Class in Your Code

. 84

Reviewing Exceptions Online

 . 84

Summary

 . 91

■

CHAPTER 3

Master Pages, Themes, and Control Skins

 93

Master Pages

 . 94

Creating a Master Page

 . 95

Creating Content Pages

. 98

Accessing Master Pages from Content Pages

. 101

Defining a Default Master Page for Your Application

 102

Changing Master Pages in Code

. 103

Nested Master Pages

. 103

Themes and Control Skins

 . 105

Creating a Theme

. 105

6293_FM.fm Page vii Wednesday, November 16, 2005 10:14 AM

viii ■C O N T E N T S

Adding a Cascading Style Sheet to Your Theme 105

Creating Control Skins for Your Theme . 106

Disabling Control Skins . 107

Creating Named Control Skins for Your Theme. 107

Applying Themes to Specific Pages or the Entire Application 108

Programming with Themes . 108

Summary . 109

■CHAPTER 4 Developing Reusable Components: The Skinned
Page-Message Control . 111

New Control Features in ASP.NET 2.0 . 112

Design-Time Rendering of User Controls. 113

Global Tag Registration . 113

Developing Server Controls with the ControlState 115

Building the ControlState Example Control 115

Creating the ControlState Demo Page . 119

Viewing the ControlState Behavior in the Demo Page 120

Building a Skinned Page-Message Control . 121

What Is a Skinned Control? . 122

How Does the Server Control Manipulate the UserControl? 122

How Are Skinned Controls Implemented? . 123

Architecture of the Skinned Page-Message Server Control. 125

Storage Locations for UserControl Skins . 127

Setting Up the Messaging Web Control Project. 128

The Skinned Web Control Class . 128

The MessageDataCollection Class . 132

Defining a Standard Tag Prefix for Your Control Library 140

Design Time Rendering . 140

Referencing the PageMessageControl in Your Web Project 141

Creating the PageMessageControl’s Skin Files 142

Using the PageMessageControl . 147

Summary . 149

■CHAPTER 5 User Management Tools and Login Controls for Forms
Authentication . 151

Forms Authentication in ASP.NET . 152

Authentication Modes. 153

Configuring an Authentication Mode for Your Application 155

Authentication Tickets in Concept . 155

6293_FM.fm Page viii Tuesday, November 15, 2005 7:29 PM

■C O N T E N T S ix

Authentication Cookies . 155

Specifying a Default Login Page and Login Redirection URL. 156

Other Forms Authentication Configuration Options 156

Manually Implementing Forms Authentication 159

Working with the Membership and Roles Objects 167

The Membership Object . 167

The Roles Object . 171

Programming with the Membership and Role Objects 173

Configuring the Membership and Role Providers 173

Managing Users and Security with the Web Site Administration Tool . . 178

Opening the Web Site Administration Tool 178

Home Tab . 178

The Provider Tab. 178

The Security Tab . 181

Adding, Editing, and Deleting Users . 189

ASP.NET 2.0 Login Controls . 192

Templated Controls . 193

Creating Templates . 194

The Login Control . 196

The LoginView Control . 199

The Password Recovery Control . 202

The LoginStatus Control. 205

The LoginName Control . 205

The CreateUserWizard Control . 206

The ChangePassword Control . 208

Summary . 210

■CHAPTER 6 Managing Profiles . 211

Profile Basics . 212

The Profile Object . 212

Enabling and Disabling Profiles. 213

Defining Profile Properties in Web.config . 213

Creating Profile Property Groups. 214

Implementing a Profile Property Class . 215

Strongly Typed Properties . 218

ProfileManager Class . 219

Working with Anonymous Profiles . 221

Enabling Anonymous Profile Identification. 222

When to Use Anonymous Identification . 225

Drawbacks of Anonymous Identification . 226

6293_FM.fm Page ix Tuesday, November 15, 2005 7:29 PM

x ■C O N T E N T S

Defining Anonymous Profile Properties . 227

Avoiding Anonymous Write Exceptions with IsAnonymous 227

The Importance of Default Property Values 228

Creating Profile Migration Code . 229

Creating a Simple Targeted Advertisement . 230

Defining Profile Properties to Track Content Preferences 230

Building the Targeted Advertisement Example Page 231

The Shopping Cart Custom Property . 233

Creating the Shopping Cart . 234

Defining the ShoppingCart Property in Web.Config 237

Building a Product Display Component to Add Products
to the Cart. 238

Building the Shopping Cart Demo Page . 241

Profile Migration with the Shopping Cart . 247

Summary . 248

■CHAPTER 7 Building Portals Using the Web Parts Framework 249

Web Parts Framework Concepts . 250

Web Parts in Concept . 251

Web Part Connections . 252

Portal Page Display Modes . 253

Defining Portal Regions with Zones . 254

User and Shared Scope . 255

Closing vs. Deleting a Web Part . 258

Hiding vs. Closing a Web Part . 258

Web Part Interfaces, Classes, and Controls . 259

IWebPart Interface . 259

Part Class. 262

WebPart Class . 263

GenericWebPart Wrapper Class . 265

WebPartManager Control . 267

ProxyWebPartManager Control . 272

Web Part Zones . 273

WebPartZone Control and Static Web Parts 274

CatalogZone Control and Related Catalog Parts 278

EditorZone Control and Related Editor Parts 283

ConnectionsZone Control . 288

Building an Example Web Part . 293

Defining Web Part Properties . 294

Implementing a UserControl Based Web Part 295

6293_FM.fm Page x Tuesday, November 15, 2005 7:29 PM

■C O N T E N T S xi

Implementing a Custom Web Part . 304

Advanced Web Part Topics . 310

Adding Custom Verbs to Your Web Part . 310

Connection Providers and Consumers . 313

Exporting Web Part Configuration Files . 323

Summary . 325

■CHAPTER 8 Effective Search Tools and Techniques for Your
Business Applications. 327

Creating the SqlQuery Tool . 328

Objectives and Architecture Overview . 328

Enumerations in Globals.vb . 330

SqlField Class . 331

SqlFieldCollection Class . 333

Analyzing the WHERE Clause in Search of an Object Model 335

ISqlCondition Interface . 338

SqlCondition Class . 340

SqlConditionGroup Class . 342

Building the SqlQuery Class . 354

SqlQuery Class . 356

Using a SqlQuery Object to Build Queries . 366

Executing Queries with the SqlQuery Class 370

Executing Paged Queries with the SqlQuery Class 371

Commonly Used Search Functions . 372

Date Range Search . 373

Using the DateRangeSearch . 376

Keyword Search . 377

Using the CreateKeywords Function. 381

Displaying Basic and Advanced Searches . 382

ISearchControl Interface . 383

Creating the Basic Search Form (SimpleForm.ascx) 383

Creating the Advanced Search Form (AdvancedForm.ascx) 384

Implementing the Main Search Page (EmployeeSearch.aspx) . . . 386

Benefits of User Control–Based Search Forms 390

Summary . 390

■CHAPTER 9 Building a Reusable Reporting Framework 391

Building the Reporting Framework . 392

Abstract Class Primer. 393

6293_FM.fm Page xi Tuesday, November 15, 2005 7:29 PM

xii ■C O N T E N T S

Solution Architecture . 395

Database . 397

The ISearchControl Interface . 398

Pagination and the IPaginationControl Interface 399

ReportFramework Abstract Class . 400

Creating a Report Using the Reporting Framework 422

Building Search Forms Using the ISearchControl Interface 423

Creating a Paging Navigation Component . 426

Building the Report Page Layout. 428

Developing the Report Page Code Behind . 430

Running the Report Page . 434

Summary . 434

■CHAPTER 10 Web-Based Wizards: Avoiding Duplicate Data Entry 437

Wizard Control Overview . 438

Layout and Parts of a Wizard Control . 438

Important Wizard Properties and Events . 440

Adding Steps to the Wizard . 442

Controlling Wizard Navigation . 445

Working with Templates . 450

Phonetic Searching . 454

Phonetic Codes and the Soundex Function 455

Phonetic Proximity Matching with the Difference Function 455

Creating the Add Employee Wizard . 456

Business Objects and Utility Functions . 457

Add Employee Wizard . 464

Trying It All Out . 472

Summary . 472

■CHAPTER 11 Uploading Files . 473

Database vs. File System Debate . 474

Transactional Support . 474

Enforcing Referential Integrity and Avoiding Broken File Links . . . 475

Security Considerations . 475

Performance . 476

Data Backup and Replication . 476

Programmatic Complexity . 477

Future Considerations . 477

Uploading Files . 477

6293_FM.fm Page xii Tuesday, November 15, 2005 7:29 PM

■C O N T E N T S xiii

The FileUpload Control . 478

Saving Files with the FileUpload Control . 479

Uploading Multiple Files . 480

Multiple File Uploads on the Client Side. 481

Saving Multiple Files on the Server Side . 484

Storing Files in a Database . 485

Creating a Database Table to Store Files . 485

Getting Files from the Client to the Server . 486

Saving a Single File to the Database . 486

Saving Multiple Files to the Database . 488

Retrieving Uploaded Files from the Database. 490

Summary . 493

■CHAPTER 12 Security and Encryption . 495

Basic Security Concepts . 496

Security Terminology . 496

Authentication vs. Authorization . 498

Least Privileged Access . 498

Processes, Threads, and Tokens . 498

Impersonation . 500

Delegation . 501

Access Token and Impersonation Examples 501

ASP.NET Security Architecture Overview . 504

Sending the Initial Request via the Browser 506

IIS Authorization Based on IP Address or Domain. 506

IIS Authentication . 506

The ASP.NET ISAPI Extension and the ASP.NET
Worker Process . 508

Application Objects and the Security Context of the Request 509

ASP.NET Authentication Modules . 510

URL Authorization Module . 511

File Authorization Module . 511

Processing the Actual Request . 512

Security Configuration . 512

IIS Security Configuration . 513

Securing Files with NTFS Permissions . 522

ASP.NET Security Configuration Settings. 526

Encrypting Sensitive Information . 536

Securing Configuration Settings . 536

Hashing Data with One-Way Encryption . 541

6293_FM.fm Page xiii Tuesday, November 15, 2005 7:29 PM

xiv ■C O N T E N T S

Encrypting and Decrypting Data with Two-Way Encryption 546

Using the Encryption Library . 554

Summary . 555

■CHAPTER 13 Using HTTP Handlers: Request Processing, Image
Generation, and Content Management. 557

HTTP Handler Overview. 558

IIS and the ASP.NET HTTP Pipeline Process Model 559

Common Uses for HTTP Handlers. 563

Implementing the IHttpHandler Interface . 564

Mapping File Extensions in IIS. 566

Configuring an HTTP Handler in ASP.NET . 568

Processing Virtual Files with URL Rewriting . 570

Creating the Report Pages . 571

Building the XlsReportHandler. 573

HTTP Handler Design Considerations . 579

Using the XlsReportHandler to Retrieve Reports 580

Thumbnail Generation with an HTTP Handler. 583

Objectives and Solution Architecture . 583

Building the ThumbnailHandler . 585

Configuring the ThumbnailHandler . 591

Viewing Thumbnails . 592

Content Management Backend . 594

Objectives and Solution Architecture . 594

Content Database Design . 597

Creating the ContentManagementHandler. 598

Configuring the ContentManagementHandler 600

Creating Content Templates using Master Pages 600

Building the FrontController.aspx Page . 601

Building the FrontController.aspx.vb Code Behind 602

Web User Controls and the NoActionForm. 609

Next Steps for the Content-Management Backend 611

Summary . 611

■INDEX . 613

6293_FM.fm Page xiv Tuesday, November 15, 2005 7:29 PM

xv

Foreword

As I write this foreword, we are days away from Visual Studio 2005 becoming official. The soft-
ware has been “complete” for several months now and the last weeks of the project involve
scouring the code to ensure no rogue bug appears. As the multiple development teams move
their code from their team branches into escrow, the level of anticipation is reaching a
crescendo within the developer community. And rightfully so because for many developers,
ASP.NET 2.0 will revolutionize the way they build software by simplifying many of the common
tasks, in much the same way as ASP.NET 1.0 did for Active Server Page developers.

I recall a similar event when .NET 1.0 was released. Microsoft web developers had to bide
their time with Active Server Pages, which was a great technology at the time, but it was mostly
script based or interpreted. ASP.NET 1.0 changed the way developers thought about writing
their applications. For example, the new Cache API allowed developers to skip the often used
hack of storing commonly accessed data in application state memory; server controls allowed
us to take concepts of reuse found at the component layer and “componentize” the UI. Of
course, there was much, much more, but the biggest improvement by far was that ASP.NET was
built on top of the Common Language Runtime (CLR), providing ASP.NET with a host of bene-
fits ranging from garbage collection to multiple language support. Here is an interesting piece
of .NET trivia: Did you know that ASP.NET was the first product group within Microsoft to agree
to build their new platform, later to be known as .NET? How far we’ve come…

The planning for .NET 2.0, codenamed Whidbey, began before version 1.0 even shipped,
just as the planning and development for the next version, codenamed Orcas, is already
underway. An interesting aside: If you drive north from Redmond towards Canada, home of
Whistler-Blackcomb—one of the best snowboarding (skiing too) destinations in North
America—there is a restaurant at the base of these mountains called Longhorn (the Windows
Vista codename). On the way to Longhorn, as the crow flies, you’ll pass the city of Everett (code-
name of .NET 1.1) and the islands of Whidbey and Orcas.

Every adventure needs a trusted guide. In this exploration of ASP.NET 2.0, whether you are
new to technology or intimately familiar with it, Damon’s book will be a trustworthy
companion. Damon shares his experience as a professional ASP.NET 2.0 software developer
who has not only been studying ASP.NET 2.0 but has used it extensively.

The opening chapters of the book examine defensive programming concepts new to
ASP.NET 2.0, in particular those related to managing the configuration system. The ASP.NET
XML driven configuration system, aka Web.config, not only receives many new settings but
also a programmatic API for managing the system. Although the XML can still be edited
directly, the APIs now allow those settings to be managed through tools as well.

Starting in Chapter 3, Damon begins to explore some of the new user interface features of
ASP.NET 2.0. Master Pages and themes provide us with many more options for customizing the
look-and-feel of our web applications. Damon also examines page skinning, a feature that orig-
inated in ASP.NET Forums (now Community Server) and enables developers to build modular
controls whereby their UI is decoupled from their implementation.

6293_FM.fm Page xv Tuesday, November 15, 2005 7:29 PM

xvi ■F O R E W O R D

Chapter 6 deals with the new Personalization features of ASP.NET 2.0. The Personaliza-
tion, Membership, Role Management, Provider Design Pattern, and Caching features are ones
I’m particularly passionate about, as I had the opportunity, while working at Microsoft, to
design these features. ASP.NET’s new Profile system is unique. Not since the days of Site Server
3.0 have developers had a robust personalization API available for their use, and this one
provides developers with an easy-to-use API, along with innovative capabilities such as load on
demand, profile property delegation through providers and, of course, strongly typed proper-
ties on the Profile object. In short, Profile is now the API of choice for storing user data.

In the later chapters, Damon assesses the new Web Parts Framework, which enables
anyone to build web portals, against the option to download or buy one. He shows how to use
the new wizard control to better control the workflow of data entry. Finally, he investigates
topics such as file uploads, security, and dynamic image creation using HTTP Handlers.

As you immerse yourself in the following pages, you’ll find this book to contain practical
examples written by an experienced software developer. And thus I present to you Pro ASP.NET
2.0 Website Programming.

Rob Howard
Telligent Systems

6293_FM.fm Page xvi Tuesday, November 15, 2005 7:29 PM

xvii

About the Author

Damon Armstrong has been developing business applications for almost 10 years and has a
passion for just about every web-based technology on the planet. Currently, he is a technology
consultant with Telligent Systems in Dallas, Texas, where he works with some of the most
active and knowledgeable people in the .NET community, specializes in ASP.NET, and has
recently been focusing on client development projects for early adopters of ASP.NET 2.0. He is
certified in VB .NET and ASP.NET, and holds a Bachelors of Business Administration in
Management of Information Systems from the University of Texas at Dallas.

Damon lives in Carrollton, Texas, with his wife Teresa Kae and their black-lab mix Cloe.
When he’s not in front of a computer, he’s usually out playing softball, disc golf, or procrasti-
nating on some home-improvement project. He’s also a leader, along with his wife and a bunch
of other absolutely awesome people, with Carrollton Young Life. He can be contacted at
damon.armstrong@gmail.com or online at http://www.damonarmstrong.com.

6293_FM.fm Page xvii Tuesday, November 15, 2005 7:29 PM

6293_FM.fm Page xviii Tuesday, November 15, 2005 7:29 PM

xix

About the
Technical Reviewer

Damien Foggon is a freelance programmer and technical author based in Newcastle,
England. He’s technical director of Thing-E Ltd., a company specializing in the development of
dynamic web solutions for the education sector, and founder of Littlepond Ltd. He started out
working for BT in the UK before moving on to progressively smaller companies until finally
founding his own company so that he can work with all the cool new technologies and not the
massive monolithic developments that still exist out there.

Damien has coauthored books for Microsoft Press and Apress and acted as a
technical reviewer for both Wrox and Apress. His first solo outing as an author, Beginning
ASP.NET 2.0 Databases (also from Apress), will be arriving soon. He can be contacted at
damien@littlepond.co.uk or online at http://www.littlepond.co.uk.

6293_FM.fm Page xix Tuesday, November 15, 2005 7:29 PM

6293_FM.fm Page xx Tuesday, November 15, 2005 7:29 PM

xxi

Acknowledgments

Writing a book is one of the most arduous tasks I have ever endured, and it would have been
unendurable without the help and support of a great number of people. Although words are
not enough, I would like to thank the following…

My wife, Teresa. Your unceasing kindness, patience, support, understanding, and love
helped me get through the long nights of coding and writing. I look forward to getting away
with you now that this is all over.

Tony Davis helped take an idea and turn it into a book. Thank you for your encouragement
and guidance in shaping this work.

Damien Foggon had the insurmountable job of ensuring the technical accuracy of the
entire book. Thank you for all your time, research, insight, and well-placed humor, and for
keeping the quality of the code and explanations up to such a high standard.

Julie McNamee, grammatical master, went through the entire book in about three weeks
and ensured the tone, style, spelling, and formatting of the text was consistent and did an abso-
lutely amazing job.

Denise Santoro Lincoln, the book’s project manager, helped keep everything on track,
which is hard to do when working with someone as prone to procrastination as I am. Thank you
for keeping on top of things even through all the chapter splitting, content rearranging, and
out-of-order submissions.

Ty Anderson, who got me into this whole ordeal in the first place. You’re not any good at
keeping a dog in your yard while I’m out of town, but your insight into publishing has been
invaluable, and your friendship even more so. Keep keeping it real.

Rob Howard, for taking the time to write the foreword for this book and for building an
awesome company where people matter and shoes are, in fact, optional.

Tony Frey and Kirk Nativi. Anywhere in the book where I mention working on a project
with someone, chances are it was one of these two. Tony helped set up the HTML formatting
for the sample application and made otherwise stagnant meetings a lot of fun with his insight-
fully sarcastic witticism. Keep the attitude. And Kirk has saved me, in one way or another, on
many a project.

Jonathon Wimberley, Nick Reed, and Matt Maloney. Why I waited two years to finish
remodeling parts of house, I do not know. And why I decided to finish when I was writing a
book, I don’t know either. But your help was invaluable on those home-improvement projects
I decided to undertake when I should have been writing.

Matt, Schall, Scott, Ted, Dave, and the rest of the Carrollton Crew. Fox rules. We’ll get
together soon and I’ll re-educate you as to why that is. Assuming Schall doesn’t get eaten by a
puma.

And finally, my parents, James and Mary Armstrong. You have always been, and continue
to be, there for me. Your dedication as parents is unparalleled. And after 500 some odd pages
and almost 200,000 written words, I know that you will never let me live down the fact I came
home in fifth grade after a keyboarding class grumbling about how I would never learn how to
type.

6293_FM.fm Page xxi Tuesday, November 15, 2005 7:29 PM

6293_FM.fm Page xxii Tuesday, November 15, 2005 7:29 PM

xxiii

Introduction

Microsoft revolutionized web-application development with the original release of ASP.NET,
increasing developer productivity to a level unmatched with any other technology. I have
worked with Java, Perl, PHP, Cold Fusion, and ASP 3.0, and in my experiences, projects in
ASP.NET took less time to build, were easier to maintain, simplified code reuse, and had a
better return on investment. And that was just the first release. ASP.NET 2.0 includes a number
of much needed additions that continue to set it apart as the leader in web-based development
technologies. But functionality is meaningless unless applied correctly, and so the aim of this
book is to discuss how to apply ASP.NET to solve real-world business issues.

As a consultant, I’ve had the opportunity to see a range of different applications imple-
mented to varying degrees of success, and, more importantly, a chance to reflect on what made
them succeed and fail. After looking at a number of projects, I came to realize that successful
projects tend to excel in a few common areas:

• Configuration Management: Configuration settings allow administrators to change the
behavior of an application without recompiling the source code. Applications move
from server to server. Domain names change. IP addresses get shifted around. Config-
urable applications make it easy to adapt to these changes and reduce maintenance
costs.

• Exception Management: Exceptions are an inevitable part of the development process,
and applications should handle exceptions gracefully to avoid damaging your applica-
tion’s credibility with users. You can even log exceptions and use that information to
your advantage to help identify problem areas and manage user perception by
responding to issues before customers have a chance to contact you to complain.

• Visual Appearance: You can control user perception by paying attention to graphical
detail and ensuring your site has a consistent look and feel. Consistency exudes profes-
sionalism and makes for a crisper, cleaner-looking site. Because users often judge an
application on its appearance long before they judge it on its functionality, you can use
this to your advantage to build user confidence in your application. You can also allow
users to personalize the appearance of a site to ensure it fits their particular needs and
preferences.

• Page Messaging: Displaying status information to users about actions that occur on the
page is imperative if you want them to remain informed. If an action fails, users should
be notified to ensure they don’t navigate away from the page and lose their data. If an
action succeeds, users should be notified so they don’t attempt to resubmit the informa-
tion and make a duplicate entry. Informed users make more logical decisions, which
helps keep them from breaking your applications in ways that you never imagined
possible.

6293_FM.fm Page xxiii Tuesday, November 15, 2005 7:29 PM

xxiv ■I N T R O D U C T I O N

• Reusable Controls: Taking time at the start of a project to identify and build components
you can use throughout the rest of the development process can save you an enormous
amount of time. You also gain a higher degree of maintainability because you can update
the component from a single location.

• User Management and Security: Business applications often manage vital business infor-
mation, and it’s imperative to protect that information from falling into the wrong
hands. Applications should take full advantage of the various security mechanisms in
Windows, IIS, and ASP.NET to ensure users are properly authenticated and authorized
to avoid letting sensitive information slip through the cracks.

• Searching and Reporting: As the amount of data in an application grows, so does the
need to effectively search and display that information. Applications with well-built
searching and reporting tools make it easier to locate and view information, increasing
the effectiveness of the application as a whole.

Another realization I’ve had while analyzing projects is that excellence is not the result of
chaotic effort, but rather of design and planning followed by focused action. This is by no
means a stunning revelation because everyone knows that planning something out before you
tackle it helps you accomplish what you set out to do. But for some reason, when burdened by
budgetary restrictions and tight deadlines, developers often forgo design in the hope that fren-
zied coding will somehow bring them out in front when the dust settles. I have yet to see this
approach work.

Although the aforementioned list is far from exhaustive, focusing design efforts on these
areas, before a project begins, helps create a solid infrastructure on which to build the rest of
your application. When you have a good configuration strategy in place, then your applications
tend to be configurable. When you have an exception-management strategy defined, then your
application is more likely to handle exceptions gracefully. When you have a well-designed
visual interface, your applications are bound to look more professional. When you have page
messaging in place, your applications are more inclined to communicate effectively. In other
words, a well-built infrastructure drives you to build better applications. And building a solid
infrastructure for your applications is what this book is all about.

All the chapters in this book contain practical examples for building different portions of
an application using ASP.NET 2.0. They are drawn directly from my experience with client
engagements, so you know they are applicable in real-world scenarios. I also introduce each
chapter by outlining business benefits to the approach suggested so you know not only the
“how,” but also the “why” behind a specific design and implementation.

Who Should Read This Book?
If you are a .NET developer who wants to know how to build a solid web-based business appli-
cation using ASP.NET 2.0, then this book is for you. Inside you’ll find practical examples drawn
from real-world situations that cover configuration management, exception handling, themes,
control skins, building server controls, user management, profiles, developing against the Web
Parts Framework, keyword and phonetic searching, sorting and paging reports, building web-
based wizards, uploading files, storing binary information in a database, security, thumbnail
generation, and content management. Although this book is geared toward beginner- and
intermediate-level developers who have some experience with ASP.NET and VB .NET, even the
most experienced professionals should find something new and interesting.

6293_FM.fm Page xxiv Tuesday, November 15, 2005 7:29 PM

■I N T R O D U C T I O N xxv

System Requirements
To follow along and run the examples in this text, you should have access to the following:

• Microsoft .NET 2.0 Framework

• Visual Studio .NET 2005

• Internet Information Server (IIS) 5.0 or 6.0

• SQL Server Express Edition (2005)

• Microsoft’s Northwind Sample Database

When you install Visual Studio .NET 2005, it automatically installs the Microsoft .NET 2.0
Framework and gives you the option of installing SQL Server Express. You can install IIS via the
Windows Components tab in the Add or Remove Programs section of the Control Panel. You
can find the Northwind sample database on the Microsoft website. Unfortunately, the link to
the page consists mostly of random characters and is far from intelligible. The easiest way to
locate the Northwind database is to search Google for “Northwind and Pubs Sample Data-
bases.” You can also find a link to the sample database in the Links section of the sample
application in the Source Code area of the Apress website.

All the examples in the book come preconfigured for the default installation folder. If you
deploy the sample files to another folder, then you’ll need to change configuration settings in
the Web.config file to match your deployment location. SQL Server Express can connect
directly to database files, but the connection string requires a physical path to that file. So,
you’ll need to change the connection string to point to the appropriate location. Following is an
example connection string showing how to set up a connection to a database file (.mdb) on the
file system:

Data Source=.\SQLEXPRESS;
AttachDbFilename="C:\PRO ASP.NET 2.0\Chapter 8\NORTHWIND.MDF";
Integrated Security=True;User Instance=True

Also know that when you specify the connection string in Web.config, you have to use
proper XML formatting, so the quotes become " as shown in the following example:

<add name="Northwind"
 connectionString="Data Source=.\SQLEXPRESS;
 AttachDbFilename="C:\PRO ASP.NET 2.0\Chapter 8\NORTHWIND.MDF";
 Integrated Security=True;User Instance=True"/>

Of course, the easiest thing to do is to deploy the sample code to its default directory.

Downloading the Source Code
For your convenience, the full source code for the examples in this book is available in the
Source Code area on the Apress website at http://www.apress.com. Click the Downloads link on
the home page and follow the directions to download the code. Please review the Readme.html
file in the sample download for deployment instructions.

6293_FM.fm Page xxv Tuesday, November 15, 2005 7:29 PM

6293_FM.fm Page xxvi Tuesday, November 15, 2005 7:29 PM

1

■ ■ ■

C H A P T E R 1

Configuration Strategy

W

hen a project lands on your desk, resist the temptation to start coding without giving some
serious thought to how you will handle configuration. Developers who have not adopted a
configuration strategy are more likely to use hard-coded references to resources such as web
servers, databases, IP addresses, and file locations, all of which tend to change given enough
time. This usually makes your application extremely difficult and costly to maintain.

Not too long ago, I was able to see exactly how costly poor configuration practices can be
when I was assigned to a project for a major delivery company. Over the years, our client had
built a dozen or so different ASP (Active Server Pages) 3.0 applications to help manage the busi-
ness. These applications were hosted on three different web servers and two different database
servers, none of which were very powerful. To reduce maintenance costs, the client purchased
two high-end servers: one to host web applications and the other to host all the client’s data-
bases. A colleague and I were tasked with moving all the applications and databases over to
these new machines.

As we surveyed the code for the applications, one thing became readily apparent. Every
single resource the applications referenced was hard-coded: file locations, network shares,
servers, passwords, IP addresses, and FTP sites. The application lacked the capability to easily
change program settings without recompiling the application. In other words, it lacked config-
urability. We were only able to successfully move the applications through tedious line-by-line
searching, replacement, recompilation, and full regression testing. Financially, this translated
into almost $15,000 of unnecessary work that could have been avoided had the original devel-
opers used a better configuration strategy.

Proper configuration practices are essential to making a project cost effective over the
entire software development lifecycle. Unfortunately, budgetary and time constraints often
convince developers to forgo those practices and rush into other areas of development without
giving much thought to the long-term consequences. If you plan and budget time at the begin-
ning of a project to properly deal with configuration issues, then you will likely reduce the
overall time required to develop the project.

In this chapter’s sections, I cover a variety of topics and techniques to help you implement
a high-quality configuration strategy:

•

New Configuration Tools in .NET 2.0:

 Demonstrates the new tools available for creating
and maintaining configuration settings in your web application. Using these tools
greatly simplifies the task of configuring an application and keeps you from manually
editing the

Web.config

 file.

6293_ch01.fm Page 1 Friday, November 11, 2005 2:37 PM

2

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

•

Configuration Basics:

 Outlines how to avoid hard-coded references to application
settings and connection strings using the

<appSettings>

 and

<connectionStrings>

sections of the

Web.config

 and the configuration management objects in the .NET
Framework.

•

Strongly Typed Configuration Classes:

 Illustrates how to consolidate your configuration
settings into a single class so those settings can be easily maintained from one location.

•

Custom Configuration Sections:

 Discusses how to build configurable custom compo-
nents by implementing a configuration section specially designed for the component.

•

Storing Configuration Settings in a Database:

 Explains how to store simple configuration
settings and entire objects in the database.

New Configuration Tools in ASP.NET 2.0

Microsoft took a leap in the right direction with the two new configuration tools shipping with
the ASP.NET 2.0 release. The most notable addition is a web-based application administration
tool—Web Site Administration Tool—that can help you set up security and application vari-
ables, and even helps you manage users and roles using a database. In fact, it can create the
database tables necessary to house that data as well. The second addition is a property page
available in IIS (Internet Information Server) that assists you with common settings in the

Web.config

 and

Machine.config

 files.

■

Note

This is only an introduction to the new tools in ASP.NET 2.0, not an in-depth guide to their use. I
highly recommend that you use the online help features of the tools to familiarize yourself with them as thor-

oughly as possible.

Web Site Administration Tool

The Web Site Administration Tool offers a number of site-maintenance options that you will
access throughout the lifecycle of your application. It offers some configuration options,
although they are not as extensive as the configuration options available via the ASP.NET IIS
Property Page discussed next. You can open the Web Site Administration Tool from the Visual
Studio IDE (Integrated Development Environment) by selecting

Website

➤

ASP.NET Configu-
ration

 from the menu. When you click on the menu option, your default browser opens and a
screen similar to the one shown in Figure 1-1 displays. The links and descriptions in the middle
of the page correspond to the navigational tabs running across the top.

6293_ch01.fm Page 2 Friday, November 11, 2005 2:37 PM

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

3

Figure 1-1.

 Web Administration Tool start page

The Provider Tab

You have two options when it comes to configuring providers for your application. You could
try to remember all the XML (Extensible Markup Language) syntax, assemblies, types, and
properties associated with providers and then manually enter all that information into the

Web.config

 file. Or, you can open the

Provider

 tab, which walks you through setting up
providers in a step-by-step format, which I’ve found to be much more productive.

A number of different features in ASP.NET rely on providers:

•

Membership:

 The membership provider tells ASP.NET how to handle usernames, email
addresses, login information, and password recovery. The

Login

 control is one of the
many controls that uses membership features to access user and login information.

•

Roles:

 The role provider helps maintains a list of roles for your web application and a list
of which users are in what roles.

•

Profiles:

 The profile provider tells ASP.NET how to store and retrieve profile information
about users who access your web application. The

Profile

 object uses the profile
provider extensively.

•

Personalization:

 When you work with Web Parts later on in Chapter 7, the Web Part
personalization settings for each page are stored using a provider.

6293_ch01.fm Page 3 Friday, November 11, 2005 2:37 PM

4

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

The initial page of the

Provider

 tab allows you select a single provider for the ASP.NET
features that rely on providers, or you can opt to select different providers for individual
features. In truth, ASP.NET ships with a single provider for SQL Server so you are pretty much
limited to the SQL Server provider until third-party vendors start coming out with providers of
their own. You can also build your own provider implementations, but that is well beyond the
scope of this book.

■

Note

You should set up your provider information before adding users or roles to your web application.

Changing providers results in a loss of user, role, and profile information.

Why Are Providers Necessary?

Data-storage requirements of websites are widely varied. Some applications use SQL Server or
Access whereas others use Oracle, MySQL, or even XML. Because user, role, and profile infor-
mation is stored in a database, it makes sense to use whatever database the web application is
already using to store that information. ASP.NET 2.0 has a number of new components that are
dependent on users, roles, and profiles, so the concern is how to design these components to
be compatible with any existing and future data source.

Microsoft addresses the data source issue by using the provider model. In the provider
model you define functionality for a component in an interface and then build data source–
specific implementations of that interface to “provide” the component with a way to access the
data source. Figure 1-2 depicts this concept.

Figure 1-2.

 In the provider model, functionality is defined in an interface and then implemented
by specific “Provider” classes.

As a hypothetical example, assume you have defined a

Person

 object and one of the
methods it exposes is the

GetToWork()

 method. Because people can get to work in a number of

6293_ch01.fm Page 4 Friday, November 11, 2005 2:37 PM

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

5

different ways, and new ways are being invented on an ongoing basis, you can use the provider
model to “provide” the

Person

 object with various implementations of the

GetToWork()

 method
as shown in Listing 1-1.

Listing 1-1.

 Hypothetical Provider Example

Dim Person1 as New Person
Person1.GetToWorkProvider = CarProvider
Person1.GetToWork()

Dim Person2 as New Person
Person2.GetToWorkProvider = BusProvider
Person2.GetToWork()

In this example,

Person1

 gets into his car and drives to work.

Person2

 stands at a bus stop,
waits for the bus, gets on, hops off at her stop, and walks the rest of the way to work. But, even
though they had different ways of arriving at their destination, both

Person1

 and

Person2

 will
be at work after the

GetToWork

 function executes. Similarly, if you call

Profile.Save()

 from a
web form, regardless of whether you are using a provider for SQL Server, Oracle, XML, or some
other custom store, the profile is saved. Understand, however, that the providers in ASP.NET
are normally configured in

Web.config

 and not explicitly set in code as in the hypothetical
example.

The Security Tab

Most of the functionality in the Web Site Administration Tool is located under the Security tab,
so you will likely be spending a great deal of time here. When you first access the tab, you’ll see
some descriptive text and three boxes at the bottom of the screen containing links allowing you
to manage users, roles, and access rules. You can jump to these sections individually, or you
can opt to use the Security Wizard to walk you through the security configuration process.
Following is a description of each subsection of the Security tab:

•

Users

: This section allows you to set the type of authentication the application uses. If
Forms Authentication is enabled, then you can search for, add, edit, and delete users.
From the Add/Edit User page, you can also select the roles to which a user belongs. If
Windows Authentication is enabled, then you will not be able to manage users because
they are managed inherently by Windows.

•

Roles

: You can enable and disable roles regardless of the type of authentication you use,
but it is mainly used for Forms Authentication. Once enabled, you can add and delete
roles and use the Manage Roles page to see listings of which users are in what roles. You
can also add and remove users from roles on the Manage Roles page.

•

Access Rules

: Access rules, also known as authorization settings, are used to set up authoriza-
tion for a directory based on username or role. Access rules are greatly simplified by using
the Access Rule builder. The Access Rule builder is a web-based tool that gives you a point-
and-click interface for easily adding new

<authorization>

 entries to

Web.config

 files in your
application. Previously, creating access rules required you to manually edit

<authorization>

entries for the directories in your application, similar to the one shown here:

6293_ch01.fm Page 5 Friday, November 11, 2005 2:37 PM

6

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

 <configuration>
 ...
 <system.web>
 ...
 <authorization>
 <deny users="?" />
 <allow roles="admin_user" />
 <deny roles="normal_user" />
 </authorization>
 ...
 </system.web>
 </configuration>

• Using the Access Rule builder, you can select a directory from the application’s directory
tree and set up the appropriate access restrictions using the graphical interface. As you
create new rules, the appropriate

<authorization>

 entries are placed in a

Web.config

 file
that resides in the directory you selected from the directory tree.

•

The Security Wizard

: The Security Wizard does not introduce any new functionality. It
just walks you through the three sections that were already mentioned and is smart
enough to skip any unnecessary sections based on your configuration choices. For
instance, if you choose Windows Authentication mode, the wizard will not take you to
the user-management screen because you have no need to manage users.

Although the Security tab’s purpose is to help you manage users and roles, you are not
required to use it. You can manage users and assign roles programmatically and even allow
users to register for their own accounts using the new Login tools. Chapter 5 contains more
information on the new login controls and programmatic support for users and roles.

The Application Tab

The most notable feature of the Application tab is the Application Settings section. This section
allows you to add, edit, and delete values from the

<appSettings>

 section of the

Web.config

 file.
You can also configure SMTP settings, set debugging and tracing options, and define a default
error page from the Application tab.

ASP.NET Property Page in IIS

Microsoft has said from the beginning that .NET would support side-by-side execution. In other
words, you can have 20 different versions of the .NET Framework installed on your computer and
your application can use whatever Framework it needs. However, configuring your web applica-
tions to use different version of the framework was not very intuitive because it required the use
of the

aspnet_regiis.exe

 command-line utility. This has been simplified with the release of the
.NET 2.0 Framework. You can now configure individual virtual directories within IIS to use
different versions of the .NET Framework using the ASP.NET property page. The property page
also gives you access to a number of application configuration options.

After you install the .NET Framework 2.0 or greater, you will notice the new ASP.NET prop-
erty page in the properties window for sites and virtual directories. See Figure 1-3 for an
example of how this property page appears.

6293_ch01.fm Page 6 Friday, November 11, 2005 2:37 PM

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

7

Figure 1-3.

 ASP.NET property page in IIS

A drop-down list on the page displays the individual versions of the .NET Framework
installed on your system. Configuring a virtual directory to use a specific version of the .NET
Framework is as easy as selecting it from this list.

■

Note

If you are trying to debug an older web application project in Visual Studio 2003, you might get an
error telling you that the debugger cannot attach to the process. To remedy this, open the ASP.NET property
page for your application’s virtual directory and select a different ASP.NET version from the drop-down list.
You need to choose version 1.0 if you used Visual Studio 2002 to build the application, or version 1.1 if you

used Visual Studio 2003.

If you are viewing the properties of a virtual directory configured to use the 2.0 Frame-
work, then you will notice near the bottom of the ASP.NET property page an

Edit
configuration

 button. This button launches the

ASP.NET Configuration Settings

 utility for
the

Web.config

 file located in the root directory of your web application. This utility has far
more configuration options than the Web Site Administration Tool (Web Tool), but it does not
allow you to maintain users or roles, and creating access rules is much less intuitive. It is
designed more for configuration than maintenance, so use the Web Tool to maintain your site

6293_ch01.fm Page 7 Friday, November 11, 2005 2:37 PM

8

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

and use the Configuration Settings tool to configure more advanced settings. Following is a
brief description of the configuration settings you can change from each tab in the utility:

•

General tab:

 Allows you to define application settings and connection strings for your
application.

•

Custom Errors tab:

 Allows you to define custom error pages for specific HTTP status
codes, or you can define a default custom error page for all HTTP status codes.

•

Authorization tab:

 Allows you to define access rules for your application. As mentioned
before, it is less intuitive than the Web Site Administration Tool.

•

Authentication tab:

 Allows you to configure your web application to use Windows
Authentication, Forms Authentication, Password Authentication, or no authentication
at all. If you choose Forms Authentication, you can also specify a number of Forms
Authentication parameters such as the login URL, cookie name, and cookie duration.
Also, you can specify membership and role providers from this tab.

•

Application tab:

 Allows you to specify the user you want to impersonate if your applica-
tion needs to use impersonation. Aside from that, the Application tab allows you to set a
number of default page options and obscure globalization settings.

•

State Management tab:

 Allows you to specify how your application stores session state
information (for example, the session object) and whether or not to use cookies, the
URI, or some other mechanism to link users to the appropriate session object. If you opt
to use the

StateServer

 or

SQLServer

 options for your session state mode, then you are
given an area to enter connection string information.

•

Advanced tab:

 Allows access to seven tabs in one. A drop-down list at the top of the
Advanced tab allows you to select which advanced set of configuration options you want
to view. Those options include Pages & Tracing, Compilation, HTTP Handlers, HTTP
Runtime, Locations, HTTP Modules, and Trust.

■

Note

If you see an italicized item in the ASP.NET Configuration Utility, it means that the item is defined
in the

Machine.config

 file and has been inherited by your

Web.config

 file. Placing items in the

Machine.config

file allows you to create settings in a single location that can be reused from all your appli-
cations. If you change an italicized item, the new setting is written to your application’s

Web.config file

and overrides the value from the

Machine.config

.

If you are viewing the ASP.NET property page of the site, then you will notice a second
button on the property page: Edit

Machine.config

. This launches the same ASP.NET Configu-
ration Utility, but instead of editing the

Web.config

 file in your root directory, it brings up the

Machine.config

 for your system.

6293_ch01.fm Page 8 Friday, November 11, 2005 2:37 PM

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

9

Configuration Basics

Building configurable settings into your application is a relatively painless process because
Microsoft has done most of the difficult work for you. The Web.config file has two sections
entirely devoted to storing ad-hoc configuration data: the <appSettings> and the
<connectionStrings> sections. Microsoft has also created out-of-the-box components that
retrieve the data from these sections so you can use the information in your web application.

Application Settings
Since its inception, the .NET Framework has supported the <appSettings> section of the
Web.config file. The section should appear between the opening <configuration> and closing
</configuration> tags and allows you to define configuration settings as name-value pairs. An
example <appSettings> section is shown here:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <appSettings>
 <add key="UploadPath" value="C:\Uploads\"/>
 <add key="FTPSite" value="127.0.0.1"/>
 <add key="FileExtension" value=".CSV"/>
 <add key="BirthDate" value="6/3/1980"/>
 <add key="SomeNumber" value="4"/>
 </appSettings>
</configuration>

■Caution The XML in the Web.config file is case sensitive. If you accidentally capitalize or fail to capi-
talize a character, your application will experience runtime errors.

You can access any of the application settings you have defined in Web.config via the
ConfigurationManager class located in the System.Configuration namespace. This class
exposes a shared object named AppSettings, which contains a key-based listing of all the
name-value pairs defined in the <appSettings> section of the Web.config file. You can access
configuration settings using the setting name as the key, just like you would do when
retrieving values using the Request.QueryString or Request.Form objects. Following is an
example that retrieves the UploadPath setting from your Web.config file:

Imports System.Configuration.ConfigurationManager
...
Dim UploadPath As String = AppSettings("UploadPath")

Before we continue, let me point out something very important. You may have noticed
that a date and a number are defined in the <appSettings> section. And, you may expect the
AppSettings object to return those settings as a date and an integer, respectively, but that is

6293_ch01.fm Page 9 Friday, November 11, 2005 2:37 PM

10 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

not the case. The AppSettings object only returns strings. If you want to convert something
from a string to a different data type, then you must do it manually:

Imports System.Configuration.ConfigurationManager
...
Dim BirthDate as Date = CDate(AppSettings("UploadPath"))

Also, if you are going to be working with the AppSettings object repeatedly, you should use
the Import System.Configuraation.ConfigurationManager statement. It makes for a lot less
typing.

Connection Strings
Most web applications rely on databases to store information, and connection strings are
required to connect to database. So, you will most certainly be interacting with connection
strings as a developer. Database servers also have a tendency to be relocated, renamed, or have
their users or passwords updated. This means that connection strings should not be hard-
coded into your application.

Fortunately, ASP.NET 2.0 has a brilliant new mechanism for managing connection strings
that promotes proper configuration principles. Instead of intermingling the connection string
settings with the other application settings, as was done in .NET 1.x, you have a specific config-
uration section entirely devoted to connection strings. You define all your connection strings
in the <connectionString> section of the Web.config file and assign each a friendly name. The
friendly name becomes, in essence, a way to refer to the connection string. You can refer to the
static friendly name from your web application and feel free to change the connection string
associated with that friendly name whenever the need arises. Let’s look at an example.
Following is a <connectionString> section that you might find in Web.config:

<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 <add name="VendorDB" connectionString=
 "Server=localhost;User ID=user;Password=password;Database=Vendors;"/>
 <add name="ProductsDB" connectionString=
 "Server=localhost;User ID=user;Password=password;Database=Products;"/>
 </connectionStrings>
</configuration>

Two connection strings are defined in this section. One is named VendorsDB and has a
connection string that points to the Vendor database; the other is named ProductsDB and has a
connection string that points to the Products database. If you want to use the connection string
as the value for a property in an ASP.NET control located on your web form, then you use the
following syntax:

<asp:SqlDataSource id="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:VendorDB %>" />

Note that the <%$ ConnectionStrings:FriendlyName %> tag is only valid when assigning a
value to a property of an ASP.NET web control. If you try to use it anywhere else—that is,
directly on the page—then your page will not compile.

6293_ch01.fm Page 10 Friday, November 11, 2005 2:37 PM

C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y 11

■Note You can also use <%$ AppSettings:Key %> to reference a value from the <appSettings> section
of your Web.config file. Like the connection string tag, this declaration can only be used when assigning a
value to a property of an ASP.NET web control.

You also have the option of accessing connection strings directly in your code, and the
syntax is very similar to working with items in the <appSettings> section. An example of how to
do so is shown next:

Imports System.Configuration.ConfigurationManager
...
Dim MyConnectStr as String = ConnectionStrings("FriendlyName").ConnectionString

In the preceding example, ConnectionStrings("FriendlyName") actually returns a
ConnectionStringSettings object, not a string. You can access the actual connection string via
the ConnectionString property, as we have done in the preceding example.

Also, if you do not want to use the <%$ ConnectionStrings:FriendlyName %> tag in your
web forms, you can opt to use <%= ConnectionStrings("FriendlyName").ConnectionString %>
instead, assuming that you have imported System.Configuration.ConfigurationManager at the
top of your page. This is entirely a matter of preference.

Configuration Guidelines
Now that you know about the <appSettings> and <connectionStrings> sections, it is time to
discuss some guidelines for determining whether or not a setting should be stored in one of
these locations. The guidelines for connection strings are relatively concrete.

• Do not hard-code any connection strings in your application. There is no compelling
reason to do so, especially considering the tools available to help you avoid it.

• All connection strings should be placed in the <connectionStrings> section of the
Web.config file. Do not place any part of your connection string in the <appSettings>
section.

• Use meaningful, friendly names for your connection strings. The Visual Studio 2005 IDE
actually uses these names to help you select connection strings from a drop-down list in
some tools, so using meaningful names can only help you out.

Application settings can encompass just about anything in your web application that you
may need to change. Here are some general guidelines for locating them in your application:

• If it can change, then it’s a candidate for being an application setting. It’s a painful expe-
rience to recompile your application just to change a mundane setting.

• If it can change, but you are 100% sure that it won’t change, then it’s still a candidate for
becoming an application setting. You may think that your database server is never going
to move or that the R: drive you mapped will always be around, but time has the power
to change such absolutes.

6293_ch01.fm Page 11 Friday, November 11, 2005 2:37 PM

12 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

• File locations, directories, server names, and IP addresses should normally be configu-
ration settings. Also, look for numbers in your application that have an effect on the user
interface (UI). One example is the number assigned to the PageSize property of GridView
objects in your application. The PageSize property determines how many items are
displayed on each page of a GridView, and users have a tendency to think that they are
seeing too few or too many items at a time. Making properties such as this configurable
will save you the hassle of recompiling the application every time someone thinks they
should be changed.

• Always ask yourself how often a setting is going to change. Application settings are
usually items that will change over the course of months or years, not days or hours. If
you have an item that will be changing constantly, think about storing it in a database
instead of the <appSettings> section. Making changes to your Web.config file may have
some undesirable effects on the web application. We will discuss these adverse effects
and how to store configuration settings in a database later in this chapter.

• Avoid placing settings in the <appSettings> section that could be placed in a cascading
style sheet. For example, if you want the font, font-size, and colors in your web applica-
tion to be configurable, your time will be much better spent setting up a style sheet than
making a bunch of application settings.

• Redirection URLs to sites or documents outside your web application can usually be
made into application settings. However, URLs to web forms in your web application
more than likely do not need to be application settings. If the workflow of your applica-
tion is changing to the extent where you will be redirecting to a new or alternate web
form, then it probably means that you need to recompile the application anyway.

• The <appSettings> section is not a surrogate content-management system, so avoid
using it to store reams of text to display on your web form. Use code-behind files to sepa-
rate your HTML and your server-side code so you can easily manage content with an
HTML editor.

• Try not to use too many application settings. An average site may have anywhere from 5
to 10 application settings. If you have 50 or 100 settings, then you may have gone a little
overboard and managing your application settings may be much more difficult.

Remember, these are just guidelines and not absolutes to be rigidly enforced. Use your
intuition, and over time, you will develop a more acute sense for which items need to be turned
into application settings.

Strongly Typed Configuration Classes
Now that you know the necessary code to access configuration data using the .NET Frame-
work, let’s discuss a best practice for encapsulating your configuration data. It involves
creating a strongly typed configuration class that exposes a shared property for each configu-
ration item in the <appSettings> section of the Web.config file.

This approach allows you to speed up your development time because you no longer have
to worry about casting a string into the appropriate data type each time you need to use an
application setting. The casting code is only written once, and then the appropriately cast

6293_ch01.fm Page 12 Friday, November 11, 2005 2:37 PM

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

13

value can be used throughout the entire application. Additionally, if you are using the Visual
Studio IDE, you can get a comprehensive list of all configuration settings via IntelliSense. This
helps you avoid spelling errors that won’t be caught by the compiler, and keeps you from
having to dig into

Web.config

 every time you want to see what’s there.

The Strongly Typed Configuration Sample Application

The best way to become familiar with strongly typed configuration classes is to start building
them. For this example, you need to create a new Visual Basic ASP.NET website. Choose

File

➤

New Website

, and the

New Website

 dialog box appears. Make sure to select

Visual Basic

 as the

Project Type

, and

ASP.NET Website

 as the template. In the

Location

 field, enter the folder in
which you want your website files to reside. When you are done, click the

OK

 button.

Adding the Web.config File

By default, the

Web.config

 file is not created when you create a project, so you have to create
one yourself. You can accomplish this by right-clicking the project icon in the Solution
Explorer and selecting

Add New Item

. The

Add New Item

 dialog box appears listing a number
of different file templates. Choose the

Web Configuration File

 template, and accept the
default name

Web.config

. After you click the

Add

 button, Visual Studio adds the

Web.config

 file
to your project in the root folder.

Now you need to create the

<appSettings>

 and

<connectionStrings>

 sections to use in the
example. Open the

Web.config

 file and locate the line that reads

<appSettings/>

. Replace that
line with the following text:

<appSettings>
 <add key="MyString" value="www.Credera.com"/>
 <add key="MyInteger" value="5" />
 <add key="MyDateTime" value="8/20/1980" />
 <add key="MyBoolean" value="True" />
 <add key="MyPrimeNumberArrayList" value="1;2;3;5;7;11;13;17"/>
</appSettings>

Now locate the line that reads

<connectionStrings/>

 and replace it with the following text:

<connectionStrings>
 <add name="MyConnectionString"
 connectionString="Server=Localhost;User id=usr;Password=pwd;"/>
</connectionStrings>

The

<appSettings>

 section has six items defined that are all, conveniently, of differing data
types. This will help our discussion of casting from strings to other data types and casting to
more complex objects.

The Config Class

Now you need to add a new class to your application by right-clicking the project icon in the
Solution Explorer and selecting

Add New Item

. Choose the

Class

 template from the template
list, and enter

Config.vb

 as the name. Also, make sure to select Visual Basic in the

Language

6293_ch01.fm Page 13 Tuesday, November 15, 2005 1:54 PM

14 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

drop-down list. Click the Add button. Visual Studio tells you that class files should be placed in
the App_Code folder and asks if you want the class file to be placed there. Click Yes. Visual Studio
automatically creates the App_Code folder and places the Config.vb class in the App_Code folder.

The first thing that you need in the Config.vb file is an imports statement so you do not
have to fully qualify the AppSettings or ConnectionStrings objects. Also shown here is the
declaration for the Config class:

Imports System.Configuration.ConfigurationManager

Public Class Config

Next, you define a series of private shared variables that cache the values from the
AppSettings and ConnectionStrings objects.

 '***
 'Private Shared Variables used for Caching Settings
 Private Shared _MyString As String
 Private Shared _MyInteger As Integer
 Private Shared _MyDateTime As DateTime
 Private Shared _MyBoolean As Boolean
 Private Shared _MyPrimeList As ArrayList
 Private Shared _MyConnectionString As String

Then, you can move on to the actual properties that expose the items from the
<appSettings> section. Six of these items are exposed as shared, read-only properties with
varying return types. The first, MyString, is a fairly straightforward example because it returns
a string, thus no casting is involved:

 '***
 Public Shared ReadOnly Property MyString() As String
 Get
 If _MyString = Nothing Then _MyString = AppSettings("MyString")
 Return _MyString
 End Get
 End Property

This property first checks to see if _MyString, the private class-level variable that caches
the AppSettings value, has been initialized. If it isn’t initialized, then it will be equal to Nothing
and you initialize it by pulling the value from AppSettings("MyString") and storing it in the
_MyString variable. Finally, you return _MyString.

The next property, MyInteger, follows the same basic structure as the previous example,
but the value returned by the AppSettings object is a string, not an integer. Thus, you have to
cast the string into an integer before storing it in the _MyInteger caching variable:

 '***
 Public Shared ReadOnly Property MyInteger() As Integer
 Get
 If _MyInteger = Nothing Then _
 _MyInteger = CInt(AppSettings("MyInteger"))
 Return _MyInteger

6293_ch01.fm Page 14 Friday, November 11, 2005 2:37 PM

C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y 15

 End Get
 End Property

Assuming that the string returned from AppSettings("MyInteger") is a valid number,
CInt(AppSettings("MyInteger")) casts the string into an integer before storing it to the
_MyInteger variable. So, what happens if AppSettings("MyInteger") does not return a valid
number? The call to CInt() throws an error. We will discuss error handling in the Config class
a bit later in this chapter, so for now assume that the strings returned from the AppSettings
object are in the appropriate format for casting.

Next, the MyDateTime and MyBoolean properties show two more examples of casting prop-
erties to their appropriate types:

 '***
 Public Shared ReadOnly Property MyDateTime() As Date
 Get
 If _MyDateTime = Nothing Then _
 _MyDateTime = CDate(AppSettings("MyDateTime"))
 Return _MyDateTime
 End Get
 End Property

 '***
 Public Shared ReadOnly Property MyBoolean() As Boolean
 Get
 If _MyBoolean = Nothing Then _
 _MyBoolean = CBool(AppSettings("MyBoolean"))
 Return _MyBoolean
 End Get
 End Property

You are not limited to just casting your application setting directly to a native data type,
you can also use the setting to build a more complex object. This next property, called
MyPrimeNumberArray, actually returns an ArrayList.

 '***
 Public Shared ReadOnly Property MyPrimeList() As ArrayList
 Get
 If _MyPrimeList Is Nothing Then
 _MyPrimeList = New ArrayList
 Dim TempPrimeList As String() = _
 Split(AppSettings("MyPrimeList"), ";")

 For index As Integer = 0 To TempPrimeList.Length - 1
 _MyPrimeList.Add(CInt(TempPrimeList(index)))
 Next

 End If

6293_ch01.fm Page 15 Friday, November 11, 2005 2:37 PM

16 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

 Return _MyPrimeList
 End Get
 End Property

The MyPrimeList property first checks to see if the _MyPrimeList variable is initialized. If it
isn’t, then a new ArrayList is created and assigned to _MyPrimeList. Then you get the string
value from the AppSetting object and split it using “;” as the delimiter. The Split function
returns an array containing each number as an individual string. You then iterate through each
number in this list, cast each one into an integer, and add each one to _MyPrimeList using the
Add method. Finally, you return _MyPrimeList.

Some complex objects have so many properties that creating them from a single string
stored in the <appSettings> section is not be the best option. We will discuss custom configu-
ration sections later in this chapter to address that issue.

Building a property to expose a connection string is very similar to returning a string from
the AppSettings object:

'***
Public Shared ReadOnly Property MyConnectionString() As String
 Get
 If _MyConnectionString = Nothing Then _MyConnectionString = _
 ConnectionStrings("MyConnectionString").ConnectionString
 Return _MyConnectionString
 End Get
End Property

End Class

Remember that the call to ConnectionStrings("MyConnectionString") returns a
ConnectionStringSettings object, not a string, so you need to use the ConnectionString
property of the returned object to access the actual connection string. Also notice the End
Class statement as this is the last property in the example class.

Using the Config Class in Your Code
Now that you have the Config class built, let’s discuss how to use it. Each property in the class
is a shared, read-only property. With shared properties, you do not have to instantiate an
object to call the property. So you can access the properties directly from the Config class in the
following manner:

Dim StringSetting as String = Config.MyString
Dim IntegerSetting as Integer = Config.MyInteger
Dim SomeArrayList as ArrayList = Config.MyPrimeList

Remember that each property is strongly typed, so MyString returns a String, MyInteger
returns an Integer, and MyPrimeList returns an ArrayList. Casting is handled inside of each
property, so you do not need to worry about casting every time you access a setting.

You cannot assign values to the properties in the Config class because they are all read-
only. Although it is possible to change a setting in the <appSettings> and <connectionStrings>
section of the Web.config file using the XML objects available in the .NET Framework, I do not

6293_ch01.fm Page 16 Friday, November 11, 2005 2:37 PM

C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y 17

recommend placing the code to do so directly in the property. Remember, settings in
Web.config should be fairly static so changes to them should be few and far between. If the
setting needs to change often, then seriously consider storing it in a database. If you need
remote configuration or setup capabilities, then place the code to make changes to the
Web.config in an administrative page so it’s isolated from the rest of the system.

Error Handling in the Config Class
There is no error handling code for any of the properties in the Config class, even though a
casting error could throw an exception. The reason for this is because it’s not a good return on
your time to include error-handling code in your configuration properties for a couple of
reasons.

When an application is first deployed, the Web.config file should contain valid configura-
tion settings. This helps the individual who needs to edit the configuration because the syntax
for the new setting should follow the syntax of the existing setting. For instance, if the
MyInteger setting is 5, and needs to be changed to 10, then the person editing Web.config
will probably not enter “ten” as the new setting. Also, if a setting is complicated, then XML
comments can be included to help guide the user to an appropriate entry.

Another issue is how to let someone know that a configuration setting is invalid if you
never throw the exception. Allowing the exception to be thrown produces a visual sign that
something is wrong. A quick look into the error message will reveal which property of the
Config class threw the exception, and a system administrator can look into the issue.

Finally, exception handling is an expensive operation that is inherently slow. If you put an
invalid setting into Web.config, you don’t want an exception-handling operation running each
time you access the property. For simple data types, you can implement error checking to
avoid an exception instead of handling it when it occurs. In the following example, the appli-
cation checks to see if the MyInteger setting is a numeric value before returning it. If it isn’t,
then it returns a default value of 5:

'***
Public Shared ReadOnly Property MyIntegerWithErrorChecking() As Integer
 Get
 If IsNumeric(AppSettings("MyInteger")) Then
 _MyInteger = CInt(AppSettings("MyInteger"))
 Else
 'Setting in the Web.config is invalid so set a default value
 _MyInteger = 5
 End If
 Return _MyInteger
 End Get
End Property

6293_ch01.fm Page 17 Friday, November 11, 2005 2:37 PM

18 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

Error checking only works when you determine if a settings is valid before casting it into
the target data type, so it’s harder to implement for complex data types. For example, if your
application requires a valid GUID (Globally Unique Identifier) for some operation, then you
would have to implement error handling instead of error checking to ensure it returns a valid
GUID:

 '***
 Public Shared ReadOnly Property MyGuidWithErrorHandling() As Guid
 Get
 Try
 If _MyGuid = Nothing Then _MyGuid = _
 New Guid(AppSettings("MyGuid"))
 Catch ex As Exception
 'Error occured so set a default value
 _MyGuid = New Guid("{05F8B079-5367-42a8-B97F-6C72BAC4915C}")
 End Try
 Return _MyGuid
 End Get
 End Property

When you implement exception handling in your configuration properties, you should
use a variable to cache the property value because it keeps the exception handling to a
minimum. Notice that an exception only occurs the first time you access the property. On
subsequent calls, the MyGuid variable contains a value so the property does not attempt to
reload the value from Web.config.

Now, my views on error handling come from my experiences, and so far I have had no
issues with leaving error handling and error checking out of my strongly typed configuration
classes. It is a matter of preference, so you will have to see what works best for your situation.

Caching Application Settings and Connection Strings
In your Config class, many lines are devoted to caching values from the AppSettings and
ConnectionStrings objects. This may leave you wondering if you have to cache those settings
or if you can just skip the caching code. If you do not want to use caching in your application,
then you can strip the properties of their caching code and reduce them to the following:

 '***
 Public Shared ReadOnly Property MyIntegerWithNoCaching() As Integer
 Get
 Return CInt(AppSettings("MyInteger"))
 End Get
 End Property

This property returns the MyInteger setting, but does not cache the value. As you can see,
the code for this is much simpler than the code involving caching. Also, you do not have to
define a set of private shared variables in which to cache the values. But all things come at a
cost, and the penalty for not caching your settings is a minor performance hit.

How bad is the performance hit? I created a benchmarking test that is included in the
Chapter 2 sample code in the Source Code area of the Apress website (http://www.apress.com).

6293_ch01.fm Page 18 Friday, November 11, 2005 2:37 PM

C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y 19

The page is called CacheBenchmark.aspx, and it allows you to enter the number of iterations you
want to test and then executes two loops. The first loop uses a noncached property to assign a
value to a variable, and the next loop uses a cached property to assign a value to a variable. On
my computer, the noncached property runs about 375,000 iterations per second and the
cached property runs at about 115 million iterations per second. That’s a significant difference
numerically, but when you get right down to it, you are probably not going to be accessing a
property that many times in your application.

So, the decision to cache or not to cache is up to you. If you are building a smaller applica-
tion that will not be accessed by many people, then you can get away with not caching your
configuration settings. If, however, you are building an enterprise application with a massive
user base, you will definitely want to consider it.

Custom Configuration Sections
We’ve covered how to store simple name-value configuration settings in the <appSettings>
section of Web.config, but what about more complex configuration scenarios? What happens
when you need to configure objects with a lot of parameters or even lists? The <appSettings>
section is not well suited for such tasks. Instead, you may need to create a custom configura-
tion section to handle more complex configuration data.

Configuration Section Architecture
Each configuration section in Web.config has a configuration section handler specifically
designed to read data from the configuration section and return an object that exposes that
data. These configuration sections and their handlers must be defined in the <configSection>
element. Here is an example of how the <appSettings> section is defined in Machine.config:

<configuration>
 <configSections>
 ...
 <section name="appSettings"
 type="System.Configuration.AppSettingsSection, System.Configuration,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
 restartOnExternalChanges="false" />
 ...
 </configSections>
</configuration>

The name parameter of the <section> element defines the name of the configuration
section as it appears in the configuration file; the type parameter defines the configuration
section handler that reads data from the configuration section and returns an object
containing that data. In the preceding example, "appSettings" is the name of the section,
which is why you can use the <appSettings> section in your Web.config file. The <appSetting>
section hander is the System.Configuration.NameValueFileSectionHandler type located in the
System assembly.

6293_ch01.fm Page 19 Friday, November 11, 2005 2:37 PM

20 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

■Note All the commonly used configuration sections are defined in Machine.config because
Web.config inherits those settings. This is why you can use the <appSettings> section in your
Web.config file without always having to set up the configSection entry to define it.

You can create your own custom configuration section by doing the following:

1. Create a data structure that can hold your configuration data. These data structures,
and the IConfigurationSectionHandler discussed in step 2, must be defined in a sep-
arate project from your web application.

2. Create a class that implements the IConfigurationSectionHandler interface. This class
reads the data from your configuration section and stores it in the data structure
defined in step 1.

3. Add a new configuration section definition to the <configSections> element in your
Web.config file. This requires giving your configuration section a name, and appropri-
ately referencing the class you created in the second step.

4. Add the configuration section and configuration data to your Web.config file using the
section name defined in step 2.

5. Launch your configuration section handler by calling the GetSection method of the
ConfigurationManager class. This method executes your configuration section handler
and returns the data structure containing your configuration data.

6. Store the configuration data returned by your configuration section handler for use in
your application.

Let’s take a detailed look at how this process works.

The Custom Configuration Section Sample Application

Here’s the scenario. You have a client who wants to display a list of files that have been
uploaded to a website. Each file should be displayed with an icon representing the document
type. For instance, Word documents, rich text document, and text files should have an icon
that looks like a little word pad, whereas Excel documents and comma-separated value files
should have an icon that depicts a spreadsheet. The document type is determined by the file
extension.

Your client wants a configurable solution so they can define icons and which extensions
should be associated with those icons. They also want to be able to define an icon to represent
unknown extensions. Lastly, each icon should have a description that will be used as the alter-
nate text (the alt parameter of the tag in HTML) for the icon image.

Following is an example of how the client wants to define the configuration:

6293_ch01.fm Page 20 Friday, November 11, 2005 2:37 PM

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

21

<unknownIcon imageUrl="Icons/unknown.gif" description="Unknown File Type"/>
<icon imageUrl="Icons/word.gif" description="Word Processing Document">
 <ext>.DOC</ext>
 <ext>.RTF</ext>
 <ext>.TXT</ext>
</icon>
<icon imageUrl="Icons/excel.gif" description="Excel Document">
 <ext>.XLS</ext>
 <ext>.CSV</ext>
</icon>
<icon imageUrl="Icons/image.gif" description="Picture/Image">
 <ext>.GIF</ext>
 <ext>.TIFF</ext>
 <ext>.JPG</ext>
 <ext>.BMP</ext>
 <ext>.PNG</ext>
</icon>

Your objective is to implement a custom configuration section that can handle this type of
configuration data.

Creating the Configuration Data Structures

Custom configuration handlers may be defined directly in your project, or in an external
assembly so it can be reused. In this example, you’ll use an external assembly, so you need
to add a new project to your solution. You can do this by right-clicking on the solution file
and then selecting

Add

➤

New Project

. The

Add New Project

 dialog box appears. Select

Visual Basic

 for the

Project Type

 and

Class Library

 as the

Template

. Name the new project

IconConfiguration

. After you click the

OK

 button, a new project appears in the Solution
Explorer window.

Take a look at the XML configuration for the icons. You should notice a collection of icons,
and each icon has a collection of extensions—a list of lists. If you were to build a data structure
to hold this data in the exact same hierarchical structure, searching for an appropriate icon
using the extension as the starting point would be too cumbersome. Instead, you’ll create a
data object that can store the

ImageUrl

,

Description

, and

Extension

 properties together,
allowing you to maintain a single list that can be searched with relative ease.

By default, the new project will include a class file named

Class1.vb

. Change the name of
this file to

IconConfigurationItem.vb

. The

IconConfigurationItem

 class holds all the icon
information:

Public Class IconConfigurationItem

 '***
 Private _IconImageUrl As String
 Private _Description As String
 Private _Extension As String

6293_ch01.fm Page 21 Tuesday, November 15, 2005 1:55 PM

22 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

 '***
 Public Property IconImageUrl As String
 Get
 Return _IconImageUrl
 End Get
 Set(ByVal value As String)
 _IconImageUrl = value
 End Set
 End Property

 '***
 Public Property Description As String
 Get
 Return _Description
 End Get
 Set(ByVal value As String)
 _Description = value
 End Set
 End Property

 '***
 Public Property Extension As String
 Get
 Return _Extension
 End Get
 Set(ByVal value As String)
 _Extension = value
 End Set
 End Property

 '***
 Public Sub New(ByVal IconImageUrlParam As String, _
 ByVal DescriptionParam As String, _
 ByVal ExtensionParam As String)
 IconImageUrl = IconImageUrlParam
 Description = DescriptionParam
 Extension = ExtensionParam
 End Sub

End Class

IconConfigurationItem is a relatively simple class. It contains three public properties and
their related fields to store the location of the image to display as the icon, the description, and
the extension. It also includes a constructor to help initialize these properties.

Next, you need to create an object capable of storing a list of IconConfigurationItem
objects. This is accomplished through a strongly typed collection class. Add a new class file to
your project named IconConfigurationCollection.vb. Then, add the following code to the file:

6293_ch01.fm Page 22 Friday, November 11, 2005 2:37 PM

C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y 23

Public Class IconConfigurationCollection
 Inherits CollectionBase

 '***
 Public UnknownIconInfo As IconConfigurationItem

The IconConfigurationCollection class inherits its list-storage functionality from the
CollectionBase class. You should notice that the List property, which is an inherited property,
is used throughout the class. Under the class declaration, you will see a public field capable of
storing a reference to the unknown icon information. Remember that one of the requirements
for this exercise was to have a catchall icon that can be displayed in the event of an unknown
extension.

The GetExtensionIndex function, which is responsible for searching through the List
property, looks for an IconConfigurationItem with a particular extension. It then returns the
index of that item or -1 if the item is not found.

 '***
 Private Function GetExtensionIndex(ByVal Extension As String) As Integer

 Dim IconConfigItem As IconConfigurationItem
 Extension = Extension.ToUpper

 For index As Integer = 0 To List.Count - 1
 IconConfigItem = DirectCast(List.Item(index), IconConfigurationItem)
 If IconConfigItem.Extension.ToUpper = Extension Then
 Return index
 End If
 Next

 Return -1

 End Function

In terms of speed, this search algorithm is nothing spectacular, but it gets the job done.
First, it converts Extension into an uppercase value to ensure proper string matching later on
in the function. Then, the function loops through each IconConfigurationItem in the List
property and checks to see if the Extension value passed into the function matches any of the
Extension values of the items in the list. If so, the index of the matched item is returned. If not,
the loop exits and the function returns -1, indicating that the icon associated with the exten-
sion was not located.

With the GetExtensionIndex function out of the way, you can move right into the
GetIconInfo property:

6293_ch01.fm Page 23 Friday, November 11, 2005 2:37 PM

24 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

 '***
 Default ReadOnly Property GetIconInfo(ByVal Extension As String) _
 As IconConfigurationItem
 Get
 Dim Index As Integer = GetExtensionIndex(Extension)
 If Index = -1 Then Return UnknownIconInfo
 Return DirectCast(List.Item(Index), IconConfigurationItem)
 End Get
 End Property

This property has one parameter, Extension, which contains a string representing the
extension of a file type. The objective of this property is to return the IconConfigurationItem
associated with the given extension. If one does not exist, then the property returns the
IconConfigurationItem associated with the unknown icon. This is accomplished by using the
GetExtensionIndex function to return the index of the appropriate item. If the function returns
-1, then you just return UnknownIconInfo. Otherwise, you return the IconConfigurationItem at
the appropriate index in the list.

Last, the Add function allows you to add IconConfigurationItem objects to the list:

 '***
 Public Function Add(ByRef obj As IconConfigurationItem) As Integer
 Return List.Add(obj)
 End Function

End Class

With the data structures complete, you can now turn your attention to the actual configu-
ration section handler.

Implementing an IConfigurationSectionHandler

You will create a class named IconConfigurationHandler that implements the ICon➥

figurationSectionHandler interface. The IConfigurationSectionHandler interface only
exposes a single function, the Create function, which is responsible for returning an object
that stores your configuration data. In the example, you will be returning an Icon➥

ConfigurationCollection object. Because there is only a single function in the class, the
 entire class is displayed here:

Imports System.Configuration
Imports System.Xml

Public Class IconConfigurationHandler
 Implements IConfigurationSectionHandler

 '***
 Public Function Create(ByVal parent As Object, _
 ByVal configContext As Object, _
 ByVal section As System.Xml.XmlNode) As Object _
 Implements IConfigurationSectionHandler.Create

6293_ch01.fm Page 24 Friday, November 11, 2005 2:37 PM

C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y 25

 Dim ReturnObj As New IconConfigurationCollection
 Dim IconItem As IconConfigurationItem

 Dim IconNodes As XmlNodeList = section.SelectNodes("icon")
 Dim ExtensionNodes As XmlNodeList
 Dim IconNode As XmlNode
 Dim ExtensionNode As XmlNode

 'Acquire and Process the Icon Nodes
 For Each IconNode In IconNodes
 ExtensionNodes = IconNode.SelectNodes("ext")
 For Each ExtensionNode In ExtensionNodes

 IconItem = New IconConfigurationItem(_
 IconNode.Attributes.GetNamedItem("imageUrl").Value, _
 IconNode.Attributes.GetNamedItem("description").Value, _
 ExtensionNode.InnerText)
 ReturnObj.Add(IconItem)

 Next
 Next

 'Acquire and Process the Unknown Icon Node
 IconNode = section.SelectSingleNode("unknownIcon")
 If Not IconNode Is Nothing Then
 ReturnObj.UnknownIconInfo = New IconConfigurationItem(_
 IconNode.Attributes.GetNamedItem("imageUrl").Value, _
 IconNode.Attributes.GetNamedItem("description").Value, _
 String.Empty)
 End If

 Return ReturnObj

 End Function

End Class

The Create function has three parameters: parent, configContext, and section. In theory,
the parent parameter contains configuration settings from a parent configuration section, and
the configContext contains contextual information about the configuration. In practice,
however, they are usually NULL and almost never useful. Disregard them unless you have a
compelling reason to do otherwise. The section parameter, on the other hand, contains all the
XML data located inside your configuration section, so it plays a key role in this function. After
the function declaration, you define a set of variables as shown in Table 1-1.

6293_ch01.fm Page 25 Friday, November 11, 2005 2:37 PM

26

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

In those variable declarations, you will notice the following line:

Dim IconNodes As XmlNodeList = section.SelectNodes("icon")

The

SelectNodes

 function of the

XmlNode

 object accepts an XPath query, and returns a

XmlNodeList

 containing all the nodes that match the XPath query. The XPath query is just a
string that, in this case, represents the element name of the elements that you want returned.

■

Note

XPath is a powerful XML query language that is capable of much more than just searching for
elements by name. For a more in-depth look at the XPath syntax and capabilities, visit the following Web site

for an online tutorial:

http://www.w3schools.com/xpath/xpath_intro.asp

.

After the variable declarations, you begin looping through all the image elements in the

IconNodes

 variable. Inside the first loop, you acquire all the

ext

 elements in the current

image

element and store them in the

ExtensionNodes

 variable. Then, you begin iterating through each
of those

ext

 elements in the second loop.
Inside the second loop, you call the

IconConfigurationItem

 constructor and pass in values
for the image URL, description, and extension. Both the image URL and the description are
parameters of the

 image

 element, so their values can be accessed in the following manner:

IconNode.Attributes.GetNamedItem("imageUrl").Value
IconNode.Attributes.GetNamedItem("description").Value

Table 1-1.

Variables Used in the

Create

 Function

Variable Name Type Description

ReturnObj IconConfigurationCollection

This is the object returned by the function. It
contains a collection of

IconConfiguration

➥

Item

 objects that represent the data from the
configuration section.

IconItem IconConfigurationItem

Used as a placeholder for the creation of

IconConfigurationItem

 objects before they
are added to the

ReturnObj

.

IconNode XmlNodeList

Holds a collection of

XmlNode

 objects. This is
used to build a collection of all the icon
elements in the configuration section.

IconNode XmlNode

Used to reference a single image element, or

XmlNode

 in the

IconNode

 collection.

ExtensionNodes XmlNodeList

Holds a collection of

XmlNode

 objects. This is
used to build a collection of

ext

 elements
located inside an image element.

ExtensionNode XmlNode

Used to reference a single

ext

 element, or

XmlNode

, in the

ExtensionNodes

 collection.

6293_ch01.fm Page 26 Tuesday, November 15, 2005 3:05 PM

C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y 27

The extension, however, is stored as the inner text of an ext element, not as a parameter.
To access the extension value you need to use the following:

ExtensionNode.InnerText

After the IconConfigurationItem is created (and assigned to the IconItem variable), it is
added to the ReturnObj. The IconItem variable exists for the sake of clarity; it is not an integral
part of the solution. By the time these loops exit, the ReturnObj is populated with a list of exten-
sions and each extension’s corresponding image URL and description.

Next, you need to acquire the unknown icon information. There should only be one
unknownIcon element in the configuration section, so use the SelectSingleNode function to find it:

IconNode = section.SelectSingleNode("unknownIcon")

If the specified element is not found, IconNode is set to Nothing. If it is found, then you
create a new IconConfigurationItem and assign it to ReturnObj.UnknownIconInfo. An empty
string is passed in as the extension for this new object because the extension information is
unnecessary for the unknown icon. For reference, if you have multiple <unknownIcon> sections
in the configuration section, then the SelectSingleNode function returns the first one it locates.

Reference the Class Library from Your Web Application

After you have created the class library containing your configuration data structures and configu-
ration section handler, you need to add a reference to the class library from your web application.
Right-click the web application project in the Solution Explorer and then choose Add Reference.
The Add Reference dialog box appears. Select the Projects tab. You will see a listing of projects in
your solution (aside from the web application). In the sample application, there is only a single
project called IconConfiguration, so select it from the list. Click the OK button.

If you do not receive any error messages, then your reference has been set up correctly.
You can confirm this by expanding the Bin folder of your web application and checking to see
if IconConfiguration.dll is present in the folder.

Defining the Custom Configuration Section

Before you can put a custom configuration section in Web.config, you have to let the
Web.config file know of its existence. This is accomplished by adding a new section entry to the
configSections element. Open the Web.config file for your web application and add the
following XML at the very top of the <configuration> section:

<configSections>
 <section name="iconConfig"
 type="IconConfiguration.IconConfigurationHandler, IconConfiguration"/>
</configSections>

6293_ch01.fm Page 27 Friday, November 11, 2005 2:37 PM

28

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

■

Note

The

<configSections>

 element must be the first item defined in the

<configuration>

 section.
If you place any other elements in the

<configuration>

 section before the

<configSections>

 element,

you will receive a compilation error.

The

name

 parameter defines the name of your new configuration section as it appears in
the

Web.config

 file. It is case sensitive, so you need to make sure that this name and the name
used in the opening and closing tags of your configuration section are identical. Using the
preceding example, the configuration section would have to read:

<iconConfig>
 <!-- configuration data here -->
</iconConfig>

The

type

 parameter defines the configuration section handler that can be used to parse
the data inside of the configuration section. For the most part, you will use the following syntax
for the type parameter:

type="NameSpace.Type, Assembly"

If you are using a configuration section defined in your web application, then you do not
need to specify the assembly name. You only need to specify the assembly name for external
assemblies and, when you do, the assembly name should not include the

.dll

 extension of the
assembly. You can also specify

version

,

culture

, and

publicKeyToken

 parameters for the type if
you need to point to a very specific instance of the type.

■

Caution

Assemblies may have a root namespace that mimics the assembly name. In our example, for
instance,

IconConfiguration

 is both the assembly name and the root namespace. It appears redundant,
but avoid the temptation to remove the initial namespace. For example, the following will work:

type=" IconConfigurationHandler, IconConfigurationHandler.IconConfiguration"

But this will not:

type=" IconConfigurationHandler, IconConfiguration"

In addition to being able to define new custom configuration sections, you can also
define new section groups. A

section group

 is an XML element that surrounds one or more
configuration sections. Our example does not use a section group, but here is an example of
how one may be defined in

Web.config

:

6293_ch01.fm Page 28 Tuesday, November 15, 2005 1:56 PM

C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y 29

<!- - Define the Sections -->
<configSections>
 <sectionGroup name="myConfigurationGroup">
 <section name="SectionA" type="MySections.SectionA, MySections"/>
 <section name="SectionB" type="MySections.SectionB, MySections"/>
 </sectionGroup>
</configSections>

<!-- Use the Sections -->
<myConfigurationGroup>
 <SectionA>
 ...
 </SectionA>
 <SectionB>
 ...
 </SectionB>
</myConfigurationGroup>

Section groups are useful for grouping similar items together. For example, if you have a
set of components that are logically related, you could group their configuration sections
together to reinforce the point. Or, if your company develops a set of components that need to
be configured, then you can use the company name as a grouping section to compartmen-
talize those configuration sections.

Adding the Custom Configuration Section

A few rules govern the placement of your custom configuration section in the Web.config file.
First, it must reside directly in the <configuration> section. Do not add it outside of the
<configuration> section and do not add it to a section inside the <configuration> section.

Second, it should appear after the <configSections> section. You defined your custom
configuration section in <configSections>, so placing it before this section will cause an excep-
tion to be thrown.

Lastly, the name of your configuration section must match the name defined in
<configSections>. Remember, it is case sensitive. If either the opening tag or the closing tag
of your configuration section is incorrect, an exception will be thrown.

Next, you will see how your Web.config file should appear with your custom configuration
section included:

<configuration>

 <configSections>
 <section name="iconConfig"
 type="IconConfiguration.IconConfigurationHandler, IconConfiguration"/>
 </configSections>

 <iconConfig>
 <unknownIcon imageUrl="Icons/unknown.gif" description="Unknown File Type"/>
 <icon imageUrl="Icons/word.gif" description="Word Processing Document">

6293_ch01.fm Page 29 Friday, November 11, 2005 2:37 PM

30

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

 <ext>DOC</ext>
 <ext>RTF</ext>
 <ext>TXT</ext>
 </icon>
 <icon imageUrl="Icons/excel.gif" description="Excel Document">
 <ext>XLS</ext>
 <ext>CSV</ext>
 </icon>
 <icon imageUrl="Icons/image.gif" description="Picture/Image">
 <ext>GIF</ext>
 <ext>TIFF</ext>
 <ext>JPG</ext>
 <ext>BMP</ext>
 <ext>PNG</ext>
 </icon>
 </iconConfig>

 <!-- Remaining Configuration Settings -->

<configuration>

Accessing Custom Configuration Data in Your Application

In an attempt to keep all the configuration settings in a single location, you’ll create an

IconData

 property in the

Config

 class to expose the icon configuration data. This property uses
classes in the

IconConfiguration

 namespace, so include the following line at the top of the

Config.vb

 file so you don’t have to fully qualify those class names:

Imports IconConfiguration

In the

Config

 class, locate the section containing the private shared variables used for
caching configuration settings. You’ll cache the

IconData

 property, so you need to add a private
variable to the class to hold the cached value:

 '***
 'Private Shared Variables used for Caching Settings
 Private Shared _MyString As String
 Private Shared _MyInteger As Integer
 Private Shared _MyDateTime As DateTime
 Private Shared _MyBoolean As Boolean
 Private Shared _MyPrimeList As ArrayList
 Private Shared _MyConnectionString As String

 Private Shared _IconData As IconConfigurationCollection

Remember that your configuration section handler returns an

IconConfiguration

➥

Collection

 object, so that type of object ultimately needs to be stored. Next, you have the code
for the actual

IconData

 property:

6293_ch01.fm Page 30 Tuesday, November 15, 2005 1:56 PM

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

31

'***
Public Shared ReadOnly Property IconData() As IconConfigurationCollection
 Get
 If _IconData Is Nothing Then _IconData = _
 DirectCast(ConfigurationManager.GetSection("iconConfig"), _
 IconConfigurationCollection)
 Return _IconData
 End Get
End Property

The

IconData

 property follows the same structure as the configuration properties
discussed earlier. It first checks to see if

IconData

 is initialized, and if not, it calls

ConfigurationManager.GetSection("iconConfig")

. The

GetSection

 function accepts one
parameter, a string representing the name of the configuration section to acquire, and
accomplishes all the following when it executes:

• Determines which configuration handler is associated with the configuration section
specified. Remember, this information was set in the

<configSections>

 section of the

Web.config

 file.

• Creates an instance of that configuration handler.

• Reads the data from the configuration section and places it into an

XmlNode

 object.

• Calls the

Create

 function of the configuration handler and passes in the

XmlNode

 object
containing the configuration data as the section parameter.

• Returns the object returned by the

Create

 function.

The end result of all this is that the

IconData

 variable is assigned the

IconConfiguration

➥

Collection

 object returned by the configuration section handler you implemented earlier.
Then, on the last line of the property, you return the cached value stored in

IconData

.

Creating the Icon Display Page

Now that you can access the custom configuration section from a strongly typed property in
the

Config

 class, you can build the icon display page with relative ease. Add a new web form to
your web application and name it

IconDisplayPage.aspx

. Open the web form in the designer
and place a new literal on the page named

myLiteral

. Then, open the code-behind file, and add
the following code to it:

Imports IconConfiguration
Imports System.IO

Partial Class IconDisplayPage_aspx
 Inherits Page

6293_ch01.fm Page 31 Tuesday, November 15, 2005 1:56 PM

32 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

 '***
 Private Sub OutputFile(ByVal Filename As String)

 Dim IconInfo As IconConfigurationItem
 IconInfo = Config.IconData.GetIconInfo(Path.GetExtension(Filename))

 'Add HTML to the literal control to display file and associated icon
 myLiteral.Text &= "<img src='" & IconInfo.IconImageUrl & "'"
 myLiteral.Text &= "alt='" & IconInfo.Description & "'> "
 myLiteral.Text &= Filename & "
"

 End Sub

 '***
 Private Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load

 'Print out documents
 OutputFile("WordDocument.doc")
 OutputFile("ExcelDocument.xls")
 OutputFile("ImageFile.bmp")
 OutputFile("SourceFile.vb")

 End Sub

End Class

The OutputFile procedure encapsulates the code necessary to display a file and its associ-
ated icon. First, you use the Path.GetExtension function to determine the extension of the file
name contained in the Filename parameter. That value is then passed into the Config.➥

IconData.GetIconInfo function, which returns the icon information associated with the
extension. Finally, HTML is added to the myLiteral control to display the icon image and the
file name.

The Page_Load method executes whenever the page’s Load event fires and is responsible
for calling OutputFile for a series of file names. The file names are hard-coded in the sample
code for the sake of simplicity. When you view the page, you should see a list of file names and
icon images representing each different file type.

Remember, all the code we have been discussing is available for download from the
Source Code area on the Apress website (http://www.apress.com). See the introduction of this
book for instructions. The sample code for this chapter includes the icon files used in this
example as well as some additional icons you can use to see how easy it is to configure icon
extensions using this sample application.

6293_ch01.fm Page 32 Friday, November 11, 2005 2:37 PM

C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y 33

Figure 1-4. IconDisplayPage.aspx displaying file list with associated icons

Storing Configuration Settings in a Database
Although Web.config is a convenient place to store configuration data, it is not always the best
place. It has some downsides that you will want to know about before you encounter them.
Fortunately, you can opt to store configuration settings in other locations, like a database. In
this section, you’ll learn how to create a database table capable of storing configuration
settings as name-value pairs, and how to write the code required to read and write those
settings. Additionally, you’ll learn how to store entire objects into the database using XML
serialization.

The examples in this section assume that you have some form of SQL Server installed on
your computer and that the database you are using is named SampleCode. See the introduction
of this book for more information on how to obtain a copy of SQL Server Express, which
Microsoft provides free for personal and developmental use.

When to Avoid the Web.config File
In a few scenarios, the Web.config file is not an ideal location for storing configuration settings.
One of those scenarios is when you will be updating the configuration settings on a regular
basis while users are accessing your application.

ASP.NET constantly monitors the Web.config file for changes. When the file is modified,
ASP.NET reloads your application so the changes to Web.config can take effect. By default,
ASP.NET uses in-process state management, meaning that the Application and Session
objects are stored in the same memory space as your application. When your application
reloads, that memory space is wiped out, so you will lose any data you have stored in Session
objects or the Application object. Unless you account for this scenario, you could have scores
of users complaining each time you change a setting in Web.config.

6293_ch01.fm Page 33 Friday, November 11, 2005 2:37 PM

34 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

■Caution Modifying the Web.config file while your web application is running will clear the Session and
Application object of their data if you are using in-process state management.

Another scenario where Web.config is troublesome is when you want to save modified
configuration settings back to Web.config. There is no built-in support for writing settings back
to the Web.config file, so you must build your own tools to accomplish this task. If you devel-
oped your own tools, you would then have to modify the security permissions on the
Web.config file because the default account that ASP.NET runs under does not have permis-
sion to write to the Web.config file. And, if you set up the permissions correctly, you would still
have a problem with your application resetting every time you wrote to Web.config anyway.
Configuration settings stored in a database avoid all these issues.

Lastly, you may want to avoid Web.config if you have an exorbitant number of configura-
tion settings. XML is not the most readable of formats. Looking through 5 or 6 configuration
settings in Web.config is relatively easy, but sifting through 50 or 100 becomes a bit more
irksome. If you have a large number of configuration items, think about putting them in a data-
base and building a configuration settings page.

■Caution Database connection strings should be stored in the <connectionStrings> section of
Web.config. You cannot access a database without a connection string so it would make little sense to store
connection strings in a database. If you are worried about connection string security, read Chapter 12 to learn
how to encrypt configuration sections.

Creating a Database Table to Store Configuration Settings
Before you can store data in a database, you need to create an appropriate table to store that
data. Configuration settings are usually stored as name-value pairs, so your table needs to
mimic this structure as shown in Table 1-2.

Open up a query window in SQL Express Manager and paste the following SQL statement
into that window:

Table 1-2. Configuration Settings Table Structure

Column Name Column Type Description

SettingName varchar(50) Unique name of the configuration setting

Value text String representation of the setting’s value

6293_ch01.fm Page 34 Friday, November 11, 2005 2:37 PM

C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y 35

CREATE TABLE [dbo].[Settings] (
 [SettingName] [varchar] (50) NOT NULL ,
 [Value] [text] NOT NULL,
 CONSTRAINT [PK_Settings] PRIMARY KEY CLUSTERED
 (
 [SettingName]
) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

INSERT INTO [Settings](SettingName,Value)VALUES('MyString' ,'Hello World');
INSERT INTO [Settings](SettingName,Value)VALUES('MyInteger' ,'5');
INSERT INTO [Settings](SettingName,Value)VALUES('MyDateTime' ,'8/20/1980');
INSERT INTO [Settings](SettingName,Value)VALUES('MyBoolean' ,'True');
INSERT INTO [Settings](SettingName,Value)VALUES('MyPrimeList','');

This query adds a new table named Settings with two columns: SettingName and Value.
SettingName stores a string value up to 50 characters. It is also the primary key for the table, so
values in this column must be unique. Value is a text column capable of storing an obscenely
long string, which will come in handy when we discuss serializing objects into XML.

The last part of the SQL statement has a series of inserts that adds a couple of setting
names and values to your newly created table.

■Tip If you have a large number of configuration settings in your database, it’s always a good idea to add
a description column to your settings table. It allows you to comment your configuration settings so you know
what each one does, which can be exceptionally helpful if you haven’t dealt with the application in a long time.

Avoiding SQL Injection Attacks
Before you get knee deep in SQL, let’s discuss a common issue that many people acciden-

tally overlook, usually with frustrating or devastating consequences, depending on the
situation. Strings in SQL are represented as text surrounded by single quotes. So, you may see
a SQL statement like this:

UPDATE [Customer] SET [LastName]='Smith' WHERE [ID]=50;

An issue arises when you want to use a string in SQL that contains a single quote, because
it terminates your string prematurely. For example, say you are dealing with a last name like
O’Reilly:

UPDATE [Customer] SET [LastName]='O'Reilly' WHERE [ID]=50;
--THIS IS AN INVALID SQL STATEMENT

This SQL statement never runs because the SQL parser sees the string 'O' and fails
because no keyword name Reilly exists. Furthermore, there is an unterminated string ' WHERE
[ID]=50 at the end of the statement, adding insult to injury.

6293_ch01.fm Page 35 Friday, November 11, 2005 2:37 PM

36

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

Unfortunately, grief is not the only thing you have to worry about it when it comes to
single quotes. Malicious users can actually use single quotes to gain access to poorly designed
login systems or even destroy data. It’s known as a SQL injection attack, and it involves using
single quotes and the comment character (--) to inject malicious SQL code into a statement.

Assume you use the following SQL statement to check a user’s name and login before
granting them access to your application:

 SELECT * FROM [Users] WHERE [UserName]='user' AND PASSWORD='Pwd';

Now, let’s see what happens if a malicious enters a valid username with a single quote and
a comment character behind it (for example,

user'--

):

 SELECT * FROM [Users] WHERE [UserName]=

'user'--

' AND PASSWORD='Pwd';

Notice that the username string is terminated "prematurely," but the rest of the line is
commented out (avoiding syntax errors with the nonterminated string), so the SQL statement
remains valid but lacks the password validation. And, it gets worse. If a really malicious user
wants to attack your system, he could use a login name like

user'; DELETE FROM [Users]; --

.
This turns your seemingly innocuous login statement into this:

SELECT * FROM [Users] WHERE [UserName]=

'user';
DELETE FROM [Users];
--

' AND PASSWORD='Pwd';

Now you have a real problem because your entire user table is erased and an evil user is
logged in to your application. Luckily, there is an easy way to avoid these issues: use parame-
terized queries instead of building SQL statements manually. Parameterized queries use
parameters as placeholders for values you want to use in the SQL Statement. Before you
execute the SQL statement, you add parameters to the command object so the SQL statement
knows which values you want to use for the parameters. Following is an example of how to use
a parameterized query:

Dim SQL As String = "SELECT * FROM [Table] " & _
 "WHERE [SomeParam]=

@MyParam1

 AND [SomeOtherParam]=

@MyParam2

;"
Dim dbConn As New SqlConnection(Config.MyConnectionString)
Dim dbCmd As New SqlCommand(SQL, dbConn)

'Setup the SettingName Parameters

dbCmd.Parameters.Add("@MyParam1", Data.SqlDbType.VarChar).Value = "Value1"
dbCmd.Parameters.Add("@MyParam2", Data.SqlDbType.Int).Value = 5

You need to be aware of a couple of things when using parameterized queries. First off,
you do not need to put quotes around the parameter in the SQL statement. Notice that

@SettingName

 is not surrounded by quotes even though it is a string (varchar) value. The
command object automatically determines the appropriate quotation marks required for the
SQL statement based on the type of the parameter, which you specify when you create the
parameter. The command object also escapes any single quotes contained in the parameter
value, which is why parameterized queries are not as prone to SQL injection attacks.

6293_ch01.fm Page 36 Tuesday, November 15, 2005 3:04 PM

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

37

■

Note

To escape a single quote in SQL, you prefix it with another single quote. For example, ‘O’Reily’ is a

valid string value in SQL.

Second, each parameter you define in the SQL statement must have a corresponding

SqlParameter

 object in the

Parameters

 collection of the

SqlCommand

 object. You use the

Add

function to add parameters to the

Parameters

 collection. The

Add

 function allows you to add a
parameter either by passing in a parameter object that you have already created and initial-
ized, or by specifying the values for the parameter name and parameter type. In the example, I
use the latter option because it is more succinct. Although it would make things even more
succinct, you cannot pass the parameter’s value into the

Add

 method. Instead, you must set the
parameter’s value after the parameter is added to the

Parameters

 collection. Fortunately, the

Add

 method returns a reference to the parameter object it adds, so you can set the value on the
same line. In the example, the bolded lines show the calls to the

Add

 method, which returns the
added parameter object. The nonbolded part sets the value property of the returned param-
eter. It is like having two calls on the same line. You should familiarize yourself with this
technique because it is used fairly often with parameterized queries.

Finally, parameter names and the order in which they are added to the

Parameters

 collec-
tion must match the parameter names and order in which they appear in the SQL statement.
Failure to do so results in a runtime error.

Creating the DataConfig Class

All the shared properties that expose your configuration settings and the functions to help read
and write those settings to the database are in a class named

DataConfig

. Right-click on the

App_Code

 folder of the

ConfigurationWeb

 sample project, and select

Add New Item

. Select

Class

as the template, and name the new class

DataConfig.vb

. Click the

Add

 button, and Visual
Studio adds the file to the

App_Code

 folder. After creating the file, make sure to add the following

Imports

 statement so you can access the SQL Server data objects without having to fully qualify
them:

Imports System.Data.SqlClient

Reading Configuration Values from the Database

The following function accepts a string representing the name of a name-value pair and
returns the value associated with that name from the database:

'***
Private Shared Function ReadValueFromDatabase(ByVal Name As String) As String

 Try
 Dim SQL As String = "SELECT [Value] FROM [Settings] " & _
 "WHERE [SettingName]=@SettingName;"
 Dim dbConn As New SqlConnection(Config.MyConnectionString)
 Dim dbCmd As New SqlCommand(SQL, dbConn)

6293_ch01.fm Page 37 Tuesday, November 15, 2005 1:57 PM

38 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

 'Set up the SettingName Parameters
 dbCmd.Parameters.Add("@SettingName", _
 Data.SqlDbType.VarChar).Value = SettingName

 dbConn.Open()
 ReadValueFromDatabase = CStr(dbCmd.ExecuteScalar())
 dbConn.Close()

 Catch ex As Exception
 Return String.Empty
 End Try

End Function

First, let’s discuss the objects used in this function. SQL is a string variable representing the
parameterized SQL statement that retrieves the value associated with the name passed into the
function. The dbConn variable is a SqlConnection object used to connect to the database where
your Settings table is located. Notice that the connection string used to initialize dbConn comes
right from the Config class you implemented earlier, so make sure the connection string in your
Web.config file has the appropriate connection information. Finally, the dbCmd is a SqlCommand
object that you use to set up parameters and execute the SQL statement you defined earlier.

After the variables are defined, the code in the function is straightforward. First, the code
sets up the @SettingsName parameter name, type, and value for the dbCmd object using the
tactics described earlier. Then it opens the database and executes the statement using the
ExecuteScalar function of the dbCmd object. ExecuteScalar returns a single value from the data-
base as an Object that must be cast into its target type. In this case, it is a string containing the
value of the setting name passed into the function. The result of ExecuteScalar is assigned to
the name of the function, indicating that it is to be returned when the function exits. After that,
the code closes the database, the function terminates, and the value is returned. If an error
occurs at all during this process, an empty string is returned as a default value. With this func-
tion, reading a setting from the database can be accomplished using the following statement:

Dim MyString as String = ReadValueFromDatabase("MyString")
Dim MyInteger as Integer CInt(ReadValueFromDatabase("MyInteger")

Note that if ReadValueFromDatabase("MyInteger") returns an empty or nonnumerical
string, then an exception will be thrown.

Writing Configuration Values to the Database
The write function is very similar to the read function, but you are updating a value instead of
retrieving it:

'***
Public Shared Function WriteValueToDatabase(ByVal Name As String, _
 ByVal Value As String) As Boolean

 Try
 Dim SQL As String = "UPDATE [Settings] SET [Value]=@Value " & _

6293_ch01.fm Page 38 Friday, November 11, 2005 2:37 PM

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

39

 "WHERE [SettingName]=@SettingName;"
 Dim dbConn As New SqlConnection(Config.MyConnectionString)
 Dim dbCmd As New SqlCommand(SQL, dbConn)

 'Setup the Value and SettingName parameters
 dbCmd.Parameters.Add("@Value", Data.SqlDbType.VarChar).Value = Value
 dbCmd.Parameters.Add("@SettingName", _
 Data.SqlDbType.VarChar).Value = SettingName

 dbConn.Open()
 WriteValueToDatabase = (dbCmd.ExecuteNonQuery() > 0)
 dbConn.Close()

 Catch ex As Exception
 Return False
 End Try

 End Function

The

WriteValueToDatabase

 function takes two parameters: the

Name

 of the setting and the

Value

. It uses the function parameters to set the parameter values for the SQL statement, simi-
larly to what was done in the

ReadValueFromDatabase

 function. Notice that the SQL only
contains an

UPDATE

 statement. This method assumes that the configuration setting already
exists in the database. It then opens a connection to the database, and executes the SQL state-
ment using the

ExecuteNonQuery

 function of the

dbCmd

 object.

ExecuteNonQuery

 returns an

Integer

 indicating the number of items that were updated, so

(dbCmd.ExecuteNonQuery() > 0)

evaluates to

True

 if an item was updated or

False

 if nothing was updated. This value is then
assigned to the name of the function so it will be returned when the function exists. The data-
base is then closed. If an error occurs at all during this process,

False

 is returned.
With this function, writing a setting to the database can be accomplished using the

following statement:

WriteValueToDatabase("MyString","Hello World")
WriteValueToDatabase("MyInteger",CStr(MyInteger))

Properties of the DataConfig Class

Now that you’re armed with functions to read and write configuration settings to a database,
you can create strongly typed properties for the

DataConfig

class with relative ease. Remember
that caching is still extremely important because database calls can be just as expensive in
terms of processing time as reading a file. Following is the list of private shared variables that
you need in the

DataConfig

 class to cache the settings:

'***
'Private Shared Variables used for Caching Settings
Private Shared _MyString As String
Private Shared _MyInteger As Integer
Private Shared _MyDateTime As DateTime
Private Shared _MyBoolean As Boolean
Private Shared _MyPrimeList As ArrayList

6293_ch01.fm Page 39 Tuesday, November 15, 2005 3:03 PM

40

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

Now you can write the code for the

MyString

 property:

'***
Public Shared Property MyString() As String
 Get
 If _MyString = Nothing Then _MyString = ReadValueFromDatabase("MyString")
 Return _MyString
 End Get
 Set(ByVal value As String)
 WriteValueToDatabase("MyString", value)
 End Set
End Property

Notice that it follows almost the exact same structure as the

MyString

 property defined in the

Config

 class, but instead of getting data from the

AppSetting

 object, it is using the

ReadValueFrom

➥

Database

 function. Another notable difference is that you can change this configuration setting and
save the changes back to the database, whereas the

MyString

 property in the

Config

 class is read-only.
Following are examples of properties involving casting values from strings into other data

types. Note that if your configuration setting’s value in the database is

NULL

 or improperly
formatted, then these functions will throw an exception. See the section titled “Error Handling
in the Config Class” earlier in this chapter for suggestions regarding error handling.

'***
 Public Shared Property MyInteger() As Integer
 Get
 If _MyInteger = Nothing Then _
 _MyInteger = _
 CInt(ReadValueFromDatabase("MyInteger"))
 Return _MyInteger
 End Get
 Set(ByVal value As Integer)
 WriteValueToDatabase("MyString", CStr(value))
 End Set
 End Property
 '***
 Public Shared Property MyDateTime() As Date
 Get
 If _MyDateTime = Nothing Then _
 _MyDateTime = _
 CDate(ReadValueFromDatabase("MyDateTime"))
 Return _MyDateTime
 End Get
 Set(ByVal value As Date)
 WriteValueToDatabase("MyString", CStr(value))
 End Set
 End Property

6293_ch01.fm Page 40 Tuesday, November 15, 2005 1:57 PM

C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y 41

 '***
 Public Shared Property MyBoolean() As Boolean
 Get
 If _MyBoolean = Nothing Then _
 _MyBoolean = _
 CBool(ReadValueFromDatabase("MyBoolean"))
 Return _MyBoolean
 End Get
 Set(ByVal value As Boolean)
 WriteValueToDatabase("MyString", CStr(value))
 End Set
 End Property

Serializing and Deserializing Objects in the Database
Serialization is the process of taking an object that exists in-memory and converting that object
into a format (usually binary data or XML) that can be stored out-of-memory in a file or a data-
base. Deserialization is the process of taking that stored data and recreating the object in-
memory.

Interestingly enough, the Value column in the table you created to store configuration
settings can store large amounts of textual data, and the .NET Framework has tools that help
serialize in-memory objects into XML. This means that you can serialize entire objects and
store them as configuration settings in a database.

First, you need to create a generic function that can serialize an object into an XML repre-
sentation. In this example, you will use the Simple Object Access Protocol (SOAP) XML
formatter to handle the serialization details. Right-click on your web application icon in the
Solution Explorer and select Add Reference. In the .NET tab, locate and select
System.Runtime.Serialization.Formatters.Soap.dll from the list of components. Click the OK
button and a reference to the assembly is added to your project. Then make sure you import
the following namespaces at the top of the class file:

Imports System.IO
Imports System.Runtime.Serialization.Formatters.Soap

After you have the imported the SOAP formatter assembly and added the appropriate
Imports statements, then add this function to the DataConfig class:

'***
Private Shared Function SerializeToXML(ByVal Obj As Object) As String
 Try
 Dim sf As New SoapFormatter()
 Dim ms As New MemoryStream
 sf.Serialize(ms, Obj)
 Dim ascEncoding As New System.Text.ASCIIEncoding()
 Return ascEncoding.GetString(ms.GetBuffer)
 Catch
 Return String.Empty
 End Try
End Function

6293_ch01.fm Page 41 Friday, November 11, 2005 2:37 PM

42 C H A P T E R 1 ■ C O N F I G U R A T I O N S T R A T E G Y

The SerializeToXML function accepts a single object as a parameter. It then creates a
SoapFormatter object, which is responsible for converting an object into an XML representa-
tion. The Serialize function of the SoapFormatter object accepts two parameters: the object
that is to be converted and the stream to which the XML data is written. In this case, the stream
is stored in memory and not in a file. The memory stream holds the XML as a giant byte array,
so the ASCII encoding object converts that byte array into a string, which is then returned from
the function. If any error occurs during this function, an empty string is returned.

Now that you can convert an object into XML, you need a way to convert it back.
The Deserialize function takes care of this task:

'***
Private Shared Function DeserializeFromXML(ByVal XML As String) As Object
 Try
 Dim ascEncoding As New System.Text.ASCIIEncoding()
 Dim ms As New MemoryStream(ascEncoding.GetBytes(XML))
 Dim sf As New SoapFormatter
 Return sf.Deserialize(ms)
 Catch
 Return Nothing
 End Try
End Function

The Deserialize function accepts a string containing the XML representation of an object.
It then converts that string into a byte array using the ASCIIEncoding object and creates a new
memory stream from it. That memory stream is then passed into the Deserialize function of
the SoapFormatter and the object represented by the XML is reconstructed and returned as an
Object. You need to cast it to the appropriate type when you use this function, as shown in the
following example. If an error occurs during processing, then Nothing is returned.

Armed with the ability to serialize and deserialize objects, you can now implement the
MyPrimeList property, which serializes and deserializes an entire ArrayList to and from the
database:

'***
Public Shared Property MyPrimeList() As ArrayList
 Get
 If _MyPrimeList Is Nothing Then
 Dim XML As String = ReadValueFromDatabase("MyPrimeList")
 If Not XML = String.Empty Then
 _MyPrimeList = CType(DeserializeFromXML(XML), ArrayList)
 End If
 End If
 If _MyPrimeList Is Nothing Then _MyPrimeList = New ArrayList()
 Return _MyPrimeList End Get
 Set(ByVal value As ArrayList)
 _MyPrimeList = value
 SaveMyPrimeList()
 End Set
End Property

6293_ch01.fm Page 42 Friday, November 11, 2005 2:37 PM

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

43

'***
Public Shared Sub SaveMyPrimeList()
 WriteValueToDatabase("MyPrimeList", SerializeToXML(_MyPrimeList))
End Sub

A bit more code is involved with serialization and deserialization because it is a bit more
complicated. In this property, you first check to see if the value has already been cached. If not,
the XML associated with the

"MyPrimeList"

 setting is acquired from the database. If the XML is
an empty string, then the property returns

Nothing

. Otherwise, the XML is deserialized, and the
resulting object is cached. At this point, if the cached variable is still nothing, a new

ArrayList

is created and assigned to the cache. This ensures that you will have an object with which to
work, even if your database does not contain any XML to create the object. Finally, the property
returns the cache variable.

The

Set

 portion of the property sets the

MyPrimeList

 cache variable equal to the incoming
value. It then calls

SaveMyPrimeList

, which is responsible for serializing the object to XML and
then writing that XML back out to the database.

You may be wondering why there is a special function to save the

MyPrimeList

 value to the
database. Any time you change a property that is a native type (

String

,

Integer

,

Date

, and so
on), then the code in the

Set

 portion of the property executes. When you are working with
objects, such as an

ArrayList

, the

Set

 code only executes when an actual object assignment is
made. Other changes to

ArrayList

 objects occur at the object level, so the

Set

 code is never
called. Here’s an example:

MyPrimeList = new ArrayList() 'This causes the Set code to fire.
MyPrimeList.Add(11) 'This causes the Get code to fire

In the first line, you are making an assignment and setting the property equal to a new

ArrayList

, so the

Set

 portion of the property fires and

MyPrimeList

 is saved. In the second line,
however, you are actually using the

Get

 portion of the property to acquire the

ArrayList

 and,
after you have it, calling the

Add

 function on the object itself. It’s a subtle distinction, but it
means that changes made to the

MyPrimeList

 itself will not save the object automatically. Thus,
you need the auxiliary function to explicitly save the object after an update:

MyPrimeList.Add(11) 'Update the object
Config.SaveMyPrimeList() 'Explicitly Save MyPrimeList

This ensures that any values you update are immediately saved for future retrieval.

Summary

Configuration is an often-overlooked aspect of web application development. Many times,
budgetary or time constraints force developers to sidestep proper configuration practices
in the hope that it will somehow speed up the development time table. In reality, proper
configuration practices such as using custom configuration sections and strongly typed
configuration files may take a bit more time in the beginning, but you quickly make that time
back up over the course of the development process.

6293_ch01.fm Page 43 Tuesday, November 15, 2005 1:58 PM

44

C H A P T E R 1

■

 C O N F I G U R A T I O N S T R A T E G Y

In this chapter, you have learned about the new configuration tools available in ASP.NET
2.0 and how to use them to manage application settings, connection strings, users, roles, and
the profile object. You have looked at guidelines to help you determine the best location to
store configuration data and built a strongly typed configuration class. You have also seen how
to create custom configuration settings for advanced configuration scenarios and how to read
and write configuration settings to a database. In fact, you can even serialize and deserialize
objects to and from XML for storage in that database. So, you should be well equipped for just
about any configuration scenario that’s thrown at you.

6293_ch01.fm Page 44 Tuesday, November 15, 2005 1:58 PM

45

■ ■ ■

C H A P T E R 2

Exception Management

A

pplications have errors. It’s an inevitable consequence of the development process arising
from our inability to account for every possible scenario in which something may go awry; the
workflow application I recently helped develop for a large government organization was no
exception. The application helped to coordinate proposals, bids, and sign-offs for projects
occurring all across the country, with a user base consisting largely of upper-level manage-
ment—not the type of people who enjoy dealing with errors that stop them from getting their
jobs done.

One of the requirements for the project was to use a third-party, Java-based workflow
management engine, which was slow, cumbersome, and prone to timeouts while waiting for
database transactions to occur. This led to workflow documents being placed in invalid states,
and users getting a nasty message when they tried to access their documents. To make matters
worse, after an item was in an invalid state, it had to be reset by a system administrator,
meaning that the user had to contact us to fix a problem.

Luckily, we had great exception management. Whenever a timeout occurred, our
customer support rep was notified concerning which user experienced the error, and then the
rep contacted the user immediately to head off any frustrations. On multiple occasions, people
who experienced a problem were contacted in less than 30 seconds and were amazed with our
responsiveness. Our clients never got a chance to complain about errors because they were
dazzled by our ability to serve them. We also analyzed our error log to help pinpoint the cause
of the problem, which turned out to be a database-locking issue.

Everyone’s applications will have unexpected errors, but how you handle those unex-
pected errors and what you learn from them is what will ultimately set you apart.

This chapter covers techniques for managing exceptions that will allow you to see where they
occur, when they occur, and which users are experiencing them. You’ll learn how to analyze those
errors so you can make your application less error prone, how to incorporate global error handling,
and even how to leverage errors to manage customer perception and satisfaction.

Here is a breakdown of the chapter content:

•

Exception Basics:

 A quick refresher on exceptions, exception handling, error propaga-
tion, and the nuances of the

Try Catch Finally

 block.

•

Global Error Handling:

 Discusses how to use custom error pages and global error pages
as a catchall for exceptions that may arise.

•

Logging Exceptions for Analysis:

 Demonstrates how to log application exceptions as they
occur in your application.

6293_ch02.fm Page 45 Friday, November 11, 2005 2:43 PM

46

C H A P T E R 2

■

 E X C E P T I O N M A N A G E M E N T

Exception Management Basics

Before we get into a more advanced discussion about exception management, you need to
have a solid understanding of exception-management basics. What are exceptions? What are
their benefits and drawbacks? How can they be handled accordingly? After you have a grasp of
these concepts, it will be easier to see how you can use proper exception-management tech-
niques to manage customer perception and fortify your code.

■

Note

Many of the examples shown in the “Exception Management Basics” section are located in the

ExceptionBasics.vb

 file in the sample project for Chapter 2 in the Source Code area of the Apress website
(http://www.apress.com). You can find the more advanced examples by running the application and selecting

the appropriate sample from the menu on the left side of the page.

What Are Exceptions?

In the .NET Framework, an

exception

 is both a concept and an object. Conceptually, an excep-
tion arises when your application attempts to complete an operation, but the operation fails
for one reason or another. Or more simply put, an error occurs. Instead of continuing as
though the error never occurred, the .NET Framework stops the execution of the current code
block and reports the error by throwing an exception.

When an exception is thrown, an exception object is created and populated with informa-
tion about the exception and why it occurred. This object is useful for taking corrective actions,
informing the user of a problem, or for debugging purposes.

All exceptions derive from the same base class,

System.Exception

, so they share a number
of common properties. The three most important are the

Message

 property, which describes
the exception and may point you to a resolution, the

StackTrace

, which pinpoints the exact
execution point where the exception occurred, and the

InnerException

 property, which helps
chain multiple exceptions together. Most exception objects have additional properties that
can help pinpoint specifics about why an error occurred. For instance, the

FileNotFound

➥

Exception

 has a

FileName

 property to identify the file that could not be found, and the

SqlException

 has properties to help identify the line number on which a T-SQL statement
failed and the database server on which the error occurred.

To see a listing of all the exceptions in the .NET Framework, you can select

Debug

➤

Exceptions

. This displays the Exceptions window. Expand the

Common Language Runtime
Exceptions

 node to see a list of namespaces in the .NET Framework. You can then expand a
namespace to see which exceptions reside in the namespace. This window also allows you to
tell the debugger to break when a specific type of exception occurs, or when it is unhandled, by
checking the appropriate check box next to the exception name.

Handling Exceptions with the Try Catch Statement

When your application throws an exception, your code can handle the exception in a

Try Catch
Finally

 block. The

Try

 section surrounds a block of code that could produce an exception and,
if that code produces an exception, the runtime jumps down into the

Catch

 section to handle

6293_ch02.fm Page 46 Friday, November 11, 2005 2:43 PM

C H A P T E R 2

■

 E X C E P T I O N M A N A G E M E N T

47

the exception accordingly. Look at the following function in Listing 2-1 to see an example of
using a

Try Catch

 block (line numbers are for reference only).

Listing 2-1

.

Try Catch

 Statement Example #1

01: '***
02: Public Function IntegerDivide(ByVal N As Long, ByVal D As Long) As Long
03: Try
04: Dim ReturnValue As Long
05: ReturnValue = (N \ D)
06: Return ReturnValue
07: Catch ex As Exception
08: Return 0
09: End Try
10: End Function

This function takes a numerator (

N

) and a denominator (

D

), and returns the result of an
integer division operation. Normally, the code creates a temporary variable, stores the result of
the

(N \ D)

 operation in that temporary variable, and returns the temporary variable as the
result of the function. However, it’s possible that someone could errantly pass the value 0 in for

D

, which results in a

System.DivideByZeroException

 being thrown from line 5. If this exception
is thrown, execution flow skips the rest of the code in the

Try

 block and immediately jumps
down into the

Catch

 block on line 7. The

Catch

 block is where you can remedy the exception, if
possible. The remedy used in this function is to return

0

 if an exception occurs.

■

Caution

Code in your

Catch

 statements can throw errors as well, and these are not automatically
caught. So, if you are running code in your

Catch

 statement that could throw an error, remember to surround

it in a

Try Catch

 statement as well.

You should place

Try Catch

 statements around code that has a decent chance of failing,
but not around code that will normally be safe. For instance, you would not want to write code
that looks like Listing 2-2.

Listing 2-2.

 Code That Will Not Break

'***
Public Shared Function AddTwoNumbers(ByVal x As Long, ByVal y As Long) As Long
 Try
 Return x + y
 Catch ex As Exception
 Return 0
 End Try
End Function

6293_ch02.fm Page 47 Friday, November 11, 2005 2:43 PM

48

C H A P T E R 2

■

 E X C E P T I O N M A N A G E M E N T

The chances of an add operation failing are virtually nonexistent, so placing a

Try Catch

block in this function is a waste of your time. Save the

Try Catch

 block for situations where you
are accessing external resources or other scenarios where an exception is more likely.

Another area where you need to devote some thought when creating a

Try Catch

 block is
exception resolution. There are really two types of exception resolution, namely

substitution

and

notification

.
Resolution via substitution involves implementing a fall-back that can be used when an

error occurs. For instance, if you have a function that generates a custom greeting for your
customers by acquiring their name from the dataset, you could always default to “Dear
Customer” if an error occurs. The major thing you need to watch out for when implementing a
default value is that your default value makes sense and is not misleading. For instance, if you
are building a function that returns the total number of users in your database, you do not
want to default to 4 or 73 when an error occurs. Even a default of 0 could be misleading, so you
may want to use -1 to denote that an error occurred.

Exception resolution via notification is used when an exception cannot be resolved by a
default value. For instance, if you are in the middle of a purchase transaction and something
fails, what are you going to do? Naturally, you can attempt the transaction again to see if it
works the second time around, but at some point you must admit defeat and just let the user
know that an error occurred. The objective of notification is to keep the user from seeing a
confusing or intimidating error. Usually it involves redirecting the user to an error page or
returning them to the page from which they originated and displaying a message describing
the issue. Do not allow the user to continue to the next page because they may just cause more
errors and become more frustrated with your application.

You should also know that letting an exception occur is a valid option, especially when you
are building reusable components. This allows the error to propagate up the call stack so that
you have the flexibility to make a decision about how to handle the exception appropriately in
different circumstances.

■

Note

Handling an exception is an expensive operation, so avoid exceptions where possible. Understand,
however, that you only incur an expensive performance hit when your application actually handles an excep-
tion, not simply because a

Try Catch Finally

 block appears in your code. As such, you can feel free to use
the

Try Catch Finally

 block where appropriate without fear that the block itself is causing any perfor-

mance problems.

Using Multiple Catch Statements

In a

Try Catch

 statement, you can actually have multiple

Catch

statements to help catch
specific errors. For instance, take a look at the function in Listing 2-3.

6293_ch02.fm Page 48 Friday, November 11, 2005 2:43 PM

C H A P T E R 2

■

 E X C E P T I O N M A N A G E M E N T

49

Listing 2-3.

 Multiple Catch Statements

'***
Public Shared Function ReadFile(ByVal FileAndPath As String, _
 ByRef ErrorInfo As String) As String

 Try
 Dim SR As New System.IO.StreamReader(FileAndPath)
 Dim FileContent As String = SR.ReadToEnd()
 SR.Close()
 Return FileContent

 Catch dirEx As System.IO.DirectoryNotFoundException
 ErrorInfo = "The directory was not found"
 Return String.Empty

 Catch fileEx As System.IO.FileNotFoundException
 ErrorInfo = "The file was not found"
 Return String.Empty

 Catch ioEx As System.IO.IOException
 ErrorInfo = "There was an IO Exception: " & ioEx.Message
 Return String.Empty

 Catch ex As Exception
 ErrorInfo = "There was an Exception: " & ex.Message
 Return String.Empty

 End Try
End Function

ReadFile

 accepts two parameters. The first is a path to a text file, and the second is a

by

reference variable used to return error information in the event an exception occurs. Normally,

ReadFile

 creates a

StreamReader

 object using the

FileAndPath

 parameter, reads the file into a
temporary variable, closes the stream, and returns the temporary variable as the result of the
function. However, if the

FileAndPath

 parameter does not point to a valid file name, an excep-
tion occurs when creating the

StreamReader

.
The exact exception that occurs depends on what was wrong with the file name. If the

.NET Framework cannot find the directory specified in the

FileAndPath

parameter, then a

System.IO.DirectoryNotFoundException

 occurs. If the path is found, but the file is not, then a

System.IO.FileNotFoundException

 occurs. And if the length of the

FileAndPath

 parameter is
too long, then a

System.IO.PathTooLongException

 occurs.
Notice that multiple

Catch

 statements are used in the

Try Catch

 block. The first catches the

DirectoryNotFoundException

 and the next catches the

FileNotFoundException

, but the third
one catches an

IOException

. So, what happens when the

PathTooLongException

 is thrown?
Well, it all comes down to inheritance. When an exception is thrown, the .NET runtime looks
through each

Catch

 statement looking for a match. A match obviously occurs when the excep-
tion type specified in the

Catch

 statement is an exact match with the thrown exception type,

6293_ch02.fm Page 49 Friday, November 11, 2005 2:43 PM

50 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

but a match also occurs when the exception type specified in the Catch statement is a parent
type of the thrown exception. See Figure 2-1 to see the inheritance chain for the
System.IO.PathTooLongException.

Figure 2-1. Exception inheritance

Notice that the PathTooLongException derives from System.IO.IOException. As such, when
the runtime hits the Catch statement for System.IO.IOException, it catches the PathTooLong➥

Exception. Because the runtime checks for exact types as well as parent types when catching
exceptions, you must be careful in your ordering of Catch statements. Listing 2-4 shows a bad
example of how to set up multiple Catch statements.

Listing 2-4. Bad Catch Statements Ordering

'***
Public Shared Sub BadCatchExample()
 Try
 Throw New System.IO.IOException()
 Catch ex As Exception
 'Run Exception Handling
 Catch ioEx As System.IO.IOException
 'Run IOException Handling
 End Try
End Sub

In the Try block, a System.IO.IOException is purposely thrown. If you refer to Figure 2-1,
you’ll see that the System.IO.IOException class derives from the System.Exception class, so the
first Catch statement always handles the exception. The second Catch statement is never
reached.

6293_ch02.fm Page 50 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 51

■Caution When you specify multiple Catch statements in a Try Catch block, you have to place excep-
tions that are deeper in the inheritance hierarchy first, or else the parent exceptions will be picked up first. For
instance, don’t place System.Exception before other exception types because all exceptions derive from
System.Exception.

Catching Specific Errors Using the When Clause
Another tactic for catching specific errors is to use the When clause. This is especially useful
when an exception type does not clarify the actual error. For example, the PathTooLong➥

Exception is fairly specific about what the problem is; however, the only exception type in the
System.Data.SqlClient namespace is SqlException. So, if the username or password in your
connection string is wrong, you get a SqlException; if you attempt to access a table that does
not exist, then you get a SqlException; and if your SQL syntax is invalid, you get a SqlException.
Not overly helpful if you are trying to resolve a specific issue.

That’s where the When clause of the Catch statement comes in handy. You can use the When
clause to qualify a Catch statement so it only executes if the type specified in the Catch is a
match, and the When clause is satisfied. Let’s look at an example in Listing 2-5 to better under-
stand this concept.

Listing 2-5. Catching Exceptions with the When Clause

'***
Public Shared Sub WhenExample(ByRef ErrorMsg As String)
 Try
 Dim dbConn As New SqlConnection(Config.MyConnectionString)
 Dim SQL As String = "SELECT * FROM [settings]"
 Dim dbCmd As New System.Data.SqlClient.SqlCommand(SQL, dbConn)
 Dim dbDr As SqlDataReader

 dbConn.Open()
 dbDr = dbCmd.ExecuteReader()
 dbConn.Close()

 Catch ex As SqlException When InStr(ex.Message, "The ConnectionString ") > 0
 ErrorMsg = "You did not initialize the connection string."

 Catch ex As SqlException When InStr(ex.Message, "Login failed") > 0
 ErrorMsg = "Your login information was invalid."

6293_ch02.fm Page 51 Friday, November 11, 2005 2:43 PM

52 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

 Catch ex As SqlException When InStr(ex.Message, "Invalid object") > 0
 ErrorMsg = "You referenced a non-existant table, view, etc."

 Catch ex As SqlException When InStr(ex.Message, "Invalid column") > 0
 ErrorMsg = "You referenced a non-existant column."

 Catch ex As Exception
 ErrorMsg = "An exception occurred: " & ex.Message

 End Try

End Sub

This is an example of a fairly routine data access procedure that opens a database connec-
tion and executes a SQL statement. The interesting part occurs when an exception is thrown.
Look at the end of the procedure and you’ll notice five Catch statements in the f block. The
 first four use the When clause to check for specific text within the Message property of the
SqlException object. If the text is found, then the Catch statement catches the error and should
execute the appropriate code to either identify the error accordingly or attempt to correct it. In
this case, the code is just identifying the error in plain English. If the text is not found, the .NET
runtime moves on to the next Catch statement and tries to make another match. If no match
can be made using the When statements, then the final Catch statement catches any other
exception that was thrown.

Also know that you are not limited to just using the Message property in a When clause; you
can use any valid Boolean statement and any property that appears in the object type you are
catching.

■Note You will most likely not use the When clause of the Catch statement very often, but it can be very
useful in certain situations, so it helps to know it exists.

Using the Finally Keyword
The last aspect of the Try Catch block is the Finally keyword. You can place code in the
Finally section that needs to be executed regardless of whether an error occurred, making it a
perfect place to close connections, close files, and perform cleanup operations. Code placed in
the Finally section always executes, even if you try to exit the function using the Return or Exit
statement inside the Try section. Listing 2-6 shows the Finally keyword and how it can be used
to close down a database connection after a Return statement has been issued:

6293_ch02.fm Page 52 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 53

Listing 2-6. Finally Example

'***
Public Shared Function FinallyExample() As Object

 Dim dbConn As SqlConnection = Nothing

 Try
 Dim SQL As String = "SELECT Count(*) FROM [settings];"
 Dim dbCmd As SqlCommand = Nothing
 dbConn = New SqlConnection(Config.MyConnectionString)
 dbCmd = New System.Data.SqlClient.SqlCommand(SQL, dbConn)
 dbConn.Open()
 Return dbCmd.ExecuteScalar()
 Catch ex As Exception
 Return 0
 Finally
 'The following line will ALWAYS be executed.
 If Not dbConn Is Nothing Then dbConn.Close()
 End Try

End Function

When the ExecuteScalar function returns its value, execution immediately jumps down to
the Finally section and ensures that the database is closed. This is helpful when you want to
use the Return statement directly instead of returning a temporary variable or the function
name to store the result of the database action.

One nuisance with the Try Catch Finally block is scoping. Variables declared inside the
Try section are only accessible from within the Try section, so any variables that you need to
access in more than one section of the Try Catch Finally block need to be declared outside of
the Try Catch Finally block, like the dbConn variable in Listing 2-6. The other variable declara-
tions appear inside the Try section and therefore limit the scope of those variables to the Try
section because they are not used in any other sections.

Throwing Exceptions
Sometimes, you need to throw an exception from your code to indicate that something is
wrong. This can be accomplished using the Throw keyword. Listing 2-7 is an example of a func-
tion that will return the object type name. If the obj parameter is Nothing, however, the
function throws an ArgumentNullException.

Listing 2-7. Throwing an Exception

'***
Public Shared Function GetObjectName(ByVal obj As Object) As String
 If obj Is Nothing Then _
 Throw New ArgumentNullException("The obj parameter cannot be null.")
 Return obj.GetType.ToString()
End Function

6293_ch02.fm Page 53 Friday, November 11, 2005 2:43 PM

54 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

Exception objects should have a constructor that allows you to specify a message to
describe the problem in some detail. Helpful messages usually identify the problem in such a
way that a resolution for the issues is inherently suggested. In Listing 2-7, for instance, the
message "The obj parameter cannot be null." both identifies the issue and implicitly
presents a solution for remedying it—make sure the obj parameter is not Nothing.

■Tip Your exception messages should include as much detail as possible to help you track down a problem
when it occurs. Debugging becomes much simpler when you have helpful messages to identify the reason
and location an error occurred.

At times, you might want to catch an exception and then rethrow it. The most common
situation where this occurs is when you are logging errors (see Listing 2-8).

Listing 2-8. Logging and Rethrowing

'***
Public Shared Sub ThrowLogAndReThrow()
 Try
 Throw New Exception("Force an exception")
 Catch ex As Exception
 'Place logging code here...
 Throw
 End Try
End Sub

In the Catch statement, you place your logging code first, and then you call the Throw state-
ment without any parameters to rethrow the exception that was caught. You can also rethrow
the exception by using Throw ex, but doing so changes the stack trace location to point at the
line where you rethrew the exception instead of the line where the exception originally
occurred. As such, you should use the Throw keyword by itself to maintain the original excep-
tion location unless you have a compelling reason to do otherwise.

Creating Custom Exception Classes
You may find that the exceptions built in to the .NET Framework to not adequately describe a
particular exception in your application or do not expose certain custom properties that may
be required to handle an exception accordingly. If that is the case, then you can create your
own custom exception classes. You just need to create a class that inherits from the
System.Exception class or another exception class that you want to extend. A quick implemen-
tation of a custom exception class is shown in Listing 2-9.

6293_ch02.fm Page 54 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 55

Listing 2-9. Custom Exception Class

'***
Public Class NegativeNumberException
 Inherits System.Exception

 Sub New(ByVal message As String)
 MyBase.New(message)
 End Sub

 Sub New(ByVal message As String, ByVal innerException As Exception)
 MyBase.New(message, innerException)
 End Sub

End Class

The NegativeNumberException class inherits its base functionality from the
System.Exception class and exposes two different constructors. The first constructor allows
you to create a new NegativeNumberException object without an inner exception, and the
second constructor allows you to create one with an inner exception. Both of these construc-
tors simply rely on the base constructor to actually populate the object with message and
inner exception information. You can use this class in your code just like any other exception
(see Listing 2-10).

Listing 2-10. Using a Custom Exception

'***
Public Shared Function CalculateSalary(ByVal Rate As Double, _
 ByVal Hours As Double) As Double

 If Rate < 0 Then Throw New NegativeNumberException("Rate is negative")
 If Hours < 0 Then Throw New NegativeNumberException("Hours is negative")
 Return Rate * Hours

End Function

NegativeNumberException is a bit more descriptive than a generic exception class such as
System.ArithmeticException. Aside from a more descriptive name, your exception class can
also have properties to help you better communicate information about the error. Listing 2-11
provides a more advanced example of the NegativeNumberException.

6293_ch02.fm Page 55 Friday, November 11, 2005 2:43 PM

56 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

Listing 2-11. Custom Exception Class with Properties

'***
Public Class NegativeNumberException
 Inherits System.Exception

 Public NegativeNumber As Double
 Public Parameter As String

 Public Sub New(ByVal Parameter As String, ByVal NegativeNumber As Double)
 Me.NegativeNumber = NegativeNumber
 Me.Parameter = Parameter
 End Sub

 Public Overrides ReadOnly Property Message() As String
 Get
 Return String.Format("Negative Number ({0} specified for {1}", _
 NegativeNumber, Parameter)
 End Get
 End Property

End Class

'***
Public Shared Function CalculateSalary(ByVal Rate As Double, _
 ByVal Hours As Double) As Double

 If Rate < 0 Then Throw New NegativeNumberException("Rate", Rate)
 If Hours < 0 Then Throw New NegativeNumberException("Hours", Hours)
 Return Rate * Hours

End Function

This exception class has two fields that allow you to specify the parameter name and the
actual value of the negative number. This information can then be used in the Catch statement
that ultimately handles the exception to perform different tasks as shown in Listing 2-12.

Listing 2-12. Using Custom Exception Properties in the Catch

'***
 Public Function GetSalary() As String
 Try
 Return "Your salary is " & CalculateSalary(-100, 10).ToString()
 Catch ex As NegativeNumberException
 Select Case ex.Parameter
 Case "Rate"
 Return "You may want to check your rates!"
 Case "Hours"

6293_ch02.fm Page 56 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 57

 Return "You may want to check your hours!"
 End Select
 End Try
End Sub

Inner Exceptions and Exception Wrapping
Each exception object has an InnerException property that can reference another exception
object. This is useful for chaining related exceptions together or for wrapping a nondescript or
confusing exception object in another more descriptive exception object. The
System.Web.Mail.SmtpMail.SendMail function, although marked obsolete in ASP.NET 2.0,
provides a great example of both exception chaining and exception wrapping when used
improperly. When calling the function, you’re supposed to pass in a from address, a to address,
a subject, and a message. If you fail to pass in a to or from address, then the function will throw
an exception:

'This is invalid, so an exception is thrown.
System.Web.Mail.SmtpMail.Send("", "", "", "")

■Note System.Web.Mail has been marked as obsolete in ASP.NET 2.0 and is used here only for demon-
stration purposes. You should use the objects in the System.Net.Mail namespace to send email.

Figure 2-2 shows the exception chain generated when the previous line of code is
executed. Take note of the exception types and messages for each exception.

The Send function uses a COM (Component Object Model) object to send the mail
message, so a System.Runtime.InteropServices.COMException is thrown if the operation fails.
The COMException actually has useful information about the problem that can be helpful in
resolving the issue, but it then causes a System.Reflection.TargetInvocationException to
be thrown. This exception is more generic and less helpful than the information in the
COMException, so if it was all you had to go by then you would be completely in the dark.
Fortunately, ASP.NET places the COMException in the InnerException property of the
TargetInvocationException, so you can still access it and its useful information. Lastly,
TargetInvocationException is wrapped by a System.Web.HttpException, and the helpful
message from the COMException is restored so you don’t have to dig into the InnerException
properties to find out the real cause of the problem.

6293_ch02.fm Page 57 Friday, November 11, 2005 2:43 PM

58

C H A P T E R 2

■

 E X C E P T I O N M A N A G E M E N T

Figure 2-2.

 Resulting exception chain for an SMTP mailing error

You can implement the same type of functionality in your applications. Listing 2-13 is a
function that demonstrates how to wrap an exception in a more detailed and informative
exception.

Listing 2-13.

 Wrapping an Exception

'***
Public Function AddNumbersInStringArray(ByVal Numbers() As String) As Long
 Try

 Dim Total As Long = 0
 For Each s As String In Numbers
 Dim l As Long = CLng(s)
 Total += l
 Next

6293_ch02.fm Page 58 Tuesday, November 15, 2005 2:16 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 59

 Catch ex As Exception

 Dim Message As String = "There was an invliad number in the " & _
 "Numbers array. All of the values " & _
 "in the Numbers array must be string " & _
 "representations of numerical values."

 'Wrap orig. message in a new exception with a detailed message
 'ex (the original exception) will become the inner exception of
 'the ArgumentException.
 Throw New ArgumentException(Message, ex)

 End Try

End Function

This function accepts a string array that it expects to contain string representations of
numeric values ("1", "2", "3", and so on). If a nonnumeric string is present in the array, for
instance the value "five" instead of a "5", then an exception is thrown. Specifically, it causes a
System.InvalidCastException to be thrown with a message stating Conversion from string
"five" to type 'Long' is not valid.

The System.InvalidCastException is caught by the Catch statement in the example. A
message is then constructed that better describes the situation and why it is occurring.
The message and the original exception object are passed into the constructor for a new
ArgumentException object, which is then thrown. The exception then propagates up the call
stack until it is handled.

If you diligently use wrapping to identify where and why an exception occurred, the
exception chain you end up with when you are debugging will be helpful in quickly and accu-
rately addressing problems.

Error Propagation
When an exception is thrown, the current code block stops executing and the appropriate
exception object is instantiated. If the code that produced the exception is contained directly
in a Try Catch block, then the .NET runtime checks to see if a Catch block matches the error
being thrown. If there is no Try Catch block or a Catch statement does not match, then the
exception is passed up the call stack to the calling method. Then the process of checking for the
existence of a Try Catch block and an appropriate Catch statement is played out again.

Listing 2-14 is a demonstration of error propagation and how an exception is passed up
the execution chain until it is handled.

6293_ch02.fm Page 59 Friday, November 11, 2005 2:43 PM

60 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

Listing 2-14. Error Propogation Example

'***
 Public Function A() As String
 Try
 Return "Diamonds" & B()
 Catch ex As Exception
 Return ex.Message & " (and handled in the A Function)"
 End Try
 End Function

 '***
 Public Function B() As String
 Return "are " & C()
 End Function

 '***
 Public Function C() As String
 Throw New Exception("Exception Thrown from the C Function")
 Return "forever."
 End Function

When function A is called, it begins to execute. Before it’s done processing, it needs to call
function B. When this occurs, execution of function A is put on hold while function B executes.
Function B, in turn, needs to call function C, so function B is put on hold while function C
executes. During the execution of function C, however, an error is thrown.

Because function C contains no Try Catch block, the exception is propagated back to func-
tion B. Function B does not have a Try Catch block either, so the exception is passed back to
function A. Luckily, function A has a Try Catch block and can handle the exception. Function A
will then use the Exception object from function C to return a message defining the exception.

So, you might ask, what happens if an error continues to propagate and never encounters
a Try Catch block that can handle it? Well, the exception continues to make its way up the call
stack until it reaches the ASP.NET runtime, at which point the runtime generates an exception
page similar to the one shown in Figure 2-3 to display the exception name, message, and stack
trace information.

6293_ch02.fm Page 60 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 61

Figure 2-3. Unhandled exception detail page generated by the ASP.NET runtime

Of course, you want to keep your users from experiencing such an unpleasant dump of
exception information when using your application. We’ll discuss how to avoid all this in the
next section.

6293_ch02.fm Page 61 Friday, November 11, 2005 2:43 PM

62 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

Global Error Handling
Global error handling represents your last chance to protect your users from seeing a very
nasty error. When an unhandled exception propagates all the way back up to the ASP.NET
runtime, ASP.NET uses settings in the configuration file to either generate a page containing a
dump of stack trace and exception information or attempt to redirect the user to a more user-
friendly error page. In terms of client perception management, you don’t want your users to
see the ASP.NET exception page because they will have no doubt that your application failed
to handle the error appropriately. If you redirect them to a user-friendly page, you can at least
maintain that your application gracefully handled the exception.

IIS versus ASP.NET Errors
IIS is responsible for fulfilling requests for resources. Some resource requests it can fulfill on its
own, such as request for images, HTML pages, and static files (Word documents or Excel
spreadsheets). When an error occurs attempting to access a resource managed by IIS, then IIS
generates the error response. For example, if you request a nonexistent HTML page, then IIS
displays the 404 error page that IIS has been configured to display.

IIS cannot fulfill requests for ASP.NET pages on its own, so it passes those requests off to
the ASP.NET runtime for processing. When an error occurs attempting to access a resource
managed by ASP.NET, then ASP.NET generates the error response, not IIS. So, you have two
locations where you must configure your error pages if you want to maintain consistency for
resources managed by IIS and resources managed by ASP.NET.

■Caution Custom error pages configured in ASP.NET do not display when the requested resource is
managed by IIS. They only display when the requested resource is managed by ASP.NET. If you want both
your IIS and your ASP.NET error pages to be the same, then you must configure those error pages in both IIS
and ASP.NET.

Defining a Default Error Page for ASP.NET
You can create a default error page that ASP.NET displays as a last-resort when an unhandled
exception occurs for resources managed by ASP.NET. This guarantees that your users never
see an ugly exception page. Defining a default error page is exceptionally easy, so there’s no
excuse for not implementing one. All you need to do is point the defaultRedirect parameter
of the <customErrrors> element to a valid page in your application and set the mode parameter
to On or RemoteOnly as shown in Listing 2-15.

6293_ch02.fm Page 62 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 63

Listing 2-15. Defining a Defult Error Page in Web.config

<config>
 ...
 <system.web>
 ...
 <customErrors mode="On" defaultRedirect="~/ErrorPages/GenericError.html"/>
 </system.web>
</config>

When you add a Web.config file to your project using the Add New Item dialog box,
ASP.NET creates a commented out <customErrors> section with the mode parameter set to
RemoteOnly. After you uncomment this section, you should probably leave the mode setting
alone because the RemoteOnly setting is the most versatile of the three mode options. Table 2-1
displays all the values that the mode parameter can have and a description of each.

■Note The mode parameter of the sample application is set to On, not RemoteOnly, because you are likely
accessing the sample application from your local machine. Take a look at the Custom Error Page demo with
mode set to On, and then look at it with mode set to RemoteOnly to see the behavioral differences.

Using an ASPX Page as the Default Error Page
You can specify any valid page in your application as the defaultRedirect parameter, even an
ASP.NET web form. Of course, ASP.NET web forms have the potential to throw unhandled
exceptions, so you could be setting yourself up for a bit of trouble unless you make very sure
that your default error page does not throw any unhandled exceptions. Fortunately, ASP.NET
is smart enough not to go into a recursive loop of throwing errors and then redirecting back to
the page that threw the error. Instead, it generates an exception page like the one shown earlier
in Figure 2-3 with a less than intuitive message about how the <customErrors> settings in your
Web.config file is improperly configured.

Table 2-1. Possible Values for the Mode Parameter of the <customErrors> Element

Value Description

Off ASP.NET always generates a page containing detailed information about the
exception and a stack trace. Users are never redirected to an error page.

On ASP.NET always redirects the user to an error page.

RemoteOnly Users on the machine running the application (developers) see a page
containing detailed information about the exception and a stack trace.
Remote users (clients) are redirected to an error page. This setting is very
useful if you need to view exception details on a live application without end
users seeing a nasty message as well.

6293_ch02.fm Page 63 Friday, November 11, 2005 2:43 PM

64 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

Defining Custom Error Pages in ASP.NET
The default error page is a catchall for any type of error that may occur for resources managed
by ASP.NET, so it has to be relatively generic. Unfortunately, in some situations, generic error
pages may not tell the whole story or may leave the user at a dead end. For example, if a user
attempts to access a nonexistent resource managed by ASP.NET, then the user receives a 404
error. If, however, you have only specified a default error page, then ASP.NET displays that
error page without ever mentioning that the resource was not found. This makes it appear as
though the resource exists and is having errors.

You can avoid this problem by using custom error pages. ASP.NET allows you to create
custom error pages tailored for specific error types so you can give your users more informa-
tion about a problem and a possible resolution. In our preceding 404 example, you could
create a 404 error page that informs the user that the page they are trying to access does not
exist so they know they entered the wrong URL. You could even go as far as displaying a site
map, links, or a search box to allow the user to more easily locate their desired content.

Defining custom error pages requires adding an <error> inner element to the
<customErrors> element in Web.config. Listing 2-16 is an example that defines a custom
error page for the 404 error.

Listing 2-16. Defining a Custom Error Page in Web.config

<config>
 ...
 <system.web>
 ...
 <customErrors mode="On" defaultRedirect="~/ErrorPages/GenericError.html">
 <error statusCode="404" redirect="~/ErrorPages/Error404.html"/>
 </customErrors>
 </system.web>
</config>

The statusCode parameter of the <error> element defines the server status code for which
the error page should be returned. The redirect parameter defines the actual error page loca-
tion. In this example, if a 404 error occurs, ASP.NET redirects the user to the Error404.html
page. Because the 404 error is the only custom error defined, any other error will cause the user
to be redirected to the GenericError.html page.

Defining Custom Error Pages in IIS
You can also define custom error pages for specific types of HTTP errors in IIS, although the
process is a bit different. Furthermore, you can configure IIS to display the exact same custom
error pages that ASP.NET uses. This allows you to display the same error regardless of whether
ASP.NET or IIS manages the requested resource.

To configure custom error pages in IIS, open IIS and locate your virtual directory. Right-
click on the virtual directory and select Properties from the context menu. The Properties
dialog box appears displaying a series of tabs. Select the Custom Errors tab. You’ll see the
dialog box display a tab similar to the one shown in Figure 2-4.

6293_ch02.fm Page 64 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 65

Figure 2-4. Custom Errors tab in the IIS virtual directory Properties dialog box

The Custom Errors tab displays HTTP error numbers in a list format. Locate and select the
error for which you want to define a custom error page. With the item selected, click on the Edit
Properties button. The Error Mapping Properties dialog box similar to the one shown in
Figure 2-5 displays.

Figure 2-5. Error Mapping Properties dialog box

The Error Mapping Properties dialog box allows you to define what IIS displays when the
selected error occurs. Notice that it displays the current Error Code you are editing and the
Default Text for that error. You cannot change either of these because they are HTTP stan-
dards. You can, however, change the Message Type and the File/URL. There are three options

6293_ch02.fm Page 65 Friday, November 11, 2005 2:43 PM

66 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

in the Message Type drop-down list, and the option you select determines whether you need
to enter a file name, URL, or nothing at all:

• Default: Does not display any custom error page. IIS simply returns the error code and
allows the browser to display its default error message.

• File: Reads the content of the file in the URL field and returns that content as the error
page. You should use the File option when you want to return a static HTML page. Do
not point the file at an ASP.NET page because IIS simply reads the content of the file and
returns it as-is without any additional processing.

• URL: Redirects the user to a relative or absolute URL. This allows you to redirect users to
ASP.NET pages after an IIS error. Because the user is redirected, ASP.NET processes the
request for the ASP.NET error page normally.

If you want both ASP.NET and IIS to use the same error pages, just point the file name or
URL in the Error Mapping Properties dialog box to the location you defined for the corre-
sponding error code in the <error> entries in the <customErrors> section of Web.config.

Using the Application Error Event
Whenever an unhandled exception occurs in your application, ASP.NET fires the application
Error event. This even includes server errors, such as when a requested resource managed by
ASP.NET does not exist (404 Error). You can respond to the Error event by placing code in the
Application_Error procedure in global.asax.

For the most part, the Application_Error method should only be used to log error infor-
mation. Some people like to use it to redirect the user to a custom error page when an
exception occurs, but that task is better accomplished using the default and custom error page
definitions in the Web.config file. Oddly enough, no exception information is directly passed
into the Application_Error procedure. You have to acquire the exception information using
the Server object, as shown in Listing 2-17.

Listing 2-17. Application_Error Event Handler Example

'***
Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 Try
 Dim ex As Exception = Server.GetLastError()
 ExceptionManager.Publish(ex)
 Catch ex As Exception
 End Try
End Sub

You should encapsulate any code you have in the Application_Error procedure in a Try
Catch statement to ensure that it doesn’t throw an error, but know that the consequences of
allowing an exception to slip through are not overly problematic. The default exception page
displays regardless, assuming it is defined.

6293_ch02.fm Page 66 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 67

Logging Exceptions for Analysis
Applications with appropriate exception handling and custom error pages shield users from
experiencing alarming, confusing, or just ugly error messages. By gracefully handling an
exception, the application appears to be dealing with the situation normally even though,
technically, something went wrong. In terms of user experience, this is exactly what you want
because the error appears to be part of the application and either provides an informative error
message and/or suggestions for resolution. Most people have the confidence to continue using
the application after the error and simply try again. Sometimes the very act of trying again
solves the issue. As such, the user simply continues along and does not report the problem.
Other times, trying again does not solve the issue, and users call you to report the issue. Unfor-
tunately, users are notorious for vague descriptions of errors and what they were doing when
the error occurred, so user reporting may not be overly helpful in your quest to track down
bugs.

Exception logging is an extremely helpful way to identify, log, and analyze all the excep-
tions that occur in your application. Any time an exception occurs, the exception information
(type, message, stack trace) as well as environmental conditions (date/time, machine name,
user ID, form data, query string values, and so on) present when the exception occurred are
stored in the database. This helps resolve both of the issues mentioned previously. All excep-
tions are logged, so you can rely on the exception log to report errors instead of users. And the
exception log contains detailed information about the exception and the environmental situa-
tion in which the exception occurred, so you do not have to rely solely on a user’s personal
recollection to determine what happened. Exception logging ensures that you are aware of
exceptions and gives you enough information to start tracking down bugs. Additionally,
storing exception data in a database allows you to analyze the exceptions to look for recurrent
patterns. How often is an exception occurring? To whom? When? On which server? A database
of exception information makes these types of determinations much easier to make and is
invaluable for determining which bugs should be classified as high-, medium-, and low
priority, and it is especially useful when an application is first deployed.

Choosing an Exception Logging Tool
One of the decisions you must make when implementing exception logging in your applica-
tion is whether to use a prebuilt tool to help speed up development or to build your own from
scratch. I highly recommend that you use an existing tool because there are a number of freely
available, amply configurable, highly extensible tools at your disposal. Microsoft, for example,
recently released the Enterprise Library, which, among other things, includes an Enterprise-
grade exception-management module with myriad features and configuration options.

■Note At the time of this book’s writing, the Enterprise Library was not ready for use with the .NET 2.0
Framework, but a .NET 2.0-compliant version should be out shortly after Visual Studio 2005 ships.

Microsoft also offers the Exception Management Application Block, which is the prede-
cessor of the exception-management module in the Enterprise Library. It offers a slightly

6293_ch02.fm Page 67 Friday, November 11, 2005 2:43 PM

68

C H A P T E R 2

■

 E X C E P T I O N M A N A G E M E N T

scaled back and simpler solution that is still very powerful, but does not have all the advanced
configuration options or complexities of the Enterprise Library. Log4Net is also a popular
logging solution, as are many other solutions found on mainstream development sites and
blogs on the Internet. Links to these products are provided under the Links section of the
example application (in the Source Code area of the Apress website), or you can opt to search
for the product using a search engine.

Ultimately, you must decide which tool to use based on your personal preference and
project environment. In some situations, the Enterprise Library may be overkill or present too
much of a learning curve. For other situations, the Exception Management Application Block
may not provide enough configuration options. And there could always be a spectacular
feature in another tool that is so well suited for your particular need that it compels you to use
that tool over another one.

Regardless of which tool you opt to use, each is likely to have its own proprietary configu-
ration options and extensibility framework. You’ll have to consult the documentation for
specific implementation guidelines because I cannot cover all of them in this text. In the
example that follows, you’ll look at a custom exception logging implementation that demon-
strates the basics of exception logging. You can then apply what you learn to whichever tool
you decide to use. Also know that the exception logging classes presented in the upcoming
example can be reused inside of another logging solution if you so desire, or they can act as a
starting point for your own implementation.

Architecture Overview

In the following example, you are creating a series of classes to help save exception logging
information to a database and building a web-based interface for reviewing those exceptions.
Table 2-2 provides a breakdown of the items in the example and their purposes.

Table 2-2.

 Exception Logging Example Items

Item Type Project Description

ExceptionLog Class SqlExceptionLogging

Object representation of the exception
information stored in the database. Also
includes loading and saving routines for
exception data.

ExceptionLog

➥

Collection
Class SqlExceptionLogging

Maintains a list of

ExceptionLog

 objects.
Also includes loading routines for list-
oriented operations.

ExceptionLogger Class SqlExceptionLogging

Contains the

Log

 function, which can be
used to save exception information to
the database. This class is responsible for
populating

ExceptionLog

 objects and
saving them to the database.

ShowException

➥

List.aspx
WebForm WebSite

Displays a brief listing of all the excep-
tions currently in the database.

ShowException.
aspx

WebForm WebSite

Displays details about a specific
exception.

6293_ch02.fm Page 68 Tuesday, November 15, 2005 2:17 PM

C H A P T E R 2

■

 E X C E P T I O N M A N A G E M E N T

69

In a full-fledged exception logging solution, there would be many more classes to help
manage configuration and extensibility. This example, however, strives for simplicity so there
are not many auxiliary classes or functionality. We’ll begin by looking at the database structure
required to store exception log information. After that, we’ll move on to the exception logging
actual classes, starting with the

ExceptionLog

 class.

Creating the ExceptionLog Table to Store Data

Before you can store information in a database, you need to build out an appropriate data
structure to hold the data. In the example application for Chapter 2 (in the Source Code area of
the Apress website), you’ll find a SQL Server database named

Chapter02.mdf

. This database
contains a table named

ExceptionLog

, which stores all the exception information for the
sample application. Table 2-3 provides a rundown of the fields in the table and their purposes.

Table 2-3.

ExceptionLog

 Table Fields

Field Type Description

ExceptionID int (identity)

Unique identifier for the record.

ParentID int

Links an inner exception to its parent exception and defines the hier-
archy of exception in an exception chain. When nonzero, this field
indicates that the record is an inner exception and references the

ExceptionID

 of the parent. A value of zero for this field indicates that
the record is a top-level exception that has no parent.

MachineName varchar(50)

Network name of the machine on which the exception occurred.

UserID varchar(50)

User ID identifying the web-based user who experienced the
exception.

UserAgent varchar(255)

Identifies the type of browser used.

ExceptionDate datetime

Date and time when the exception occurred.

ExceptionType varchar(50)

Type name of the exception.

Exception

➥

Message
varchar(255)

Message of the exception.

Page varchar(255)

Application relative path of the page on which the error occurred (for
example,

~/Default.aspx).

StackTrace text

Stack trace at the time the exception occurred. This contains infor-
mation that helps identify what chain of methods were executing at
the time of the exception.

QueryStringData text

Listing of all the query string variable names and values.

FormData text

Listing of all the form variable names and values.

ChainID uniqueidentifier GUID

 value that helps group all the exceptions in an exception chain
together. All exceptions in the chain (the original exception and its
chain of inner exceptions) have the same

ChainID

. This allows you to
select all the exceptions in an exception chain from the database
using the

ChainID

 instead of resorting to a more complicated stored
procedure or series of recursive database calls.

6293_ch02.fm Page 69 Tuesday, November 15, 2005 2:17 PM

70 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

You are free to add and remove fields from the database as you see fit. If you only have one
server, for example, it may not be worth your time to save the machine name. Or if you think it
would be helpful to store the referring page along with the exception data so you know where
the user came from originally, you may do so. Also notice that the query string and form data
are stored in a single field. You could break the name-value pairs out into their own table struc-
ture for advanced analysis. For the time being, however, we’ll keep it simple.

ExceptionLog Class
You use the ExceptionLog class to store, retrieve, and delete exception log information from the
database. Because this is a standalone class that is not tied to any specific tool, you can either
use it as-is or as a starting point for whichever exception logging tool you decide to use. As you
look through the class (see Listing 2-18), understand that you can capture as much or as little
exception logging information as you want or need. This is by no means an extensive listing of
the information available, but it does represent some of the most useful items when it comes
to debugging an issue.

Listing 2-18. ExceptionLog Class

Imports System.Data.SqlClient

Public Class ExceptionLog

#Region "Fields"

 '***
 Private _ExceptionID As Integer = 0
 Private _ParentID As Integer = 0
 Private _MachineName As String = String.Empty
 Private _UserID As String = String.Empty
 Private _UserAgent As String = String.Empty
 Private _ExceptionDate As Date = Now
 Private _ExceptionType As String = String.Empty
 Private _ExceptionMessage As String = String.Empty
 Private _Page As String = String.Empty
 Private _StackTrace As String = String.Empty
 Private _QueryStringData As String = String.Empty
 Private _FormData As String = String.Empty
 Private _ChainID As Guid = Guid.Empty

#End Region

#Region "Properties"

 '***
 Public Property ExceptionID() As Integer
 Get
 Return _ExceptionID

6293_ch02.fm Page 70 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 71

 End Get
 Set(ByVal value As Integer)
 _ExceptionID = value
 End Set
 End Property

 '***
 Public Property ParentID() As Integer
 Get
 Return _ParentID
 End Get
 Set(ByVal value As Integer)
 _ParentID = value
 End Set
 End Property

 '***
 Public Property MachineName() As String
 Get
 Return _MachineName
 End Get
 Set(ByVal value As String)
 _MachineName = value
 End Set
 End Property

 '***
 Public Property UserID() As String
 Get
 Return _UserID
 End Get
 Set(ByVal value As String)
 _UserID = value
 End Set
 End Property

 '***
 Public Property UserAgent() As String
 Get
 Return _UserAgent
 End Get
 Set(ByVal value As String)
 _UserAgent = value
 End Set
 End Property

6293_ch02.fm Page 71 Friday, November 11, 2005 2:43 PM

72 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

 '***
 Public Property ExceptionDate() As Date
 Get
 Return _ExceptionDate
 End Get
 Set(ByVal value As Date)
 _ExceptionDate = value
 End Set
 End Property

 '***
 Public Property ExceptionType() As String
 Get
 Return _ExceptionType
 End Get
 Set(ByVal value As String)
 _ExceptionType = value
 End Set
 End Property
 '***
 Public Property ExceptionMessage() As String
 Get
 Return _ExceptionMessage
 End Get
 Set(ByVal value As String)
 _ExceptionMessage = value
 End Set
 End Property
 '***
 Public Property Page() As String
 Get
 Return _Page
 End Get
 Set(ByVal value As String)
 _Page = value
 End Set
 End Property
 '***
 Public Property StackTrace() As String
 Get
 Return _StackTrace
 End Get
 Set(ByVal value As String)
 _StackTrace = value
 End Set
 End Property

6293_ch02.fm Page 72 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 73

 '***
 Public Property QueryStringData() As String
 Get
 Return _QueryStringData
 End Get
 Set(ByVal value As String)
 _QueryStringData = value
 End Set
 End Property

 '***
 Public Property FormData() As String
 Get
 Return _FormData
 End Get
 Set(ByVal value As String)
 _FormData = value
 End Set
 End Property

 '***
 Public Property ChainID() As Guid
 Get
 Return _ChainID
 End Get
 Set(ByVal value As Guid)
 _ChainID = value
 End Set
 End Property

#End Region

 '***
 Public Function Save(ByVal dbConn As SqlConnection) As Boolean

 Dim SQL As String = _
 "INSERT INTO [ExceptionLog] (ParentID, MachineName, UserID, " & _
 "UserAgent, ExceptionDate, ExceptionType, ExceptionMessage, " & _
 "Page, StackTrace, QueryStringData, FormData, ChainID)" & _
 "VALUES (@ParentID, @MachineName, @UserID, @UserAgent, " & _
 "@ExceptionDate, @ExceptionType, @ExceptionMessage, @Page, " & _
 "@StackTrace, @QueryStringData, @FormData, @ChainID);"

 Dim cmd As New SqlCommand(SQL, dbConn)
 cmd.Parameters.Add("@ParentID", SqlDbType.Int).Value = ParentID
 cmd.Parameters.Add("@MachineName", SqlDbType.VarChar).Value
 = CheckEmpty(MachineName)
 cmd.Parameters.Add("@UserID", SqlDbType.VarChar).Value = CheckEmpty(UserID)

6293_ch02.fm Page 73 Friday, November 11, 2005 2:43 PM

74 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

 cmd.Parameters.Add("@UserAgent", SqlDbType.VarChar).Value _
 = CheckEmpty(UserAgent)
 cmd.Parameters.Add("@ExceptionDate", SqlDbType.VarChar).Value _
 = CheckEmpty(ExceptionDate)
 cmd.Parameters.Add("@ExceptionType", SqlDbType.VarChar).Value _
 = CheckEmpty(ExceptionType)
 cmd.Parameters.Add("@ExceptionMessage", SqlDbType.VarChar).Value _
 = CheckEmpty(ExceptionMessage)
 cmd.Parameters.Add("@Page", SqlDbType.VarChar).Value = CheckEmpty(Page)
 cmd.Parameters.Add("@StackTrace", SqlDbType.NText).Value _
 = CheckEmpty(StackTrace)
 cmd.Parameters.Add("@QueryStringData", SqlDbType.Text).Value _
 = CheckEmpty(QueryStringData)
 cmd.Parameters.Add("@FormData", SqlDbType.Text).Value = CheckEmpty(FormData)
 cmd.Parameters.Add("@ChainID", SqlDbType.UniqueIdentifier).Value = ChainID

 If cmd.ExecuteNonQuery() > 0 Then
 cmd.CommandText = "SELECT @@IDENTITY;"
 ExceptionID = CInt(cmd.ExecuteScalar())
 Return True
 Else
 Return False
 End If

 End Function

 '***
 Private Function CheckEmpty(ByVal s As String) As String
 If s = Nothing Then Return "" Else Return s
 End Function

 '***
 Public Function LoadByID(ByVal ExceptionID As Integer, _
 ByVal DBConn As SqlConnection) As Boolean

 Dim ReturnVal As Boolean = False
 Dim SQL As String = _
 "SELECT * FROM [ExceptionLog] WHERE [ExceptionID]=@ExceptionID"

 Dim cmd As New SqlCommand(SQL, DBConn)
 cmd.Parameters.Add("@ExceptionID", SqlDbType.Int).Value = ExceptionID

 Dim dr As SqlDataReader = cmd.ExecuteReader()
 If dr.Read Then
 MapData(dr)
 ReturnVal = True
 End If

6293_ch02.fm Page 74 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 75

 dr.Close()
 Return ReturnVal

 End Function

 '***
 Public Sub MapData(ByVal dr As SqlDataReader)
 ExceptionID = CInt(dr("ExceptionID"))
 ParentID = CInt(dr("ParentID"))
 MachineName = CStr(dr("MachineName"))
 UserID = CStr(dr("UserID"))
 UserAgent = CStr(dr("UserAgent"))
 ExceptionDate = CStr(dr("ExceptionDate"))
 ExceptionType = CStr(dr("ExceptionType"))
 ExceptionMessage = CStr(dr("ExceptionMessage"))
 Page = CStr(dr("Page"))
 StackTrace = CStr(dr("StackTrace"))
 QueryStringData = CStr(dr("QueryStringData"))
 FormData = CStr(dr("FormData"))
 ChainID = DirectCast(dr("ChainID"), Guid)
 End Sub

■Note The DirectCast method casts one type to another type without any intermediary conversion. So,
DirectCast("1",Integer) fails because "1" is a String, not an Integer. CType has the capability to
convert an item from one type to another during the cast. Thus, CType("1", Integer) succeeds because
CType can successfully convert the String "1" into an Integer. In this example, dr("ChainID") actually
returns a Guid object that does not need to be converted. Thus, you use DirectCast instead of CType
because it has a slight performance advantage.

 '***
 Public Function DeleteChain(ByVal DBConn As SqlConnection) As Boolean

 Dim SQL As String = "DELETE FROM [ExceptionLog] WHERE [ChainID]=@ChainID;"
 Dim cmd As New SqlCommand(SQL, DBConn)
 cmd.Parameters.Add("@ChainID", SqlDbType.UniqueIdentifier).Value = ChainID
 cmd.ExecuteNonQuery()
 Return True

 End Function

End Class

6293_ch02.fm Page 75 Friday, November 11, 2005 2:43 PM

76 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

Fields and Properties

All the properties in the class are fairly standard, so they don’t require too much explanation.
Each property has a corresponding private field in which to store its value and has a matching
field in the database. Refer to Table 2-3 for a more detailed description of each property.

Save Function

As its name implies, the Save function saves exception log information to the database using
the SqlConnection passed in as a parameter. The function begins by defining a parameterized
SQL insert statement, and then uses that statement and the SqlConnection to create a new
SqlCommand object. Because the command object contains a parameterized SQL statement, it
needs parameter values for all those parameters. You can see directly under the SqlCommand
definition that the function creates a parameter for each field in the statement and passes in
the value of the corresponding class property. It uses the CheckEmpty function to ensure string
values are set to an empty string "" and not to Nothing. If a parameter value is Nothing, then the
SqlCommand object throws an execution when the command executes because it thinks you
never supplied a value. The ExceptionID field is not included in this list because the database
auto-generates its value during the insert.

After populating the command object with parameters and values, the Save function
executes the command using the ExecuteNonQuery method, which returns the number of
records affected by the query. If no records were affected, then the Save failed and the function
returns false. If at least one record was affected, then the Save succeeded and the function
goes on to acquire the new ExceptionID value.

Because SQL Server automatically generates the ExceptionID during the insert, you have
to select it out of the database. The @@IDENTITY variable stores the value of the last auto-
generated number for the current connection. Inside the affected record check, you can see
that the Save function updates the SqlCommand object’s CommandText to acquire the auto-
generated number and assigns it to the ExceptionID property using the ExecuteScalar method.
ExecuteScalar returns a single value from the database without the need for a data reader.
Finally, the function returns true indicating that the Save was successful.

CheckEmpty Function

This function checks an incoming string to determine whether it is set to Nothing. If so, it
returns an empty string "". If not, the function returns the actual string’s value.

LoadByID Function

LoadByID accepts an ExceptionID and a SqlConnection as parameters and loads the requested
exception information from the database into the ExceptionLog object. It begins by creating a
Boolean variable named ReturnVal and setting it to false. This variable keeps track of whether
or not the ExceptionID requested is actually found and loaded.

The command-building process for LoadByID is similar to that of the Save function. It starts
by defining a parameterized query, builds a SqlCommand object that uses the query and the
SqlConnection, and then creates the ExceptionID parameter value. LoadByID then runs the
ExecuteReader method on the SqlCommand object and stores the resulting data reader in the dr
variable. After getting a reference to the data reader, the function checks to see if the data
reader is pointing to any information by calling the Read method. If Read returns True, the

6293_ch02.fm Page 76 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 77

function knows that the exception information was successfully located. It then copies the
data from the data reader to the object using the MapData function and sets the ReturnVal to
True indicating that the information was successfully located. Finally, the function closes the
data reader and returns ReturnVal as the result of the function. If the exception information
was not located, then ReturnVal will still be False.

MapData

MapData simply copies database field values from the data reader into the appropriate
properties on the object. You’ll notice that methods in both the ExceptionLog and
ExceptionLogCollection classes use this function when they need to pull data from a data
reader.

DeleteChain

This function executes a SQL statement that deletes a chain of exceptions based on the
ChainID. It makes little sense to delete a single exception within a chain, so the entire chain is
deleted all at once.

ExceptionLogCollection Class
As with any logging tool, your end goal is to review the log for analysis. Many times you can
analyze data directly in a database tool such as Enterprise Manager. In this example, however,
you are reviewing data directly in the browser. So, you need a way to organize and obtain lists
of ExceptionLog objects, and the ExceptionLogCollection class exists to do just that. Listing
2-19 shows the code for the ExceptionLogCollection class, followed by a brief description of
the functions and their purposes.

Listing 2-19. ExceptionLogCollection Class

Imports System.Data.SqlClient

Public Class ExceptionLogCollection
 Inherits CollectionBase

 '***
 Public Function Add(ByVal obj As ExceptionLog) As Integer
 Return InnerList.Add(obj)
 End Function

 '***
 Default Public Property Item(ByVal index As Integer) As ExceptionLog
 Get
 Return InnerList.Item(index)

6293_ch02.fm Page 77 Friday, November 11, 2005 2:43 PM

78 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

 End Get
 Set(ByVal value As ExceptionLog)
 InnerList.Item(index) = value
 End Set
 End Property

 '***
 Public Sub LoadAll(ByVal DBConn As SqlConnection)

 Dim SQL As String = "SELECT * FROM [ExceptionLog] " & _
 "WHERE [ParentID]=0 ORDER BY [ExceptionID] DESC;"

 Dim cmd As New SqlCommand(SQL, DBConn)
 Dim dr As SqlDataReader = cmd.ExecuteReader()
 Dim obj As ExceptionLog

 Me.Clear()
 While dr.Read
 obj = New ExceptionLog()
 obj.MapData(dr)
 Add(obj)
 End While

 End Sub

 '***
 Public Sub LoadChain(ByVal ChainID As Guid, _
 ByVal DBConn As SqlConnection)

 Dim SQL As String = "SELECT * FROM [ExceptionLog] " & _
 "WHERE [ChainID]=@ChainID ORDER BY [ExceptionID];"

 Dim cmd As New SqlCommand(SQL, DBConn)
 cmd.Parameters.Add("@ChainID", SqlDbType.UniqueIdentifier).Value = ChainID

 Dim dr As SqlDataReader = cmd.ExecuteReader()
 Dim obj As ExceptionLog

 Me.Clear()
 While dr.Read
 obj = New ExceptionLog
 obj.MapData(dr)
 Add(obj)
 End While

 End Sub

End Class

6293_ch02.fm Page 78 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 79

Class Definition

The ExceptionLogCollection class is a strongly typed collection designed solely to work with
ExceptionLog objects. It inherits its core collection functionality from the CollectionBase class,
which provides access to an internal ArrayList used to store and manage objects in the collec-
tion. The class also inherits common, nontype-specific properties and methods such as the
Count property, the Clear method, and the RemoveAt method. Nontype-specific members don’t
need to know the type of object stored in the collection in order to function. For example, it
doesn’t matter whether you’re storing ExceptionLog objects or Employee objects, the Count is
always going to return an Integer specifying the number of items in the collection.

You are expected to implement your own type-specific properties and methods. This
class, for example, contains a strongly typed Item property and Add function so they specifically
deal with ExceptionLog objects. Optionally, you can create your own Contains, IndexOf, Insert,
and Remove functions if necessary.

Add Function

This function allows you to add ExceptionLog objects to the collection. All this function does
is accept an ExceptionLog object as a parameter, pass that ExceptionLog object to the
Add function of the InnerList, and then return the index in the collection where the
ExceptionLog object was added. Basically, the Add function acts as a filter so you can ensure
that only ExceptionLog objects make it into the InnerList because, technically, the InnerList
can hold any type of object.

Item Default Property

You access individual items in the collection (by index) using the Item property. Like the Add
function, the Item property simply reuses the InnerList for most of its functionality. The get
portion of the property returns a strongly typed ExceptionLog from the specified index in the
collection, whereas the set portion of the property assigns the ExceptionLog objects to the
specified index.

Also notice that the Item property is the default property for the class. This means that you
can reference this property using an array notation on the object. For example, if you have an
ExceptionLogCollection named MyExceptions, then you can access an exception in the collec-
tion using MyExceptions(5) instead of MyException.Items(5).

LoadChain Method

Sometimes you need to know about all the exceptions in the exception chain to fully under-
stand what an error is or how it occurred. The LoadChain method accepts a ChainID and
populates the ExceptionLogCollections with all the exceptions for that particular exception
chain.

LoadChain accepts an open database connection named DBConn and the ChainID of the
requested desired chain as parameters. The function begins by defining a parameterized SQL
query and a SqlCommand that uses the open database connection and that query. Then it adds
the @ChainID parameter value to the command using the ChainID value passed into the func-
tion. Next, the command executes the query using the ExecuteReader method and stores the
resulting data reader in the dr variable. Before reading through all the values, the function calls
the Clear method to remove any existing data from the collection. It then iterates over each

6293_ch02.fm Page 79 Friday, November 11, 2005 2:43 PM

80 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

row of data returned by the query. For each row, LoadChain creates a new ExceptionLog object
and populates the object’s properties from the data reader using the object’s MapData method.
It then adds the newly created object to the collection using the Add function.

LoadAll Method

When you review exceptions in the browser, you’ll need a list of the exceptions that have
occurred on the system. LoadAll populates the ExceptionLogCollection object with all the top-
level exceptions currently listed in the database, that is, exceptions that have no parents and
therefore their ParentID = 0. This function works like the LoadChain method, but it does not
have any parameters for the SQL query.

ExceptionLogger Class
Most exception-logging tools contain a class with a shared method used to log exceptions
as they occur. Using the Exception Management Application Block, for example, you call
ExceptionManager.Publish(exception) to log an exception. In the Enterprise Library, excep-
tion policies govern how to handle exceptions so the call looks something like
ExceptionPolicy.HandleException(ex, "PolicyName"). Every other tool you encounter has its
own way of doing things, but this tends to be the “norm” for exception logging.

For this example, you’ll use ExceptionLogger.Log(ex) to log an exception. In Listing 2-20,
you’ll see how the Log function uses the ExceptionLog object to log exception information to
the database. This will be helpful when you implement exception logging in your own
application.

Listing 2-20. ExceptionLogger Class Code

Imports Microsoft.VisualBasic.ControlChars
Imports System.Collections.Specialized
Imports System.Configuration.ConfigurationManager
Imports System.Data.SqlClient
Imports System.Web.HttpContext

Public Class ExceptionLogger

 '***
 Private Shared _connectionString As String = ""

 '***
 Public Shared Property ConnectionString() As String
 Get
 Return _connectionString
 End Get
 Set(ByVal value As String)
 _connectionString = value
 End Set
 End Property

6293_ch02.fm Page 80 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 81

 '***
 Public Shared Sub Log(ByVal ex As Exception)

 Dim exLog As New ExceptionLog
 Dim parentID As Integer = 0
 Dim chainID As Guid = Guid.NewGuid()
 Dim dbConn As SqlConnection = New SqlConnection(ConnectionString)

 dbConn.Open()

 'Iterate through all of the exceptions in the exception chain
 While Not ex Is Nothing
 'Create a new Exception Log object for the exception
 exLog = New ExceptionLog()

 'Acquire the username
 If Current.User.Identity.IsAuthenticated Then
 exLog.UserID = Current.User.Identity.Name
 Else
 exLog.UserID = "<Anonymous User>"
 End If

 exLog.ParentID = parentID
 exLog.MachineName = Current.Server.MachineName
 exLog.UserAgent = Current.Request.UserAgent
 exLog.ExceptionDate = Now
 exLog.ExceptionType = ex.GetType.ToString
 exLog.ExceptionMessage = ex.Message
 exLog.Page = Current.Request.AppRelativeCurrentExecutionFilePath()
 exLog.StackTrace = ex.StackTrace
 exLog.QueryStringData = GetQueryStringData()
 exLog.FormData = GetFormData()
 exLog.ChainID = chainID

 'Save Exception Log, Get New ParentID, Get Next Inner Exception
 If exLog.Save(dbConn) Then
 parentID = exLog.ExceptionID
 ex = ex.InnerException
 Else
 'Set ex to nothing so While loop ends
 ex = Nothing
 End If
 End While

 dbConn.Close()

 End Sub

6293_ch02.fm Page 81 Friday, November 11, 2005 2:43 PM

82 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

 '***
 Private Shared Function GetQueryStringData() As String
 Dim Data As New System.Text.StringBuilder(256)
 For Each key As String In Current.Request.QueryString.Keys
 Data.Append(key)
 Data.Append("=")
 Data.Append(Current.Request.QueryString(key))
 Data.Append(CrLf)
 Next
 Return Data.ToString
 End Function

 '***
 Private Shared Function GetFormData() As String
 Dim Data As New System.Text.StringBuilder(256)
 For Each key As String In Current.Request.Form.Keys
 Data.Append(key)
 Data.Append("=")
 Data.Append(Current.Request.Form(key))
 Data.Append(CrLf)
 Next
 Return Data.ToString
 End Function

End Class

Static ConnectionString Property

You use the ConnectionString property to specify the connection string that ExceptionLogger
should use to connect to a database. You could acquire the connection string directly from
Web.config, but that approach unnecessarily ties the ExceptionLogger to a particular applica-
tion configuration. Because the component is designed for reuse, it makes more sense to make
it as flexible as possible by simply exposing a property that accepts a connection string without
any specific configuration requirements. The only caveat to this approach is that you have to
set the ConnectionString property on the ExceptionLogger before you log an exception. A good
place to do this is in the Application_Start method in the Global.asax file as shown in Listing
2-21.

Listing 2-21. Setting Up the ConnectionString in the Global.asax

<%@ Application Language="VB" %>
<%@ Import Namespace="System.Configuration.ConfigurationManager" %>
<script runat="server">

6293_ch02.fm Page 82 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 83

 '***
 Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 SqlExceptionLogging.ExceptionLogger.ConnectionString = _
 ConnectionStrings("Chapter02").ConnectionString
 End Sub

</script>

Static Log Method

When you log an exception, you have to account for the chance that the exception exists as an
exception chain and has a series of inner exceptions. As such, each exception needs to know its
ParentID and ChainID so it knows which exception chain it belongs to and which exception in
that chain is its parent. The Log method accepts a single exception named ex as a parameter
and is responsible for iterating through each exception in the chain and saving it with the
appropriate exception information, ParentID, and ChainID.

At the beginning of the Log method, you can see the declarations for all the variables used
throughout the code. There are a few things you need to be aware of in the declarations. First,
the method sets ParentID to 0 because the first exception in the chain has no parent. Also
notice that it assigns the ChainID a new Guid value using the Guid.NewGuid() function. This
value links all the exceptions in the chain together and does not change from one exception
to the next. And, finally, the code creates a new database connection string defined in the
ConnectionString property.

After defining variables, the code opens the database connection and jumps into a While
loop that continues until the ex variable no longer points to an exception. Inside the While
loop, the Log method creates a new ExceptionLog object and then populates that object with
exception and environmental data that can help track down the cause of the exception. Table
2-3 contains a detailed listing of the properties and what they represent if you need to refresh
your memory as to what a properties stores.

After the ExceptionLog properties have been set, the Log function saves the ExceptionLog
object using the object’s Save method and the open database connection. If the save was
successful, the method assigns the parentID variable the value just given to the saved
ExceptionLog object. This ensures that the next exception will have an appropriate ParentID.
It then sets ex to ex.InnerException, which causes the While loop to continue until all the inner
exceptions have been saved. After exiting the While loop, the method closes the database
connection and all the exceptions in the exception chain are in the database.

GetQueryStringData and GetFormData Functions

Knowing what the user entered into a web form is invaluable knowledge when it comes to
debugging an exception. Because most user input arrives at the server in the form of query
string or form variables, you’ll find it very helpful to save query string and form variable data in
the exception log.

The GetQueryString and GetFormData functions help format that information into a more
human-readable format by outputting each name-value pair on its own line. Because a signif-
icant amount of string concatenation is going on, both functions also use the StringBuilder
object to build the string as it’s well suited for building strings quickly and efficiently.

6293_ch02.fm Page 83 Friday, November 11, 2005 2:43 PM

84 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

Using the ExceptionLogger Class in Your Code
You normally find exception loggers in the Catch portion of a Try Catch statement because
that’s normally where you end up with an exception you need to log. So, normal-looking
exception logging code looks like Listing 2-22.

Listing 2-22. Example Exception Logging

Try
 'Code that may cause an exception
Catch ex As Exception
 ExceptionLogger.Log(ex)
 'You can rethrow the exception if you want or your exception-logging utility
 'may have configuration settings to specify rethrows for certain exceptions
End Try

That’s all there is to it. Just make sure you include the exception logging in your Try Catch
blocks so you can keep a record of what’s going on.

Reviewing Exceptions Online
After you start logging exceptions in your application, you need a way to review those excep-
tions so you can start prioritizing and fixing them. The question is, what do you use to do that.
One simple solution is to use the database directly because it provides a powerful set of anal-
ysis and query tools. It also has the added benefit of not requiring any additional time, money,
or effort to build.

The problem with using direct database access is that it becomes increasingly more diffi-
cult to manage as you work on larger and larger projects. Larger projects normally have teams
of developers, project managers, quality assurance testers, and help desk personnel, all of
whom need access to exception information. Although developers normally have experience
navigating a database, other people on a project may not. So, it may be beneficial to expose
exception information as an administrative screen in your application.

In the sections that follow, you will see a brief example demonstrating how to list excep-
tion information in your application.

Listing Exceptions with ShowExceptionList.aspx

Before you can see the details of a specific exception, you need some way of looking through all
the exceptions stored in your database. In a production environment, this may mean that you
need a search page to narrow down results based on the page name, user ID, exception type, or
message. In this example, you’ll simply display a list of all the exceptions in the database.

■Tip Chapter 9 describes some great techniques for building effective search pages that are very appli-
cable when it comes to searching through exception information.

6293_ch02.fm Page 84 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 85

The first thing you need is a GridView capable of displaying exception information. The
GridView definition in Listing 2-23 displays five different columns: a View link in the left
column allowing the user to get more detail regarding a specific exception, the date when the
exception occurred, the exception type, the page on which the exception occurred, and the
user for whom the exception occurred.

Listing 2-23. GridView Capable of Displaying Exception Information

<asp:GridView ID="gridExceptions" runat="server" AutoGenerateColumns="False">
 <Columns>
 <asp:TemplateField HeaderText="">
 <ItemTemplate>
 <a href='ShowException.aspx?ExceptionID=<%#Eval("ExceptionID")%>'>View
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Date">
 <ItemTemplate>
 <%#Eval("ExceptionDate")%>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Type">
 <ItemTemplate>
 <%#Eval("ExceptionType")%>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Page">
 <ItemTemplate>
 <%#Eval("Page")%>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="User ID">
 <ItemTemplate>
 <%#Eval("UserID")%>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

Notice that the template references properties found in the ExceptionLog class. The grid is
bound to an ExceptionLogCollection, so the data item for each row is an ExceptionLog object.
Also notice that the first column contains a link that redirects users to the ShowException.aspx
page and specifies a query string parameter identifying which exception details to display.
Next in Listing 2-24, you’ll see the code-behind file that populates a grid named
gridExceptions.

6293_ch02.fm Page 85 Friday, November 11, 2005 2:43 PM

86 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

Listing 2-24. Displaying Exceptions in a GridView Control

Imports SqlExceptionLogging
Imports System.Configuration.ConfigurationManager
Imports System.Data.SqlClient

Partial Class ShowExceptionList
 Inherits System.Web.UI.Page

 '***
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Dim dbConn As New _
 SqlConnection(ConnectionStrings("Chapter02").ConnectionString)
 Dim ExceptionCol As New ExceptionLogCollection
 dbConn.Open()
 ExceptionCol.LoadAll(dbConn)
 dbConn.Close()
 gridExceptions.DataSource = ExceptionCol
 gridExceptions.DataBind()

 End Sub

End Class

This code-behind page is fairly simple because most of the logic is contained in the
ExceptionLogCollection class. The page begins by creating a database connection using the
“Chapter02” connection string from Web.config. It then instantiates a new ExceptionLog➥

Collection object, opens the database, loads all the exceptions from the database into the
ExceptionLogCollection using the LoadAll method, and closes the database connection. Next,
it assigns the gridException control’s DataSource property to the populated ExceptionLog➥

Collection and then data binds the grid. This causes the grid to pull in all the exception infor-
mation from the collection and display it as shown in Figure 2-6.

Users who visit the ShowExceptionList.aspx page can browse through the listing of excep-
tions until they find the one they want to view. Then, they click on the View link to see a more
detailing listing of the exception.

Figure 2-6. List of exceptions from ShowExceptionList.aspx

6293_ch02.fm Page 86 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 87

Reviewing Exception Details with ShowException.aspx

Listing the exceptions gives a good general glimpse of the exceptions in the application, but the
detailed exception page is where you can really dig into an exception and get useful informa-
tion about what was going on when it occurred. As mentioned before, users can access the
ShowException.aspx page by clicking on the View link next to an exception in the Show➥

ExceptionList.aspx page.
ShowException.aspx has a lot of visual layout markup that is not pertinent to the functional

portion of the page. Listing 2-25 simplifies things a bit by showing the ASP.NET controls on the
page with the layout markup stripped out.

Listing 2-25. Web Controls on the ShowException.aspx Page

<asp:GridView ID="gridExceptionChain" runat="server" AutoGenerateColumns="False">
 <Columns>
 <asp:TemplateField HeaderText="">
 <ItemTemplate>
 <a href='ShowException.aspx?ExceptionID=<%#Eval("ExceptionID")%>'>View
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Date">
 <ItemTemplate>
 <%#Eval("ExceptionDate")%>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Type">
 <ItemTemplate>
 <%#Eval("ExceptionType")%>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Message">
 <ItemTemplate>
 <%#Eval("ExceptionMessage")%>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

<asp:Button runat=server ID=btnDelete Text="Delete Exception Chain" />

<asp:Label runat=server ID=lblExceptionID />

<asp:Label runat=server ID=lblPage />

<asp:Label runat=server ID=lblExceptionDate />

<asp:Label runat=server ID=lblExceptionType />

<asp:Label runat=server ID=lblMessage />

<asp:Label runat=server ID=lblMachineName />

<asp:Label runat=server ID=lblUserID />

<asp:Label runat=server ID=lblUserAgent />

<asp:Label runat=server ID=lblQueryStringData />

<asp:Label runat=server ID=lblFormData />

<asp:Label runat=server ID=lblStackTrace />

6293_ch02.fm Page 87 Friday, November 11, 2005 2:43 PM

88 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

Most of the page consists of Label controls that display detailed exception information. At
the top of the page, however, there is a GridView control named gridExceptionChain that is very
similar to one displayed on the ShowExceptionList.aspx page. It displays all the exceptions in
the exception chain, highlights the position of the current exception in the chain (the high-
lighting is done in the code-behind file), and allows you to jump to another exception in the
chain from a View link. A button is also on the form named btnDelete that allows you to delete
all the exceptions in a chain. Figure 2-7 shows the ShowException.aspx page as it appears in the
browser.

Figure 2-7. Exception details from ShowException.aspx

Following is the code-behind file for the markup that determines which exception to show
based on the query string value, acquires that data from the database, and displays it on the
page:

Imports SqlExceptionLogging
Imports System.Data.SqlClient
Imports System.Configuration.ConfigurationManager

Partial Class ShowException
 Inherits System.Web.UI.Page

 '***
 Private ExLog As ExceptionLog

6293_ch02.fm Page 88 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 89

 '***
 Private ReadOnly Property ExceptionID() As Integer
 Get
 If IsNumeric(Request.QueryString("ExceptionID")) Then
 Return CInt(Request.QueryString("ExceptionID"))
 Else
 Return 0
 End If
 End Get
 End Property

 '***
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Dim ExChain As ExceptionLogCollection
 Dim dbConn As New SqlConnection(_
 ConnectionStrings("Chapter02").ConnectionString)

 dbConn.Open()

 'Acquire Exception
 ExLog = New ExceptionLog
 ExLog.LoadByID(ExceptionID, dbConn)

 'Acquire Exception Chain
 ExChain = New ExceptionLogCollection
 ExChain.LoadChain(ExLog.ChainID, dbConn)

 dbConn.Close()

 'Populate Form Data
 Me.lblExceptionDate.Text = Format(ExLog.ExceptionDate, "MM/dd/yyyy")
 Me.lblExceptionID.Text = ExLog.ExceptionID.ToString
 Me.lblExceptionType.Text = ExLog.ExceptionType
 Me.lblFormData.Text = ExLog.FormData.Replace(ControlChars.CrLf, "
")
 Me.lblMachineName.Text = ExLog.MachineName
 Me.lblMessage.Text = ExLog.ExceptionMessage
 Me.lblPage.Text = ExLog.Page
 Me.lblQueryStringData.Text =
 ExLog.QueryStringData.Replace(ControlChars.CrLf, "
")
 Me.lblStackTrace.Text = ExLog.StackTrace.Replace(ControlChars.CrLf, "
")
 Me.lblUserAgent.Text = ExLog.UserAgent
 Me.lblUserID.Text = ExLog.UserID

6293_ch02.fm Page 89 Friday, November 11, 2005 2:43 PM

90 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

 'Bind Chain Information
 Me.gridExceptionChain.DataSource = ExChain
 Me.gridExceptionChain.DataBind()

 End Sub

 '***
 Protected Sub gridExceptionChain_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
 Handles gridExceptionChain.RowDataBound

 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim rowData As ExceptionLog = DirectCast(e.Row.DataItem, ExceptionLog)
 If rowData.ExceptionID = ExLog.ExceptionID Then
 e.Row.Style.Add("background-color", "#FFFF99")
 End If
 End If

 End Sub

 '***
 Protected Sub btnDelete_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnDelete.Click

 Dim dbConn As New SqlConnection(_
 ConnectionStrings("Chapter02").ConnectionString)

 dbConn.Open()
 ExLog.DeleteChain(dbConn)
 dbConn.Close()
 Response.Redirect("ShowExceptionList.aspx")

 End Sub

End Class

Page Variables

When the page loads, it acquires an ExceptionLog object for the requested ExceptionID so it can
populate the form with data. The btnDelete_Click event handler also requires an ExceptionLog
object for the requested ExceptionID. Instead of reloading the data, you simply store the refer-
ence in a page-level variable, ExLog, so the same object can be referenced in both methods.

ExceptionID Property

Both the ExceptionLog and ExceptionLogCollection classes expect the ExceptionID to be
passed in as an integer value, but the value passed in along the query string is a string represen-
tation of an integer. The read-only ExceptionID property parses the integer out of the string

6293_ch02.fm Page 90 Friday, November 11, 2005 2:43 PM

C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T 91

and returns the expected Integer value. It also does some checking to make sure that an excep-
tion does not occur if someone places gibberish in the query string.

Page_Load Method

The Page_Load method is responsible for connecting to a database, retrieving exception infor-
mation, and populating the web form with that exception information. It begins by declaring a
new ExceptionLogCollection named ExChain, and then creates and opens a database using the
“Chapter02” connection string defined in Web.config.

After connecting to the database, Page_Load assigns the ExLog a new ExceptionLog object,
and then populates the object using the LoadByID method. Notice that it passes in the open
database connection and the value integer value from the ExceptionID property into the
LoadByID method. After loading the exception object from the database, the page has access to
ChainID of the exception. So, the page loads the exception chain information into the ExChain
variable by passing the open database connection and ChainID to the LoadChain method.

After the Page_Load method has the exception and exception chain information, it closes
the database connection and populates the form with the appropriate exception information
values. Notice that it replaces the line breaks in the QueryStringData, FormData, and StackTrace
properties with
 tags so they display appropriately on the page. Also notice that it data
binds the gridExceptionChain GridView to the ExceptionLogCollection stored in ExChain. This
causes the grid to display all the exception chain information on the form.

gridExceptionChain_RowDataBound

Earlier you read that the ShowException.aspx page highlights the current exception in
the exception chain so the user can easily determine its position. That highlighting occurs in
the gridExceptionChain_RowDataBound method, which fires each time a row of data is added
to the grid.

This method starts by checking to see if the current row being data bound is a data row. If
not, the method does nothing because it only needs to look at rows that contain data. If it is a
data row, then the method acquires a reference to the row’s data item. It then compares the
ExceptionID from the row’s data item to the ExceptionID of the ExLog variable, which contains
a reference to the currently selected exception. If the two numbers match, then the row is
highlighted.

btnDelete_Click

This method opens up a database connection, deletes the exception chain, closes the data-
base, and then redirects the user back to the ShowExceptionList.aspx page. This effectively
deletes the current exception as well as all other related exceptions in the exception chain.

Summary
Exception management should be a high priority on your project checklist because it has the
potential to impact a variety of different areas. When your application handles routine excep-
tions without missing a step, it builds user confidence in the application and in you as the
developer of the application. It can also save time and money because you end up getting
fewer calls from users with system issues that need to be addressed. Exception management

6293_ch02.fm Page 91 Friday, November 11, 2005 2:43 PM

92 C H A P T E R 2 ■ E X C E P T I O N M A N A G E M E N T

can also help smooth out the development, testing, and maintenance phases by continually
capturing and logging exceptions as they occur.

In this chapter, you reviewed basic exception-handling techniques, built custom excep-
tion classes, created custom error pages, and implemented global error handling. You also got
a general overview of logging exceptions and storing them in a database, which you can apply
to other technologies, such as third-party exception-handling and logging tools. As your next
step, consider downloading and learning a specific exception-management tool so you can
use it in your next project.

6293_ch02.fm Page 92 Friday, November 11, 2005 2:43 PM

93

■ ■ ■

C H A P T E R 3

Master Pages, Themes, and
Control Skins

A

ppearance matters. Whether you like it or not, people make decisions about how well they
like your application and how well they think it works based on its visual appearance. Web
applications exhibiting a consistent look and feel exude professionalism and instill confidence
in users that the application is well built and reliable. People naturally conclude that the atten-
tion to the visual design is on par with that of the functional capabilities of the application.
First glances aside, consistency also enhances the user experience because people feel most
comfortable when they are in a familiar environment. By creating a consistent location for
certain page elements, users will inherently know how to get around in your application even
when accessing pages to which they are not normally accustomed. My favorite news site, for
example, always lists the news categories and stories in a menu structure on the left hand side
of every page. No matter where I am on their site, I have the comfort of knowing that I can navi-
gate to a different news category or story using that menu.

Aside from the CSS (Cascading Style Sheet) support inherent in HTML, ASP.NET 1.x did
not have any features to help you maintain a consistent look and feel throughout your applica-
tion. ASP.NET 2.0 remedies that shortcoming with the introduction of Master Pages, themes,
and control skins. Master Pages, a much needed and highly anticipated feature, allow you to
define and maintain page layouts and common page content from a single file. Themes enable
you to apply different CSS and control skins to your application. Control skins allow you to
apply properties to specific ASP.NET controls throughout the entire application.

This chapter briefly covers each technology and how to use it in your applications. Here is
an outline of what you’ll find inside:

•

Master Page:

 Demonstrates how you can use Master Pages to create page templates to
control the look, feel, and layout of pages in your application.

•

Themes and Control Skins:

 Discusses how to create and apply different visual styles to
your application using CSS and control skins.

Master Pages are, by far, the most popular of these new additions to ASP.NET 2.0, so we’ll
begin by taking a look at them and how they can really simplify development.

6293_ch03.fm Page 93 Friday, November 11, 2005 2:45 PM

94

C H A P T E R 3

■

 M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

Master Pages

One of my current projects truly exemplifies the need for Master Pages. We are building an article-
management system for an online publisher whose existing site is managed entirely in static
HTML. All the pages on the static site look very professional because the layouts, fonts, colors, and
other visual styles are consistent across all the pages. The problem is that they achieved that consis-
tency by copying the base HTML layout into each and every page. As a result, any changes to the
site layout have to be made on hundreds of individual pages to maintain consistency.

Master Pages allow you to control the look, feel, and behavior of multiple pages in your
application from a single location. In a Master Page, you define the basic page layout using
HTML and ASP.NET controls and the behavior using server-side code. Building a Master Page
is, for the most part, just like working with any standard ASP.NET web form. The most notable
difference is that you can add

ContentPlaceHolder

 controls to a Master Page. A

Content

➥

PlaceHolder

 control defines a region where you can inject content into the Master Page. All
other content on the Master Page is locked, so the

ContentPlaceHolder

 controls represent the
only locations where content differs from page to page. Pages that employ Master Pages define

Content

 controls that contain the page content. ASP.NET processes requests for these pages by
injecting the

Content

 controls on the page into the appropriate

ContentPlaceHolder

 controls on
the Master Page at runtime. Figure 3-1 depicts the process.

Figure 3-1.

 Injecting page content into a Master Page

6293_ch03.fm Page 94 Friday, November 11, 2005 2:45 PM

C H A P T E R 3

■

 M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

95

Creating a Master Page

You add new Master Pages to your application by right-clicking on the web project in the Solu-
tion Explorer and selecting the

Add New Item

 option from the context menu. Alternatively, you
can select

Website

➤

Add New Item

 in the Visual Studio IDE. Either way, Visual Studio displays
the

Add New Item

 dialog box (Figure 3-2), which allows you to select the type of item you want
to add to your project. Select the

Master Page

 item from the list and enter a name for the new
Master Page in the

Name

 text box. Like a normal ASP.NET page, you can put the server-side
code for the Master Page directly in the markup file or in a code-behind file. If you want to use
a code-behind file, make sure you check the

Place code in separate file

 option. Click the

Add

button and Visual Studio adds the appropriate files to your web application.

Figure 3-2.

 Visual Studio’s Add New Item dialog box

After Visual Studio adds the Master Page to your application, you can interact with it in the
editor as though it was a normal page. You can add HTML, styles, JavaScript, and web controls
to the page and even create server-side code to respond to page and control events. As you
design the Master Page, you’ll run across sections that should contain page-specific content.
When you do, drop in a

ContentPlaceHolder

 control so you can inject page content into the
Master Page at that location.

As an example, let’s say you are creating an intranet application for the Bravo Corporation,
a fictitious organization that makes things and then sells them to people. All the pages in the
application need to have the same header and layout, but the content for each page is
different. A Quick Links section in the subheader displays important links that are relevant to
the current page. In other words, the page content and the quick links change from page to
page, but the heading and overall page layout should be consistent across all pages. Figure 3-3
shows an example of the page layout.

6293_ch03.fm Page 95 Friday, November 11, 2005 2:45 PM

96

C H A P T E R 3

■

 M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

Figure 3-3.

 Bravo Corp page layout

Following is the markup required to make a Master Page for the layout shown in Figure
3-3. All the code specific to the Master Page content is shown in bold, and the various sections
of the page are delineated by HTML comments (

<!-- Comment -->

). Also a couple of CSS styles
are used in the Listing 3-1 HTML that can be found in the

/App_Themes/Default/Default.css

file in the sample application.

Listing 3-1.

 Master Page Example

<%@ Master Language="VB" CodeFile="Bravo.master.vb" Inherits="Bravo" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="PageHeading" runat="server">
 <title>Bravo Company</title>
</head>
<body topmargin=0 bottommargin=0 leftmargin=0 rightmargin=0>
 <form id="formMain" runat="server">
 <table style="width:100%;" border=0 cellpadding=0 cellspacing=0>

 <!--Header Section -->
 <tr>
 <td class="PageHeading">Bravo Corp Employee Website</td>
 </tr>

6293_ch03.fm Page 96 Friday, November 11, 2005 2:45 PM

C H A P T E R 3

■

 M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

97

 <!--Sub-Header Section -->
 <tr>
 <td class="PageSubHeading">
 <table style="width:100%;" cellpadding=0 cellspacing=0>
 <tr>
 <td align=left class="TagLine">
 We make things and then sell them to people!
 </td>
 <td align=right class="TagLine">

 <asp:contentplaceholder id="QuickLinks" runat="server">
 </asp:contentplaceholder>

 </td>
 </tr>
 </table>
 </td>
 </tr>

 <!-- Main Body Section -->
 <tr>
 <td>
 <table cellpadding=5>
 <tr>
 <td>

 <asp:contentplaceholder id="MainContent" runat="server">
 </asp:contentplaceholder>

 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

At the top of the Master Page, the

<%@ Master %>

 directive tells ASP.NET how to handle the
page. Visual Studio generates this section for you automatically. Know, however, that it is
almost identical to the

<%@ Page %>

 directive.
Inside the page markup, you’ll find two

ContentPlaceHolder

 controls: one in the
subheader section and one in the main body section. The one in the subheader is named

QuickLinks

and allows you to inject links into the subheader area; the second one in the main
body section is named

MainContent

 and allows you to create the body of the page. Next, you’ll
see how to create a content page that uses a Master Page.

6293_ch03.fm Page 97 Friday, November 11, 2005 2:45 PM

98

C H A P T E R 3

■

 M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

Creating Content Pages

Any page that uses a Master Page is known as a

content page

. You add new content pages to
your application using the

Add New Item

 dialog box as described earlier with Master Pages.
But, instead of selecting Master Page from the list of items, you select the

Web Form

 item (see
Figure 3-4). After you select Web Form, follow these steps to create a content page:

1.

Specify the page name in the

Name

 text box.

2.

Check the

Place code in a separate file option

 if you want to use a code-behind file.

3.

Make sure you check the

Select Master Page

 option. This tells the Add New Item dialog
box that the new page is a content page that requires the uses a Master Page.

4.

Click the

Add

 button.

Figure 3-4.

 Add New Item dialog box showing the Select master page check box

After you click on the

Add

 button, Visual Studio displays the

Select a Master Page

 dialog
box as shown in Figure 3-5. This dialog box displays your application folder structure and
allows you to select which Master Page you want to use for the new page. As you select directo-
ries on the left side of the dialog box, Master Pages in that folder appear on the right-hand side.
When you locate the one you want to use, click to select it and then click the

OK

 button.

6293_ch03.fm Page 98 Friday, November 11, 2005 2:45 PM

C H A P T E R 3

■

 M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

99

Figure 3-5.

 The Select a Master Page dialog box

After you click the

OK

 button, Visual Studio creates a new content page with the appropriate

<@% Page %>

 directive parameters that define which Master Page the content page uses. It also auto-
matically creates

Content

 controls that match up with the

ContentPlaceHolders

 in the Master Page.

Content

 controls have a property named

ContentPlaceHolderID

, which identifies the

Content

➥

PlaceHolder

 control on the Master Page where the content should be injected. Listing 3-2 shows
the content page generated by Visual Studio for use with the Master Page shown earlier.

Listing 3-2.

 Content Page

<%@ Page Language="VB"

MasterPageFile="~/MasterPageExamples/Bravo.master"

 AutoEventWireup="false" CodeFile="ContactList.aspx.vb" Inherits="ContactList"
 title="Untitled Page" %>

<asp:Content ID="Content1"

ContentPlaceHolderID="QuickLinks"

 Runat="Server">
</asp:Content>

<asp:Content ID="Content2"

ContentPlaceHolderID="MainContent"

 Runat="Server">
</asp:Content>

Notice the

MasterPageFile

 property in the

<@% Page %>

 directive at the top of the code
listing. This property points to the Master Page file that the page should use in conjunction
with its content. Also note that the page does not contain any standard

<HTML>

 or

<BODY>

 tags
normally found in a page. Instead, it has two

Content

 controls. You cannot specify any HTML
or web controls for a content page outside of a

Content

 control, although you do have free reign
inside the

Content

 control. Finally, observe that the

ContentPlaceHolderID

 values in the

Content

 controls match up with the

ID

 values for the

ContentPlaceHolder

 controls from the
Master Page. If you accidentally specify a nonexistent

ContentPlaceHolderID

 value, then you
should receive an error in the task list. Your project will still build successfully, but if you run
the page, it will throw an exception.

6293_ch03.fm Page 99 Friday, November 11, 2005 2:45 PM

100

C H A P T E R 3

■

 M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

Returning to the example, let’s say that you wanted to create a company contact list using
the Master Page discussed earlier. The main content should include the names and extensions
of the people in the company. The Quick Links section should contain a link to the Phone
System Help page and a link to an Update My Contact Info page. The content page markup
would look like Listing 3-3.

Listing 3-3.

 ContactList.aspx Example Content Page

<%@ Page Language="VB"

MasterPageFile="~/MasterPageExamples/Bravo.master"
 AutoEventWireup="false" CodeFile="ContactList.aspx.vb" Inherits="ContactList"
 title="Company Contact List" %>

<asp:Content ID="Content1" ContentPlaceHolderID="QuickLinks" Runat="Server">
 Phone System Help |
 Update My Contact Info
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" Runat="Server">
 <div style="width:400px;">
 Welcome to the employee directory page. You can find a list of
 phone numbers in the table below. Have fun calling people!

 </div>
 <table cellpadding=5 style="border:1px solid black;">
 <tr style="font-weight:bold; color:White; background-color:DarkBlue;">
 <td>Name</td><td>Extension</td>
 </tr>
 <tr><td>Anderson, Ty</td><td>x 5891</td></tr>
 <tr><td>Armstrong, Teresa</td><td>x 1212</td></tr>
 <tr><td>Haynes, Tim</td><td>x 2911</td></tr>
 <-- etc -->
 </table>
</asp:Content>

As you can see, only content is specified in the ContactList.aspx content page. No layout,
no header, and no subheading are defined in the content page. When ASP.NET renders the
page, it injects the content into the Master Page, and the final result looks like Figure 3-6.

6293_ch03.fm Page 100 Friday, November 11, 2005 2:45 PM

C H A P T E R 3 ■ M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S 101

Figure 3-6. ContactList.aspx displayed in the browser

Accessing Master Pages from Content Pages
Many scenarios occur in which a content page may need access to controls or functionality in
the Master Page. You can do this via the Master property of the Page object. Every ASP.NET
page stores a reference to its Master Page in the Master property. If the page does not use a
Master Page, then the reference is set to Nothing. By default, the Master property is a MasterPage
type. This allows you to access any method or property normally found in the MasterPage base
class from which all Master Pages ultimately inherit.

One of the most useful methods on the Master property is the FindControl method, which
reaches up into the Master Page to look for controls. For example, if you have a Label control
defined on your Master Page named lblTitle, then you can acquire a reference to that Label
control by using Master.FindControl(“lblTitle”) and then casting the control returned to a
Label control. This allows you to set controls in the Master Page based on logic from the
content page.

Another useful tactic for interacting with the Master Page is to strongly type the Master
property using the <@% MasterType %> directive. To do this, just add the <@MasterType> directive
below the <%@ Page %> directive and point the VirtualPath at the Master Page file:

<%@ Page Language="VB" MasterPageFile="~/MasterPageExamples/Bravo.master"
 AutoEventWireup="false" CodeFile="ContactList.aspx.vb" Inherits="ContactList"
 title="Company Contact List" %>
<%@ MasterType VirtualPath="~/MasterPageExamples/Bravo.master" %>

Strongly typing the Master property gives you direct access to public methods and properties
defined in that Master Page without having to cast it from a MasterPage into the target type. For
example, let’s say that you have a Master Page with a menu on the left-hand side. All pages use
the exact same menu, so you define it directly in the Master Page. Some pages, however, do not
use the menu at all, so you want to hide it on those pages. As such, you create a public function
named HideMenu on the Master Page. The method simply sets the visible property on the menu

6293_ch03.fm Page 101 Friday, November 11, 2005 2:45 PM

102 C H A P T E R 3 ■ M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

section to false to hide it from view. If you do NOT strongly type the Master property, then you
end up having to cast the Master property before you can use the public method you defined:

DirectCast(Master, ASP.Bravo_Master).HideMenu()

■Note You can access Master Page and user control resources for the page via the ASP namespace.

When you strongly type the Master property, you can simply call the method without resorting
to any casting:

Master.HideMenu()

This makes working with and reading the code a bit easier. As an added benefit, strongly typing
the Master property gives you full IntelliSense support for the methods and properties speci-
fied in the Master Page.

Defining a Default Master Page for Your Application
All content pages usually specify which Master Page they use via the MasterPageFile property
in the <%@ Page %> directive. If you leave it off, ASP.NET throws an error when you access the
page and informs you that Content controls can only be used in conjunction with a Master
Page. There is one exception to that rule. You can define a default Master Page in web.config in
the <pages> element as shown in Listing 3-4.

Listing 3-4. Default Master Page Defined in Web.config

<configuration>
 ...
 <system.web>
 ...
 <pages theme="Default" masterPageFile="~/MasterPageExamples/Bravo.master" />
 ...
 </system.web>
</configuration>

When you specify a default Master Page in Web.config, all the content pages without a
masterPageFile value defined in the <%@ Page %> directive default to the Master Page in
Web.config. You can use this feature to help manage which Master Pages your application uses
from a single location.

■Note ASP.NET only applies the default Master Page to content pages that do not have a Master Page
explicitly defined in the <%@ Page %> directive. ASP.NET is also smart enough to check that the page is a
content page (that is, it contains Content controls) before applying the default Master Page setting. You can
still have normal pages in your application that do not use Master Pages even if you set a default Master Page.

6293_ch03.fm Page 102 Friday, November 11, 2005 2:45 PM

C H A P T E R 3 ■ M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S 103

Changing Master Pages in Code
You can programmatically change the Master Page in code using the MasterPageFile property
on the Page object; however, there are a few limitations when using this approach. First, you
can only set the MasterPageFile property during the PreInit event. Attempting to change the
Master Page past this point results in a runtime exception. Second, the Master Page that you
specify in code must have ContentPlaceHolder controls whose ID properties match up with the
ContentPlaceHolderID properties for the Content controls defined in the content page. If they
don’t, an exception is thrown.

Remember, this is how a content page determines where to inject content into the Master
Page. Listing 3-5 demonstrates how to set the Master Page in code.

Listing 3-5. Setting the Master Page in Code

'***
Protected Sub Page_PreInit(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreInit
 Page.MasterPageFile = "Delta.master"
End Sub

Nested Master Pages
ASP.NET allows you to create nested Master Pages. In other words, you can specify a Master
Page for a Master Page. One scenario in which this may be useful is creating a corporate
intranet for a company with multiple departments or divisions. You can control the overall
look and feel for the company using one Master Page, and you can control the overall look and
feel for a department using a nested Master Page.

Listing 3-6 is the markup for the BravoSales.master file, an example nested Master Page
that defines the look and feel for pages in the Bravo Corporation’s Sales Department. It uses
the Bravo.master file for the overall corporate look and feel. Figure 3-7 demonstrates how
nested Master Pages allow you to inherit the look and feel of one Master Page into another.

Listing 3-6. BravoSales.master Example

<%@ Master MasterPageFile="~/MasterPageExamples/Bravo.master" Language="VB"
 CodeFile="BravoSales.master.vb" Inherits="BravoSales" %>
<%@ MasterType VirtualPath="~/MasterPageExamples/Bravo.master" %>

<asp:Content ID="Content1" ContentPlaceHolderID="QuickLinks" Runat="Server">
 Sales Dept. Home
 <asp:ContentPlaceHolder runat=server ID="SalesQuickLinks" />
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" Runat="Server">
 The Sales Department!<hr />
 <asp:ContentPlaceHolder runat=server ID="SalesMainContent" />
</asp:Content>

6293_ch03.fm Page 103 Friday, November 11, 2005 2:45 PM

104

C H A P T E R 3

■

 M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

Figure 3-7.

 Nested Master Pages

Creating a nested Master Page is virtually identical to creating a content page, but instead
of using a

<%@ Page %>

 directive, you use a

<%@ Master %>

 directive. You still specify the Master
Page using the

MasterPageFile

 property, you can still strongly type the Mater Page using the

<%@ MasterType %>

 directive, and the

Content

 controls still have to specify the appropriate

ContentPlaceHolderID

 so ASP.NET knows where to inject the content into the Master Page. The
main difference is that you can define any number of new

ContentPlaceHolders

 in the nested
Master Page, which you can then use in subsequent content pages.

■

Caution

Visual Studio.NET 2005 (Beta 2) does not support visual editing of content pages that uses nested

Master Pages. If you strongly prefer the graphical editor, then you may want to avoid using nested Master Pages.

6293_ch03.fm Page 104 Friday, November 11, 2005 4:37 PM

C H A P T E R 3 ■ M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S 105

Themes and Control Skins
Themes allow you to control the look and feel of your entire web application using CSS and
control skins. If you have worked with web applications in the past, then you know that CSS
styles control the way HTML elements appear in the browser by defining visual and behavioral
properties. Control skins are, in many respects, style sheets for ASP.NET controls. Instead of
hard-coding visual information into each ASP.NET control in your application, now you can
create a control skin that defines how you want that control to appear throughout your entire
application. When that type of control is rendered by the ASP.NET runtime, the control skin
dictates property settings on that control that govern its visual appearance.

Creating a Theme
To add a theme to your web application, right-click on your web project and select Theme
Folder from the Add Folder context menu. This adds an App_Themes folder to your application
as well as a subfolder called Theme1, although you should change this name to something more
meaningful to your application.

Each theme in your application requires a new subfolder under the App_Themes folder, and
you can add a new theme by selecting Theme Folder from the Add Folder context menu. If you
want a theme called Bluish Haze, then you would add a new subfolder named “Bluish Haze” to
the Themes folder. If you wanted a theme called GreenTheme, then you would name the folder
“GreenTheme.” You get the idea. After you create the folder, you then need to create any
control skin files for your theme and, optionally, the theme’s CSS. Figure 3-8 shows an example
of a Themes file structure with CSS and control skin files.

Figure 3-8. Themes folder showing control skins and CSS.Note that the .css file names match the
folder names.

Adding a Cascading Style Sheet to Your Theme
After you have created your theme’s folder, you can create a CSS for your theme. To do so,
right-click on your theme’s folder and select Add New Item from the context menu. Select the
Style Sheet template from the template list and name your style sheet using the same name as
your theme. If you are creating a style sheet for the GreenTheme, then name your style sheet
GreenTheme.css. You can then edit the style sheet and add any necessary style definitions and
classes that you may need.

6293_ch03.fm Page 105 Friday, November 11, 2005 2:45 PM

106 C H A P T E R 3 ■ M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

■Note You are not required to create a CSS for your theme. In fact, you can have a completely blank theme
that does not have a style sheet or any control skins if you want your page to render without any CSS styles
or ASP.NET properties to be applied to the page.

When you specify a theme for a page, the page is required to have a <head RunAt=server>
tag. ASP.NET automatically places a <link> tag in the head section that points to the CSS
for your theme, assuming that you have one specified. If the page does not have a <head➥
RunAt=server> tag, then an exception is thrown.

Creating Control Skins for Your Theme
As mentioned before, control skins are like style sheets for ASP.NET. You define control skins
inside .skin files that reside in the various themes folders in your application. You can lump all
your control skins into a single file, or you can create a series of .skin files to hold different
control skins. It is mostly a matter of organizational preference. If you decide to use multiple
.skin files, then the naming convention is normally

[ControlName].skin

Thus, the control skin file for Textbox controls should be named TextBox.skin, and the
skin file for Label controls should be called Label.skin. The sample application uses the indi-
vidual file-naming method.

To create a skin file for a TextBox control, follow these steps:

1. Right-click on your theme’s folder, and then select the Add New Item button from the
context menu.

2. When the Add New Item dialog box appears, select Skin File from the list of templates,
and name it TextBox.skin.

3. Click the Add button. The TextBox.skin file appears in the Solution Explorer and opens
in the Visual Studio IDE.

Creating the content for a skin file is as easy as defining a control on a web form. Following
is an example of a TextBox control skin:

<asp:TextBox Runat="Server" BackColor="Gainsboro" Font-Bold="True"
 BorderStyle="Solid" BorderColor="Green" BorderWidth="1px"
 ForeColor="DarkGreen" Font-Italic="False" />

The control skin content is similar to any TextBox definition you would see on a web form,
but notice there is no ID or Text property specified. You don’t specify the Text property
because the Text value changes from one control the next so you do not want to specify a
global value. If you specify an ID property in the .skin file, the application will not compile.
When ASP.NET encounters a server control while rendering a page with themes, it determines
whether there is a control skin for that control type in the appropriate theme folder. If one is

6293_ch03.fm Page 106 Friday, November 11, 2005 2:45 PM

C H A P T E R 3 ■ M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S 107

found, it reads the skin information and automatically maps any of the properties specified in
the skin file onto the control it is rendering. So, if you have a TextBox control defined in your
application that looks like this:

<asp:Textbox Runat="Server" ID="MyTextbox" Text="My Text Value" />

It will be rendered as though it was defined like this:

<asp:TextBox Runat="Server" ID="MyTextbox" Text="My Text Value"
 BackColor="Gainsboro" Font-Bold="True" BorderStyle="Solid"
 BorderColor="Green" BorderWidth="1px" ForeColor="DarkGreen"
 Font-Italic="False" />

Notice that the only properties from the actual definition are the ID and the Text proper-
ties, all the other properties come from the skin file.

■Caution If you have a property defined in both a control and in the skin file, the skin file property over-
writes the property on the control. This is in stark contrast to the way CSS files work, so you need to be
conscious of it, especially if you are used to working with CSS files.

Disabling Control Skins
Whenever ASP.NET encounters a control, it tries to apply the applicable control skin. Some-
times, however, you’ll have a control you do not want the skin to apply to. In these instances,
you just have to set the EnableTheming property to False on the control. When ASP.NET
encounters a control with the EnableTheming property set to False, it does not attempt to apply
any skin to the control. For example, ASP.NET does not attempt to skin the following control:

<asp:TextBox Runat="Server" ID="MyNonSkinnedTextBox" EnableThemeing="False"/>

Creating Named Control Skins for Your Theme
At times, you’ll also want to apply a skin to a control, but you want it to be different than the
skin you already have defined. That’s when named control skins come into play. Named
control skins are defined in the same file as control skins, so you can have one control skin and
multiple named control skins in a single .skin file. Following is an example of a TextBox skin
file that contains both a control skin and a named control skin:

<asp:TextBox Runat="Server" BackColor="Gainsboro" Font-Bold="True"
 BorderStyle="Solid" BorderColor="Green" BorderWidth="1px"
 ForeColor="DarkGreen" Font-Italic="False" />

6293_ch03.fm Page 107 Friday, November 11, 2005 2:45 PM

108 C H A P T E R 3 ■ M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

<asp:TextBox Runat="Server" SkinID="MultiLine" Height="75px" Width="300px"
 BackColor="Gainsboro" Font-Bold="True" BorderStyle="Solid"
 BorderColor="Green" BorderWidth="1px" ForeColor="DarkGreen"
 Font-Italic="False" />

The first section of the code contains the control skin for a TextBox. The second section
contains a named control skin. You can tell the second item is a named control skin because it
contains a SkinID property to “name” it. Also notice that it specifies a height and width to prop-
erly display multiline text boxes (hence the name MultiLine). If you have a multiline text box
that needs to use this skin, it would be defined as follows:

<asp:TextBox Runat="Server" ID="MyMultiLineTextBox" SkinID="MultiLine"
 TextMode="MultiLine" />

When ASP.NET encounters this control, it looks for a TextBox control skin specifically
named MultiLine in the appropriate theme folder. If it cannot find the MultiLine named skin
in the folder, then no skin is applied. Not even the unnamed control skin for the control type.

Applying Themes to Specific Pages or the Entire Application
You can apply a specific theme to a page using the Theme parameter of the Page directive. In the
following example, the GreenTheme theme is applied to the page:

<%@ Page Language="VB" CompileWith="ThemeDemo.aspx.vb" ClassName="ThemeDemo_aspx"
title="Theme Demo" EnableViewState="False" Theme="GreenTheme" %>

If you want to apply a theme to every page in your entire application, then you can use
Web.config to specify a theme. This is accomplished via the theme property of the <pages>
element:

<configuration>
 ...
 <system.web>
 ...
 <pages theme="GreenTheme" />
 ...
 </system.web>
</configuration>

On the off chance that one of the pages in your application needs a different theme than
the one specified in the Web.config file, you can override Web.config by specifying a theme in
the Page directive, as described earlier. It has precedence over Web.config.

Programming with Themes
Another option for setting the theme for a page is to do it programmatically. The Page class
exposes a property called Theme you can use to set the page’s theme in code. Like the Master➥

PageFile property, you can only set the Theme property during the PreInit event. If you attempt
to change it after the PreInit event, an exception is thrown.

6293_ch03.fm Page 108 Friday, November 11, 2005 2:45 PM

C H A P T E R 3

■

 M A S T E R P A G E S , T H E M E S , A N D C O N T R O L S K I N S

109

Following is an example of how to programmatically set a page’s theme. It assumes the
appropriate theme name is passed in as a parameter in the query string.

Private Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.PreInit
 Page.Theme = Request.QueryString("Theme")
End Sub

Summary

Using a consistent look and feel throughout your application helps build the perception that it
is well built, well thought out, and reliable. Before ASP.NET 2.0, however, maintaining a consis-
tent look and feel was difficult because there was no formal structure for making global layout,
behavior, and visual changes aside from the inherent support for CSS in HTML. The introduc-
tion of Master Pages, themes, and control skins gives you a distinct advantage in terms of
global site maintenance. As you use them on projects, you’ll find they are major time-savers.

6293_ch03.fm Page 109 Tuesday, November 15, 2005 2:25 PM

6293_ch03.fm Page 110 Friday, November 11, 2005 2:45 PM

111

■ ■ ■

C H A P T E R 4

Developing Reusable
Components: The Skinned
Page-Message Control

B

uilding an application is a far easier task when you have the appropriate reusable compo-
nents at your disposal. Reusable components allow you to implement functionality more
easily, more accurately, and faster than you could by copying and pasting code from one place
to another or re-implementing it each time you need it. Plus, you have the added benefit of
updating a reusable component from a single location instead of having to rummage through
each page in your project to apply a fix. Before you begin a project, you should always take time
out with your project team to brainstorm a list of features in your application that can be
consolidated into reusable components, and you should budget time to implement those
components. You will find that although custom components take a big chunk out of your
initial development time, they save a lot more time in the long run.

Page messaging is a great example of functionality that you can easily consolidate into a
reusable component. All your applications should display informative messages back to the
user in response to successful or failed actions. Otherwise, you risk making your users
confused or frustrated, neither of which is very helpful. Confused users tend to break your
application. Frustrated users tend to hate your application. I had to deal with both when
working on a project in which page messaging was an afterthought instead of a priority. My
experience came while developing a worker’s compensation claims system for a governmental
institution. We were replacing an older application designed for single office use with a newer
application designed for the entire enterprise. Time was short and the budget was tight. Not an
ideal environment for developing a relatively ambitious workflow application. One of the
features that suffered most under this time constraint was page messaging.

Conceptually, outputting a message on the page is a fairly simple task. In fact, each
message should only take a single line of code to output. It becomes significantly more pains-
taking, however, if you do not have the right tools. Such was the case in this application.
Instead of taking the time to build a proper page-messaging control in the first place, we
decided to “save time” by slapping a label control into the application whenever we needed to
output a message. Thus, there was no standard location for messages, no consistent look and
feel for messages, no easy way to format messages, and no easy way to concatenate multiple
messages. Multiply those problems by the number of pages that required messaging, and you
can see why we spent more time battling with our “time-saving” method than we would have

6293_ch04.fm Page 111 Friday, November 11, 2005 2:52 PM

112

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

had we taken the time to build a full-featured control capable of gracefully handling all the
messaging tasks.

Obviously, lost development time was a result of the decision to forgo creating a page-
messaging control, but it was not the only one. Because the label-based messaging approach
was difficult for developers to code, messaging throughout the system was not implemented as
thoroughly as it should have been. Many times, confirmation messages were not displayed
after successful add or update operations. This confused some people and they figured the
update never occurred. As such, they simply reentered the information. In turn, this led to a
data duplication issue that hurt system usability. Another issue that we encountered was that
error messages were displayed when an error occurred, but the page did not automatically
scroll up to the error message. Because it was not visible on the page, users did not see the error
message and were left thinking the update succeeded when in fact it had failed. Users were
extremely frustrated when they attempted to access the data they entered only to find it was
not available.

After analyzing the situation, we went back and created a much more sophisticated page-
messaging control that automatically handled formatting, concatenation, and page scrolling.
Because it was well designed, we made it part of our standard project toolset, and it has been
saving us time and effort on every project since. This chapter contains information about
building reusable components for your application and discusses the new features ASP.NET
2.0 has for creating and using those controls. Here’s what you will find inside:

•

New Control Features in ASP.NET 2.0

: Describes the new design time rendering of

UserControls

 and global tag registration.

•

Developing Server Controls Using the Control State

: Demonstrates how to use the new
control state mechanism in your custom server controls by implementing a very simple
custom server control. This also acts as basic server control primer before you start
building the page-message control.

•

Building a Skinned Page-Message Control

: covers the design and implementation of a
page-message control you can reuse in projects to communicate messages with users.
This control uses a technique known as

skinning

 so you can change the visual display of
the control from project to project without ever having to modify the actual control
code. You’ll also learn the difference between skinning and the ASP.NET 2.0 control
skins discussed in the previous chapter as they are two separate and distinct concepts.

Let’s start by taking a look at some of the control-oriented features you’ll find in ASP.NET
2.0. We’ll then work our way into the more advanced topics.

New Control Features in ASP.NET 2.0

Visual Studio 2005 and ASP.NET 2.0 introduced a couple of new features that make it easier to
work with controls: the design-time rendering of user controls feature and the global tag regis-
tration feature. Design-time rendering of user controls, a much anticipated addition to Visual
Studio, allows page creators to actually see how a user control will be displayed in a page. The
new global tag registration feature means that you can create a single tag registration entry in

Web.config

 instead of having to add them over and over again to each page of your application.

6293_ch04.fm Page 112 Friday, November 11, 2005 2:52 PM

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

113

Design-Time Rendering of User Controls

User controls, which are like miniature web forms, have been around since the inception of
ASP.NET. You can create content for them, drop server controls in them, and even write code
to respond to page and control events. They are useful when you need to make a reusable
component specifically for a single application because they are simpler to create and use than
a full-blown server control.

User controls are stored in

.ascx

 files along with all the other files in your application.
Adding one to a page simply requires dragging the

.ascx

 file from the Solution Explorer onto
the form designer and dropping it wherever you want it to end up—equivalent to adding a
control from the toolbox. Visual Studio automatically creates the appropriate

Register

 direc-
tive and control tag for you.

In Visual Studio 2002 and 2003, the design-time rendering of a user control was, to be nice,
rather meek. Instead of seeing the HTML from your user control, you would see a gray box with
text inside identifying it as a user control and displaying the control’s ID (see Figure 4-1).
Considering the entire web form designer revolves around displaying HTML, this display
method seemed a bit strange.

Figure 4-1.

 User control displayed as gray box in Visual Studio 2003

Fortunately the issue has been rectified in Visual Studio 2005. Now when you create a user
control and add it to the page, the control appears in all its visual glory. This makes it much
easier to see how the final page will look when displayed in the browser. Figure 4-2 shows a
user control displayed in Visual Studio 2005.

Figure 4-2.

 User control displayed in Visual Studio 2005

Global Tag Registration

Whenever you drop a custom server control or a user control on one of your web forms, a tag
is added to your

.aspx

 page that looks similar to the following:

6293_ch04.fm Page 113 Friday, November 11, 2005 2:52 PM

114

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

<!-- Custom Server Control -->
<

msgControls:ControlStateExample

 ID="ExampleControl1" Runat="server" />

<!-- User Control -->
<

uc1:MyUserControl

 ID="MyUserControl1" Runat="server" />

The

TagPrefix

 and

TagName

 for each control appear in bold in the code snippet. The

TagPrefix

 appears before the colon and helps identify the library in which the control resides.
The

TagName

 appears after the colon and specifies which type of control the tag represents. For
the tag prefix to function, however, it needs to be defined. Before ASP.NET 2.0, the tag prefix
had to be registered on each page that wanted to use a custom server control or a user control.
The following is an example of these registrations:

<-- Custom Server Control -->
<%@ Register

TagPrefix="msgControls"

 Namespace="Messaging" Assembly="Messaging" %>

<-- User Control -->
<%@ Register

TagPrefix="uc1"

 TagName="MyUserControl"
 Src="UserControls/MyUserControl.ascx" %>

You can still use this syntax on the top of a page to register a tag prefix, if you want. Take
a look at the first

Register

 directive listed in the preceding, which is used to register a tag prefix
for a custom server control. Server controls reside in assemblies outside of your current
project, so ASP.NET needs to know the assembly and namespace in which the control can
be located. Thus, when ASP.NET runs into the tag

<msgControls:ControlStateExample />

,
it looks in the

MessageControls

 assembly in the

MessageControls

 namespace for the

ControlStateExample

 control.
The second

Registers

 directive is used to register the tag prefix and the tag name for a user
control. User controls reside in your current application, so instead of specifying an assembly
and namespace to point to the control, you need to specify the control’s source location. You
also need to specify a tag name for the control so ASP.NET can parse the tag appropriately.
Thus, when ASP.NET encounters the tag

<uc1:MyUserControl/>

, it knows to load the user
control located in

UserControls/MyUserControl.ascx

.
Now that you know how the

Register

 directive at the top of a page works, you can use that
same knowledge to create global tag registrations in

Web.config

. The syntax for doing so is
virtually identical to creating a tag prefix at the top of a web form:

<configuration>
 ...
 <system.web>
 ...
 <pages>
 <controls>
 <add tagPrefix="msgControls" namespace="Messaging" assembly="Messaging" />
 <add tagPrefix="uc1" tagName="Menu" src="~/UserControls/Menu.ascx"/>
 </controls>
 </pages>
 ...
 </system.web>
</configuration>

6293_ch04.fm Page 114 Friday, November 11, 2005 2:52 PM

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

115

After you declare these tags in

Web.config

, you no longer need to register them on the
pages where you want to use the controls they reference.

Developing Server Controls with the ControlState

Most developers who have worked with ASP.NET 1.x are familiar with the concept of the

ViewState

, the mechanism by which ASP.NET stores control and web form data between page
requests. The

ViewState

 has been both a blessing and a curse for developers the world over
because although it can greatly simplify the development process, it has a tendency, when left
unchecked, to bloat the size of a web page immensely.

In an effort to counter this tendency, many developers simply disable the

ViewState

 on
troublesome controls or on the entire page. Unfortunately, this can have unintended conse-
quences because the

ViewState

 contains two different types of data. One type is the “nice-to-
have” data that helps avoid requerying a database by storing lists or values in the

ViewState

.
This type of data is usually responsible for bloating the

ViewState

. The other is the “critical-
for-proper-control-functionality” data, which is necessary for making the control work appro-
priately. Before ASP.NET 2.0, there was no way to tell the difference between critical and nice-
to-have data, so disabling the

ViewState

 could easily render a control useless.
Enter the

ControlState

, ASP.NET 2.0’s storage mechanism for critical data. Any informa-
tion you store in the

ControlState

 is always available to the control, even when the

ViewState

is disabled. In the upcoming example, you’ll see how to use the

ControlState

 as you imple-
ment a very simple server control named

ControlStateExample

. All this control does is count
the number of times the page has been displayed. This allows you to explore the behavioral
differences between the

ControlState

 and

ViewState

 when you see the control in action.
As with any server control, you place the code for the

ControlStateExample

 in a web
control library project so you can reference it from your web application. The source code for
this control is also available in the Chapter 4 sample code, under the MessageControls web
control library project in the Source Code area of the Apress website (

http://www.apress.com

).

Building the ControlState Example Control

Because the source code for the

ControlStateExample

 is fairly brief, it’s shown here in its
entirety followed by a discussion of the relevant sections.

Imports System.Web.UI
Imports System.Web.UI.WebControls

< _
ToolboxData("<{0}:ControlStateExample runat=server></{0}:ControlStateExample>") _
> Public Class ControlStateExample
 Inherits WebControl

6293_ch04.fm Page 115 Friday, November 11, 2005 2:52 PM

116

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

 '***
 Public Property ViewStateCounter() As Integer
 Get
 If ViewState("ViewStateCounter") Is Nothing Then Return 0
 Return CInt(ViewState("ViewStateCounter"))
 End Get
 Set(ByVal value As Integer)
 ViewState("ViewStateCounter") = value
 End Set
 End Property

 '***
 Private ControlStateCounter As Integer = 0

 '***
 Protected Overrides Sub OnInit(ByVal e As System.EventArgs)
 MyBase.OnInit(e)
 Page.RegisterRequiresControlState(Me)
 End Sub

 '***
 Protected Overrides Function SaveControlState() As Object
 Return New Object() { _
 MyBase.SaveControlState(), _
 ControlStateCounter}
 End Function

 '***
 Protected Overrides Sub LoadControlState(ByVal savedState As Object)
 Dim StateArray() As Object = CType(savedState, Object())
 MyBase.LoadControlState(StateArray(0))
 ControlStateCounter = CInt(StateArray(1))
 End Sub

 '***
 Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)
 writer.WriteLine("<div>")
 writer.WriteLine("ViewState Counter: ")
 writer.WriteLine(ViewStateCounter)
 writer.WriteLine("
ControlState Counter:")
 writer.WriteLine(ControlStateCounter)
 writer.WriteLine("</div>")
 End Sub

6293_ch04.fm Page 116 Friday, November 11, 2005 2:52 PM

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

117

 '***
 Private Sub ControlStateExample_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ViewStateCounter += 1
 ControlStateCounter += 1
 End Sub

 '***
 Public Sub ClearCounters()
 ViewStateCounter = 1
 ControlStateCounter = 1
 End Sub

End Class

Class Definition

Like most other server controls, the

ControlStateExample

 class inherits most of its functionality
from the

WebControl

 class. This gives your control access to the

ViewState

,

ControlState

,

Server

,

Request

,

Response

, and

Page

 objects that you’ll need when writing your control.
Another notable piece of code is the

ToolboxData

 class attribute:

< _
ToolboxData("<{0}:

ControlStateExample

 runat=server></{0}:

ControlStateExample

>") _
> Public Class

ControlStateExample

When you drop a control from the toolbox onto the web form designer, Visual Studio auto-
matically adds the necessary HTML to your

.aspx file. The ToolboxData attribute helps Visual
Studio know how to format that HTML. The {0} is a placeholder for the tag prefix for your web
control library.

ViewStateCounter Property

ViewStateCounter is a classic ViewState-based property. Its Get section determines if the value
exists in the ViewState and, if not, returns a default value of 0. If the value is in the ViewState,
then it is converted to an Integer and returned. The Set section simply places the new property
value directly in the ViewState for future use. If the ViewState is disabled, then the value that is
left in the ViewState when the page is finished processing is not saved. Thus, when the page is
posted back, the ViewStateCounter reverts back to the default setting of 0.

ControlState Property Storage Variables

Unlike the ViewState, the ControlState does not have a property bag in which you can store
ad-hoc values. You have to create your own variables in which to store control state data. The
ControlStateCounter variable is used for this purpose:

Private ControlStateCounter As Integer = 0

6293_ch04.fm Page 117 Friday, November 11, 2005 2:52 PM

118 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

You will likely want to initialize the variable with a default value because the ControlState
mechanism will not load values into the variable until a postback occurs.

Registering the ControlState

If your control requires the ControlState mechanism, then the page your control is on needs to
be notified. You can accomplish this by overriding the OnInit method and calling Page.➥

RegisterRequiresControlState(Me). This notifies the page that your control needs to use the
ControlState, and the page makes the ControlState mechanism available. Also, remember to
call the OnInit method of the base class, so it can run any necessary tasks.

Saving and Loading the ControlState

The ControlState is a bit more cumbersome than the ViewState partly because you have to
manually save and load ControlState data via the SaveControlState and LoadControlState
methods.

Just before the page renders, it runs through all the controls that use the ControlState and
executes each one’s SaveControlState function. The objective of the SaveControlState func-
tion is to produce a serializable object containing data that can be used to initialize the control
back to its former state when the page posts back. The page gathers all these objects and seri-
alizes them as encoded text in a hidden field on the page.

■Note The page actually stores the serialized ControlState data inside the __VIEWSTATE hidden field.
Although you can disable the ViewState, you cannot entirely eliminate the mechanism from the page. As
such, the designers of ASP.NET 2.0 apparently decided to embed the ContolState data in the page using
the existing ViewState functionality.

When the page posts back, it deserializes the encoded text in the hidden field and recre-
ates the objects. It then passes each one of these objects back into its respective control’s
LoadControlState method. The objective of the LoadControlState method is to use the object
originally created by the SaveControlState function to initialize the appropriate control values.

Creating the SaveControlState function consists entirely of returning an array containing
all your ControlState data. It is also a good habit to save the object created by the Save➥

ControlState in the base class:

'***
Protected Overrides Function SaveControlState() As Object
 Return New Object() { _
 MyBase.SaveControlState(), _
 ControlStateCounter}
End Function

This function simply returns an Object array containing two items. The first item is the
object returned by the call to MyBase.SaveControlState, which stores any ControlState data
required by the base class. This is necessary if you are inheriting from a control that uses the

6293_ch04.fm Page 118 Friday, November 11, 2005 2:52 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 119

ControlState. If you’re sure that your base class does not require any ControlState data, then
you don’t have to worry about retrieving and storing this information. In this example, for
instance, the call to the base class always returns Nothing, but it’s used here to demonstrate the
technique. The second item is the ContolStateCounter variable value. Storing this value allows
you to reinitialize the ControlStateCounter variable after the page posts back. If your control
had more variables, you would need to add more items to the array to account for those
variables.

When the page posts back, it deserializes the information from the ControlState and
reproduces the object originally returned by the SaveControlState function. It then passes that
object to the LoadControlState method so you can initialize your control:

'***
Protected Overrides Sub LoadControlState(ByVal savedState As Object)
 Dim StateArray() As Object = CType(savedState, Object())
 MyBase.LoadControlState(StateArray(0))
 ControlStateCounter = CInt(StateArray(1))
End Sub

Because the SaveControlState function returns an Object array, the LoadControlState
method assumes the incoming data is an object array and casts it accordingly. It then sends the
first object in the array to the base class via the MyBase.LoadControlState call, which allows the
base class to initialize itself. It then casts the second item into an Integer and uses it to
initialize the ControlStateCounter variable. At that point, the control has been initialized and
is ready for use.

Rendering, Loading, and Clearing the Control

The ControlStateExample control overrides the Render method of the WebControl base
class and uses an HtmlTextWriter to output the necessary HTML to the page. Once again,
this is a very simple control that outputs simple HTML to display the values stored in the
ControlStateCounter variable and the ViewStateCounter property.

When the ControlStateExample control is loaded, both the ViewStateCounter and the
ControlStateCounter properties are incremented. This allows the control to count the num-
ber of times it has been displayed. Resetting these values can be achieved by calling the
ClearCounters method.

Creating the ControlState Demo Page
Now that you have a ControlStateExample control, you need to put one on a web form to see
how it behaves. This requires your web project to reference the assembly that contains the
ControlStateExample control before you try to run the application. To do this, right-click your
web project, select Add Reference from the context menu, and browse for the appropriate
assembly.

Create a new page in your web application and name it ControlStateDemo.aspx. Add the
following Register directive to the top of the page:

<%@ Register TagPrefix="msgControls" Namespace="MessageControls"
 Assembly="MessageControls" %>

6293_ch04.fm Page 119 Friday, November 11, 2005 2:52 PM

120 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

In the sample code for Chapter 4 (in the Source Code area of the Apress website), you’ll
find the ControlStateExample control in the MessageControls assembly, which is why the
Namespace and Assembly parameters are set to "MessageControls" in the preceding code. If you
placed the control in a different assembly or used a different root namespace for your
assembly, then you’ll need to adjust these settings accordingly. Also take note of the TagPrefix
parameter as you’ll use this later.

Add the following controls between the server form tags on the page:

<asp:RadioButton ID="rbViewStateOn" Runat="server" Checked=True
 GroupName="ToggleViewState" Text="Enable View State" AutoPostBack="True"/>
<asp:RadioButton ID="rbViewStateOff" Runat="server" Checked=False
 GroupName="ToggleViewState" Text="Disable View State" AutoPostBack="True"/>

<msgControls:ControlStateExample ID="ExampleControl1" Runat="server" />

<asp:Button ID="btnClearCounters" Runat="Server" Text="Clear Counters" />
<asp:Button ID="btnPostBack" Runat="server" Text="Post-Back" />

Notice how the tag prefix for the ControlStateExample control corresponds to the
TagPrefix defined in the Register directive at the top of the page. ASP.NET reads the tag prefix,
or the part before the colon, and searches for the appropriate Register directive to determine
the assembly in which to look for the specified control, which appears after the colon.

Now that you have defined all the controls you’ll need on the page, add the following code
to the code-behind file:

'***
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 If Me.rbViewStateOn.Checked Then
 Me.EnableViewState = True
 Else
 Me.EnableViewState = False
 End If
End Sub

'***
Sub btnClearCounters_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles btnClearCounters.Click
 Me.ExampleControl1.ClearCounters()
End Sub

The Page_Load procedure turns the ViewState mechanism on or off based on whether or
not the radio button rbViewStateOn is selected. The btnClearCounters_Click simply resets the
counters.

Viewing the ControlState Behavior in the Demo Page
Set ControlStateDemo.aspx as the startup page for your web application and run the project.
When the page first displays, the ControlStateExample control shows 1 for both counters. Make
sure the Enable View State radio button is selected and then click on the Post-Back button a

6293_ch04.fm Page 120 Friday, November 11, 2005 2:52 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 121

couple of times. Each time the page posts back, both counters increment. Because ViewState is
enabled, the counter information for the ViewState successfully saves during each postback.

Next, disable the ViewState by selecting the Disable View State radio button. Click on the
Post-Back button a few times. Notice that the ViewState counter remains set to 1 and never
increments. Each time the page posts back, the ViewState is empty so the counter is effectively
reset to 1 each time. Figure 4-3 shows the ControlStateExample control when the ViewState is
enabled and when it is disabled.

Figure 4-3. The ControlStateExample control when the ViewState is enabled versus disabled.
Notice that the ControlState maintains its counter even when the ViewState is disabled.

Now that you have built a simple control, let’s take a look at the more advanced skinned
page-message control.

Building a Skinned Page-Message Control
Communicating information to the individuals who use your application is an extremely
important task that is often slapped together on a page-by-page basis with nothing more than
a label and a bit of concatenation code. As was explained in the opening of this chapter, the
label-on-each-page approach may seem like a time-saver, but it may eat away at your timeline
in the long run. Because page-messaging is an element that continually comes up from project
to project, this chapter focuses on building a reusable page-message control that you can
deploy in just about any project scenario.

The page-message control is responsible for displaying three different types of messages:
page messages, error messages, and system messages. Page messages include action confir-
mations or perhaps helpful tips that you want to display on the page. Error messages include
action failure messages or any other message indicating that something is wrong on the page.
For instance, I use error messages to display information about business rule violations. Lastly,
system messages may contain important systemwide information such as a message
informing the user of an impending shutdown or scheduled maintenance. System messages
are not page-specific. Instead, they appear on every page in the system that has a page-
message control, thus allowing you to easily communicate ad-hoc information to everyone
using your application. In terms of storage, you just need a couple of collections to store the
various types of messages, and a few methods to add messages to the control. It is really not
overly complicated.

Visual flexibility, however, is an entirely different story. You could use the page-message
control in a variety of different projects, each of which will have its own visual requirements for
messages. Some projects may need messages displayed as a bulleted list, or a dashed list, as
series of rows in a table, as a JavaScript popup box, or even with icons to visually depict which

6293_ch04.fm Page 121 Friday, November 11, 2005 2:52 PM

122 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

type of message is being displayed. When you start throwing color combinations, font sizes,
and other formatting options into the mix, you can see that things can get complicated very
quickly. One option is to account for every conceivable scenario and expose an inordinate
number of properties so you can configure the control accordingly. Of course, you’ll eventually
run into a scenario you did not account for, and it would take a lot of work building all the
properties and rendering code for the control to draw itself in so many different ways. Instead,
I’ll show you how to build a skinned control that avoids the complexities but keeps all the
flexibility.

What Is a Skinned Control?
A skinned control is a special type of custom server control that relies on a UserControl to
define its visual interface. All the business logic exists in the server control. All the display logic
exists in the UserControl. This separation of business logic and display logic is referred to as
decoupling and is what makes the skinned controls so useful. Because the server control is
completely decoupled from its visual interface, it must load an interface before it can render to
the page. So, the skinned control loads up a UserControl, manipulates the visual interface in
that UserControl based on the business logic, and then renders the UserControl thus providing
the interface.

Of course, you are not bound to a single UserControl. You can load up any UserControl you
want as long as it’s designed to work with the skinned control that loads it. This allows you to
create an unlimited number of visual displays (that is, skins) for your skinned control. If you
want a bulleted list of items for the page-message control, then you build a UserControl
capable of displaying a bulleted list. If you want a dashed list, then you can build a UserControl
capable of displaying a dashed list. Because the UserControl consists of HTML markup, you
can adjust the layout and style to fit whatever situation you need in ways that would be impos-
sible to achieve through properties on a normal custom control. And, you only have to write
the business logic once because it remains constant regardless of which UserControl you load.

■Note Do not confuse the term skinned control with the control skins discussed in Chapter 3. The termi-
nology is very similar so it can be confusing at first, but understand that control skins are confined to Chapter
3 and are not used in this chapter.

How Does the Server Control Manipulate the UserControl?
As mentioned before, a skinned control consists of two decoupled components: a server
control containing the business logic for the control and a series of UserControls containing
the different visual interfaces. The question is, if they are decoupled, how can they work
together? The answer lies in coupling (or binding) them back together. Before we continue,
understand that ASP.NET 2.0 includes no built-in support for skinned controls. You are
responsible for implementing all the loading and binding functionality that is about to be
discussed. You will, however, be implementing most of the functionality in a reusable base
class that will make building skinned controls a much simpler task.

6293_ch04.fm Page 122 Friday, November 11, 2005 2:52 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 123

When you build a skinned control, the server control expects the UserControl skin to
contain a specific set of ASP.NET server controls with specific ID values. When the server
control loads the UserControl skin, it uses the FindControl method to reach into the
UserControl skin and acquire references to the controls it needs based on the expected
ID values. After those references have been acquired, the business logic in the server control
can manipulate the controls and even handle their events on a postback. You can think of the
expected ID values as a pseudocontract that exists between the UserControl skin and the server
control. The server control does not care what is in the UserControl skin as long as it can find
the controls necessary to run its business logic. If the server control cannot find those controls,
it throws an exception. Figure 4-4 illustrates the concepts of expected ID values and coupling.

Figure 4-4. Shows the two portions of a skinned web control: the web control portion that defines
the busines logic, and the skin file portion that defines the user interface

How Are Skinned Controls Implemented?
For the sake of discussion, let’s say you want to create a login control that could be used in
different areas of your website. It has two different visual styles. One style is meant to be the
central focus of a page, such as on a login page. The other style is a more compact design meant
to be displayed on a left- or right menu bar for quick login access. An example of how these
styles, or UserControl skins, look is shown in Figure 4-5.

Coupling

6293_ch04.fm Page 123 Friday, November 11, 2005 2:52 PM

124 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

Figure 4-5. Large and small login skins for a skinned login control

Although the two UserControl skins have different layouts and verbiage, they both contain
the same server controls: a Username text box, a Password text box, a Login button, and a label
to display a login error message. They also expose the same functionality. Users enter their
credentials and then click on the Login button. If the credentials are authenticated, then the
login succeeds. Otherwise, the error label displays a message informing the user of the login
failure. The only difference is the way the user interface (UI) is presented. This is a scenario
where a skinned control will definitely work. Implementing this control as a skinned server
control would require the following steps:

1. Create the business logic to validate a username and password against a data store.

2. Define variables to reference the Username text box, the Password text box, and the
error message label.

3. Develop the code to search through a UserControl skin file and set up references to the
Username and Password text boxes, as well as the Error Message label. The code also
needs to add a handler to the skin’s Login button to execute the login business logic
when a user clicks on the Login button

4. Create UserControl skins for the two different login styles.

The references to the Username and Password text boxes are used by the business logic to
acquire the username and password that the user entered into the control. These credentials
are then authenticated against the user list. If authentication fails, the label reference should
be used to output a message to the user regarding the issue.

As for the login skins, both must contain a text box control for the username, a text box
control for the password, a label to display error messages, and a button to submit the login
information. You can include additional markup in the UserControl skin as long as the skin
contains the four previously mentioned elements. Each skin must also adhere to the expected
ID values for those controls. For example, the skinned control may expect the Username text
box to be named txtUserName, so the UserControl skins are expected to identify the Username
text box accordingly.

6293_ch04.fm Page 124 Friday, November 11, 2005 2:52 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 125

Architecture of the Skinned Page-Message Server Control
Before delving into making all the parts of the skinned page-message control, I want you to get
a quick high-level overview of all the pieces that make up the component so you know exactly
where you are in the process. As implemented in this example, the skinned page-message
server control includes five classes and three skins. Figure 4-6 should help you see how those
items fit into the overall picture, followed by Table 4-1, which further describes the point and
purpose of each item.

Figure 4-6. Architecture diagram for the skinned page-message control

6293_ch04.fm Page 125 Friday, November 11, 2005 2:52 PM

126

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

■

Note

The

UserControl

 skin files for the

PageMessageControl

 are located in the web application, not

in the

Messaging

assembly.

Each skin file should have three panel controls and three repeater controls. One panel and
one repeater exists for each type of message: system messages, page messages, and error
messages. Each repeater is nested inside of its associated panel. Figure 4-7 shows a diagram
outlining the control layout and expected ID values for a page-message

UserControl

 skin, and
Table 4-2 describes each control in the skin file in more detail.

Basically, the page-message control maintains three separate lists containing messages.
When the control renders, it determines whether a specific list has any messages in it and, if so,
makes the panel associated with the list visible and data binds the corresponding message
repeater to the list. I used a repeater to display the lists because the repeater is extremely flex-
ible in terms of what it can output, whereas a

DataGrid

 forces the list to be inside a table. As
you’ll see later when you implement the JavaScript alert skin for this control, the flexibility of
the repeaters allows you to do some interesting things.

Table 4-1.

 Classes and Skins Used by the Skinned Page-Message Server Control

Class/Skin Description

SkinnedWebControl

An abstract (

MustInherit

) class that encapsulates the basic skin-
ning functionality required by all skinned server controls.

PageMessageControl

Class containing the skinned page-messaging control logic. It
inherits its skinning functionality from the

SkinnedWebControl

class.

PageMessageControlDesigner

Controls the way the

PageMessageControl

 is displayed at design
time in the Visual Studio IDE. It has no effect at runtime.

MessageData

Class that stores a single message that will be displayed via the

PageMessageControl

.

MessageDataCollection

Class that stores a collection of

MessageData

 objects. Used by the

PageMessageControl

 to maintain lists of messages.

PageMessageDefault.ascx

A very basic skin that displays messages.

PageMessageIcons.ascx

Like the default skin, but includes icons for each message type.

PageMessageJScriptAlert.ascx

Displays messages using the JavaScript alert function.

6293_ch04.fm Page 126 Tuesday, November 15, 2005 2:36 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 127

Figure 4-7. Diagram of the page-message control’s UserControl skin requirements

Storage Locations for UserControl Skins
In the example for this chapter, we’ll store the UserControl skins under the Skins directory of
the web application. The Skins folder is just an ordinary folder; it does not have a special
meaning in ASP.NET 2.0. In the example application, you’ll also see three subfolders in the
Skins folder: Default, GreenTheme, and RedTheme. These folder names correspond to the theme
folders from the App_Themes directory in the sample application, as shown in Figure 4-8.

Table 4-2. Control and ID Requirements for Page-Message UserControl Skins

Expected ID Control Type Description

SystemMessagesPanel Panel Visible when the control contains system
messages

SystemMessagesRepeater Repeater Displays system messages

MessagesPanel Panel Visible when the control contains standard
messages

MessagesRepeater Repeater Displays standard messages

ErrorMessagesPanel Panel Visible when the control contains error messages

ErrorMessagesRepeater Repeater Displays error messages

6293_ch04.fm Page 127 Friday, November 11, 2005 2:52 PM

128

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

Figure 4-8.

 Subfolders in the

Skins

 folder mimic the themes in the

App_Themes

 folder

This structure allows you to create theme-specific version of your

UserControl

 skins, if you
want to. Here’s quick rundown of how the loading mechanism for

UserControl

 skins functions.
You tell the control the file name of the

UserControl

 skin to load, but that file name does not
have any path information. The control determines the path by checking to see if the page has
a current theme. If so, it checks for the

UserControl

 skin in the

Skins/<Theme>

 directory. If the
control finds the

UserControl

 file in that location, it loads that file. If it does not find the file, the
control looks in the

Skins/Default

 folder. So, if you want to make a theme-specific version of
the

UserControl

 skin, you can build it and stick it in the

Skins/<Theme>

 directory; if you don’t,
the loading mechanism reverts back to the

Skins/Default

 folder. The loader also uses the
default folder if the page does not have a theme.

Setting Up the Messaging Web Control Project

Custom server controls need to be defined in an assembly that can be referenced by a web
project, so you need to create two projects for this example. First, create a new website by
choosing

File

➤

New

➤

Website

. The

New Website

 dialog box appears. Make sure you have
selected

Visual Basic

 as the project type and

ASP.NET Website

 as the template. Enter the loca-
tion where you want to store your website files and then click on the

OK

 button.
After you’ve added the website, choose

File

➤

Add

➤

 New Project. The

New Project

 dialog
box appears. Make sure

Visual Basic

 is selected as the project type, and select

Web Control
Library

 from the list of templates. Name the new project

Messaging

 and specify the location
where you want your files to be stored. Click the

OK

 button. The

Messaging

project is where
you will place all the classes that make up the skinned page-messaging control.

The Skinned Web Control Class

All skinned server controls share a basic set of functionality for loading and coupling skin files,
so you are going to create an abstract (

MustInherit

) class to encapsulate that behavior. This
will allow you to use the abstract class as a base class when you build other skinned server
controls in the future.

The entire code listing for the

SkinnedWebControl

 abstract class is shown next, followed by
a discussion about what each section of the code does.

6293_ch04.fm Page 128 Tuesday, November 15, 2005 2:36 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 129

Imports System.IO
Imports System.Web
Imports System.Web.UI
Imports System.Web.UI.WebControls
Imports System.Web.HttpContext

Public MustInherit Class SkinnedWebControl
 Inherits WebControl
 Implements INamingContainer

 '***
 Protected MustOverride Sub InitializeSkin(ByRef Skin As Control)

 '***
 Private _SkinFileName As String = String.Empty

 '***
 Public Property SkinFileName() As String
 Get
 Return _SkinFileName
 End Get
 Set(ByVal value As String)
 _SkinFilename = value
 End Set
 End Property

 '***
 Protected Function LoadSkin() As Control
 Dim Skin As Control
 Dim Theme As String = IIf(Page.Theme = String.Empty, "Default", Page.Theme)
 Dim SkinPath As String = "~/Skins/" & Theme & "/" & SkinFilename.TrimStart

 'Ensure that a skin file name has been provided
 If SkinFileName = String.Empty Then _
 Throw New Exception("You must specify a skin.")

 'Check if the skin exists before you try to load it up
 If Not File.Exists(Current.Server.MapPath(SkinPath)) Then
 SkinPath = "~/Skins/Default/" & SkinFileName.TrimStart
 If Not File.Exists(Current.Server.MapPath(SkinPath)) Then
 Throw New Exception("The skin file '" & SkinPath _
 & "' could be loaded. This file must" _
 & " exist for this control to render.")
 End If
 End If

6293_ch04.fm Page 129 Friday, November 11, 2005 2:52 PM

130 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

 'Attempt to load the skin now that you know it exists
 Try
 Skin = Page.LoadControl(SkinPath)
 Catch exSkinNotFound As Exception
 Throw New Exception("Error loading the skin file '" & SkinPath & "'")
 End Try

 Return Skin

 End Function

 '***
 Protected Overrides Sub CreateChildControls()
 Dim Skin As Control = LoadSkin()
 InitializeSkin(Skin)
 Controls.Add(Skin)
 End Sub

End Class

Class Definition

The SkinnedWebControl class represents a skinned web control, but it’s a web control nonethe-
less. It inherits the basic web control functionality from the WebControl class and implements
the INamingContainer marker interface. This interface does not require any methods to be
implemented; it just marks the class as being a naming container. This lets the page know that
the child controls in the SkinnedWebControl should be given a naming scope to help avoid
naming conflicts with other controls on the page.

The InitializeSkin Abstract (MustOverride) Method

Skinned web controls need the capability to bind their variables and event handling to the
controls and events from a skin file. This is accomplished via the InitializeSkin abstract
method, which is passed a reference to a skin via the Skin parameter. Because each individual
skinned web control needs to bind to its skin in a different manner, this method is left unim-
plemented. Its appropriate implementation is left up to the class that inherits from the
SkinnedWebControl class.

The SkinFileName Property

Skinned web controls do not have a built-in UI; the interface is always provided via a skin file.
Thus, skinned web controls need to know how to find that file. The SkinFileName property
provides a location in which to store the name of the skin file that should be used to provide the
control with a UI.

6293_ch04.fm Page 130 Friday, November 11, 2005 2:52 PM

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

131

The LoadSkin Function

This function is responsible for using the

SkinFileName

 property and any available theme
information to load the appropriate

UserControl

 skin for the control. It starts by creating a
temp variable named

Skin

 to hold the loaded control. It then determines the current page
theme by checking the

Theme

 property of the

Page

 object. If the page does not have a theme,
then the code uses

Default

 as the theme.
Using the theme information, the

LoadSkin

 method builds out the full path to the

UserControl

 skin using

Skins/<ThemeName>/<UserControlSkin>.ascx

 and stores it in the

SkinPath

 variable. Next, the method checks to make sure that a nonempty

SkinFileName

value has been provided. If not, the code raises an exception because the control must have
a

UserControl

 skin file to load. After that, the method checks to see if the

UserControl

 skin file
exists in the theme directory using the

File.Exists

 method from the

System.IO

 namespace.

Current.Server.MapPath

 converts the web-relative path into the full-path for use in the

Exists

function. If the file cannot be found, then the code rebuilds the path using the

Skins/Default

folder instead of

Skins/<Theme>

 folder. It then checks to make sure the

UserControl

 file exists in
the default location. If not, the method throws an exception because the skin file is required.
Otherwise, the method continues on.

After the

SkinPath

 is known to exist, the method passes it into the

Page.LoadControl

 func-
tion. The

Page.LoadControl

 function accepts a virtual path to an

.ascx

 file and returns a
reference to the instantiated

UserControl

 if the path and

.ascx

 file are valid. That control refer-
ence is then returned as the value of the function.

Overriding the CreateChildControls Method

This method only has three lines of code, but they all play a very important role in the loading
and initialization of a skin. The first line loads the skin using the

LoadSkin

 method. The next
line calls the abstract method

InitializeSkin

 and passes in the skin that was loaded on the
previous line. Remember, the

InitializeSkin

 method couples the business logic of the custom
server control to the UI of the skin file. Lastly, the instantiated skin control is added to the
custom server control’s control collection so it will be rendered to the browser. This is what
gives the custom web control its UI.

The MessageData Class

The

MessageData

 class exists, as the name implies, to store data about a message. This class
may seem a bit superfluous considering that a message is only a string, but I wanted to show
you how to add additional properties to the

MessageData

 class in case the need arose. For
instance, at some point, it may be helpful to add a help file link to a message so users can click
on a message to get additional information.

Following you’ll find the code for the

MessageData

 class, followed by a brief discussion.
This class is basic enough that it should be self explanatory:

Public Class MessageData

 '***
 Private _Message As String = String.Empty

6293_ch04.fm Page 131 Tuesday, November 15, 2005 2:38 PM

132 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

 '***
 Public Sub New(ByVal Message As String)
 _Message = Message
 End Sub

 '***
 Public Property Message() As String
 Get
 Return _Message
 End Get
 Set(ByVal value As String)
 _Message = value
 End Set
 End Property

End Class

This class has a single string property named Message. The private class variable _Message
is used to store the value of the Message property. There is also a constructor that initializes the
Message property.

The MessageDataCollection Class
The MessageDataCollection is a strongly typed collection class designed to store MessageData
objects. The PageMessageControl uses multiple MessageDataCollections to store system
messages, page messages, and error messages before rendering those messages to the
browsers.

Public Class MessageDataCollection
 Inherits System.Collections.CollectionBase

 '***
 Public Function Add(ByVal obj As MessageData) As Integer
 Return List.Add(obj)
 End Function

 '***
 Default Public Property Item(ByVal index As Integer) As MessageData
 Get
 ReturnList.Item(index)
 End Get
 Set(ByVal value As MessageData)
 List.Item(index) = value
 End Set
 End Property

End Class

6293_ch04.fm Page 132 Friday, November 11, 2005 2:52 PM

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

133

MessageDataCollection

 inherits its basic collection functionality from the

System.

➥

Collections.CollectionBase

 class. It exposes two strongly typed functions:

Add

 and

Item

.

Add

accepts a

MessageData

 object and adds it to the

List

 property. The

List

 property is part of the
basic functionality inherited from the

CollectionBase

 class. The

Item

 property allows you to
get and set a

MessageData

 object from the

List

 property at the specified index.
Strongly typing your collections allows you to easily access object properties using

IntelliSense in the Visual Studio IDE and avoid having to cast the objects before using them.
Although it isn’t absolutely necessary to strongly type a collection, it does make working with
the collection a bit easier.

The PageMessageControl

In the

PageMessageControl

 class, you’ll find a great deal of code. Most of it is fairly simple, but
there’s a lot to go through. The following code listing contains the most significant portions of
the

PageMessageControl

 class, although some methods have been omitted to save space. Most
of the omitted methods have names that closely describe their purpose, so I’ve included a
comment containing the name of the method in place of the method itself.

Imports System.ComponentModel
Imports System.Web.UI
Imports System.Web.UI.WebControls

<ToolboxData("<{0}:PageMessageControl runat=server></{0}:PageMessageControl>"), _
 Designer(GetType(PageMessageControlDesigner))> _
Public Class PageMessageControl
 Inherits SkinnedWebControl

 '***
 Private Shared _SystemMessages As MessageDataCollection = Nothing
 Private _Messages As MessageDataCollection = Nothing
 Private _ErrorMessages As MessageDataCollection = Nothing

 Private MessagesPanel As Panel = Nothing
 Private ErrorMessagesPanel As Panel = Nothing
 Private SystemMessagesPanel As Panel = Nothing

 Private MessagesRepeater As Repeater = Nothing
 Private ErrorMessagesRepeater As Repeater = Nothing
 Private SystemMessagesRepeater As Repeater = Nothing

 '***
 'NOT SHOWN: Shared ReadOnly Property SystemMessages() As MessageDataCollection
 'NOT SHOWN: Shared Sub AddSystemMessage(ByVal Message As String)
 'NOT SHOWN: Shared Sub RemoveSystemMessage(ByVal Index As Integer)
 'NOT SHOWN: Shared Sub ClearSystemMessages()

6293_ch04.fm Page 133 Tuesday, November 15, 2005 6:04 PM

134 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

 '***
 Public Sub New()
 If Me.SkinFileName = String.Empty Then _
 Me.SkinFileName = "PageMessageDefault.ascx"
 End Sub

 '***
 'NOT SHOWN: Public ReadOnly Property Messages() As MessageDataCollection
 'NOT SHOWN: Public ReadOnly Property ErrorMessages() As MessageDataCollection

 'NOT SHOWN: Public Sub AddMessage(ByVal Message As String)
 'NOT SHOWN: Public Sub AddErrorMessage(ByVal Message As String)

 'NOT SHOWN: Public Sub ClearMessages()
 'NOT SHOWN: Public Sub ClearErrorMessages()

 'NOT SHOWN: Public ReadOnly Property HasMessages() As Boolean
 'NOT SHOWN: Public ReadOnly Property HasErrorMessages() As Boolean
 'NOT SHOWN: Public Shared ReadOnly Property HasSystemMessages() As Boolean

 '***
 Public Property AllowSetFocus() As Boolean
 Get
 If ViewState("AllowSetFocus") Is Nothing Then Return True
 Return CBool(ViewState("AllowSetFocus"))
 End Get
 Set(ByVal value As Boolean)
 ViewState("AllowSetFocus") = value
 End Set
 End Property

 '***
 Protected Overrides Sub CreateChildControls()

 If Me.HasMessages Or Me.HasErrorMessages Or Me.HasSystemMessages Then

 If Me.AllowSetFocus Then
 'Add the focus anchor
 Dim AnchorLiteral As Literal = New Literal()
 AnchorLiteral.Text = ""
 Controls.Add(AnchorLiteral)

 Page.ClientScript.RegisterStartupScript(_
 GetType(PageMessageControl), _
 "MsgFocus", _
 "window.location='#PageMessages';", _
 True)
 End If

6293_ch04.fm Page 134 Friday, November 11, 2005 2:52 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 135

 MyBase.CreateChildControls()

 End If

 End Sub

 '***
 Protected Overrides Sub InitializeSkin(ByRef Skin As System.Web.UI.Control)

 'Find Controls
 MessagesRepeater = Skin.FindControl("MessagesRepeater")
 MessagesPanel = Skin.FindControl("MessagesPanel")
 ErrorMessagesRepeater = Skin.FindControl("ErrorMessagesRepeater")
 ErrorMessagesPanel = Skin.FindControl("ErrorMessagesPanel")
 SystemMessagesRepeater = Skin.FindControl("SystemMessagesRepeater")
 SystemMessagesPanel = Skin.FindControl("SystemMessagesPanel")

 'Setup Messages
 SetupRepeaterAndPanel(MessagesRepeater, MessagesPanel, _Messages)
 SetupRepeaterAndPanel(ErrorMessagesRepeater, ErrorMessagesPanel, _
 _ErrorMessages)
 SetupRepeaterAndPanel(SystemMessagesRepeater, SystemMessagesPanel, _
 _SystemMessages)
 End Sub

 '***
 Private Sub SetupRepeaterAndPanel(ByRef R As Repeater, ByRef P As Panel, _
 ByRef Data As MessageDataCollection)
 If Not R Is Nothing Then
 R.DataSource = Data
 R.DataBind()
 End If

 If Not P Is Nothing Then
 If Data Is Nothing OrElse Data.Count = 0 Then
 P.Visible = False
 Else
 P.Visible = True
 End If
 End If

 End Sub

End Class

6293_ch04.fm Page 135 Friday, November 11, 2005 2:52 PM

136

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

Class Definition

The

PageMessageControl

 inherits its functionality from the

SkinnedWebControl

 class.
Remember that the

SkinnedWebControl

 class inherits from the

WebControl

 class, so the

PageMessageControl

 has access to all the methods exposed by both

WebControl

 and

Skinned

➥

WebControl

. The

ToolBoxData

 attribute that precedes the class definition tells the Visual Studio
IDE what HTML markup should be added to the page when the control is placed on the
form designer from the toolbox. The

Designer

 attribute tells the Visual Studio IDE that the

PageMessageControlDesigner

 class should be used to render the control in design time.
You’ll learn about design-time functionality later on in this chapter.

Private Class Variables

The next section contains all the private variables for the

PageMessageControl

 class. Notice
there are three sets of three items. The first set contains all the

MessageDataCollection

 vari-
ables that store system messages, page messages, and error messages. Notice that the

_SystemMessages

 collection has a

Shared

 scope. This allows system messages to be saved indef-
initely and shared by every

PageMessageControl

 in the application. The next set of items
contains the panel variables that will be set to

visible

 or

invisible

 depending on whether or
not their respective

MessageDataCollection

 variables contain any messages when the control
is rendered. The last set contains the repeaters, to which the appropriate

MessageData

➥

Collection

 variables will be bound, assuming, once again, that they have messages.
Remember that the

PageMessageControl

 does not have a UI of its own, but it has to declare
variables that will reference controls in the skin file. These panel and repeater variables will
reference those controls after they are appropriately bound in the

InitializeSkin

 function.

System Message Functionality

Most of the system message functionality has been omitted from the code listing, but it still
warrants some discussion. You can likely infer the purpose of each system message function by
its name. The most notable thing is that all the system message functions are shared. They
belong to the class, not to individual objects, because of the nature of system messages.

Page messages and error messages are displayed once and then forgotten, but system
messages are more persistent. The best example of a system message is something to the effect
of, “The system will be shutting down at 6:00 p.m. for maintenance.” This message should
appear on every

PageMessageControl

 whenever it is rendered because it needs to be communi-
cated to everyone on the system.

This also means that page messages must be explicitly removed before they stop
displaying in the

PageMessageControl

. They will continue to display as long as they exist in the

SystemMessages

 list. For reference, shutting down IIS causes the

SystemMessages

 list to be lost.

The PageMessageControl Constructor

Although there is only a single line in the constructor for the

PageMessageControl

 class, it
performs a time-saving task. It assigns the

SkinFileName

 property a default skin file name—in
this case,

PageMessageDefault.ascx

. Chances are that you will

not

 want to specify a skin file
each time you drop a

PageMessageControl

 on one of your web forms, and this keeps you from
having to do so. You just have to make sure that you have a default page messaging skin file
named

PageMessageDefault.ascx

 in your

skin

 directory.

6293_ch04.fm Page 136 Tuesday, November 15, 2005 2:38 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 137

Message Lists and Associated Functionality

After the constructor, you’ll see a series of omitted listings representing most of the page
messages and error messages functionality. These are methods and properties used to add
messages, clear messages, and determine whether or not messages exist in a given message
list. Notice that the HasSystemMessages property is a Shared property because it deals with the
shared SystemMessages collection.

AllowSetFocus Property

One of the issues you’ll inevitably encounter is that a web form will be redisplayed after a post-
back, and the message will be shown on a portion of the page that is not currently visible. This
may be confusing to users because they may not notice an important message. To counteract
this issue, the PageMessageControl can place an anchor just above the message list and launch
a JavaScript function when the page loads that will scroll to that anchor.

Sometimes, however, you won’t want to automatically scroll to the position where the
anchor is located. For example, the PageMessageAlert.ascx skin outputs JavaScript to display
an alert box when the page loads. The anchor, if used, would be placed before the JavaScript
code block, which is invisible to the user. So, an alert would be issued, and then the page would
scroll to a random location that does not display any useful information. To avoid issues like
this, you can set the AllowSetFocus to false, and no JavaScript scrolling to the list will be
allowed.

The code for the AllowSetFocus is fairly straightforward. It’s a standard read-write prop-
erty that uses ViewState to store its values and returns True by default if the property is not
explicitly set.

Overriding the CreateChildControls Method

Most skinned web controls will not require you to override the CreateChildControls method
because all the UI functionality is completely encapsulated in the skin file. The PageMessage➥
Control, however, needs to implement the anchor and JavaScript scrolling functionality discussed
in the preceding AllowSetFocus discussion. Because this functionality exists for all the skins, it
makes sense to include it in the server control code instead of having to recreate it in each skin file.

In the CreateChildControls method, the code first determines whether or not any
messages exist in any of the lists. If no messages exist, then no other action is required because
nothing needs to be displayed.

If there are messages, then the code checks to see if the AllowSetFocus property is set to
true. If so, the control knows it needs to add an anchor above the message lists and the Java-
Script code that will automatically scroll the page after it loads. It does this by creating a literal
control and populating it with the HTML to create an anchor named PageMessages. That literal
control is then added to the PageMessageControl’s control collection.

After the anchor is added, the control registers a startup JavaScript on the page that will
automatically scroll the page to the PageMessages named anchor:

6293_ch04.fm Page 137 Friday, November 11, 2005 2:52 PM

138

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

AnchorLiteral.Text = "<a name='

PageMessages

'>"
Controls.Add(AnchorLiteral)

Page.ClientScript.RegisterStartupScript(_
 GetType(PageMessageControl), _
 "MsgFocus", _
 "

window.location='#PageMessages';

", _
 True)

The JavaScript output by the control is shown in bold. Also shown in bold is the name of
the anchor. Notice how the anchor name matches the value assigned to

window.location

 in the
JavaScript. The

#

 symbol means that the page is jumping to a named anchor in the page instead
of to a new URL.

If you have worked with client-side scripting functions in ASP.NET, you may have noticed
that there is a new way to access the client-side scripting functions. They are now exposed via
the

ClientScript

 property of the

Page

 class. They also have a slightly different syntax as
explained in Table 4-3.

After the anchor has been added to the control and the JavaScript has been registered
to the page, the control executes the

CreateChildControls

 method in the base class,

SkinnedWebControl

, which is responsible for loading the appropriate skin and initializing it
using the

InitializeSkin

 method.
If the

AllowSetFocus

 property is set to

false

, then the control doesn’t bother adding the
anchor or the JavaScript. Instead, it just calls the

CreateChildConrols

 method from the base class.

Table 4-3.

RegisterStartupScript

 Parameter Reference

Parameter Name New to ASP.NET 2.0 Description

type

Yes Represents the type name of the control that is regis-
tering the script. Passing in the type name helps avoid
conflicts that arise when different types of controls regis-
tering a script with the same key.

key

No Each script you register should have a unique key to
identify it. If multiple scripts with the same key are regis-
tered for the same type, then only the first registered
script for that type is output to the browser. No conflict
occurs if you use a key that was used with another type.
This helps avoid the same script being output to the
browser multiple times.

script

No This is the script that will be output to the page. It can
include a surrounding

<script>

 tag, but you may opt for
ASP.NET to automatically create those tags for you by
passing in

True

 for the

addScriptTags

 parameter.

addScriptTags

Yes An optional parameter that is

False

 by default. Setting
this parameter to

True

 tells ASP.NET to automatically
surround your script with

<script>

 tags so you do not
have to do it directly in your script string.

The other scripting methods exposed by the

ClientScript

 property tend to have the same parame-
ters in case you ever happen to need them.

6293_ch04.fm Page 138 Tuesday, November 15, 2005 3:01 PM

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

139

Initializing the Skin

A reference to the loaded skin file is passed into the

InitializeSkin

 method via the

Skin

parameter. The method then uses that reference to locate controls in the skin using the

Skin.FindControl

 function:

MessagesRepeater = Skin.FindControl("MessagesRepeater")

The

FindControl

 function searches through the skin looking for the appropriate control,
and returns a reference to that control if it’s found in the skin. If the control is not found, then

Nothing

 is returned. The

InitializeSkin

 method locates all three panels and repeaters in the
control and stores a reference to them using the class-level panel and repeater variables. This
is code that actually couples the UI in the skin to the business logic in the control. Notice that
this server control is looking for specific ID’s in the skin. There should be three panels:

MessagesPanel

,

ErrorMessagesPanel

, and

SystemMessagesPanel

. There should also be three
repeaters:

Messages

,

ErrorMessages

, and

SystemMessages

.
After references to all the controls in the skin have been acquired, the

InitializeSkin

method calls the

SetupRepeaterAndPanel

 function for each set of panels, repeaters, and

MessageDataCollection

 lists.

■

Note

The

PageMessageControl

 does not need to respond to any events because the user does not
interact with it after it has been displayed to the screen. If, however, you needed your control to respond to an
event fired from a control in the skin, the

InitializeSkin

 function is where you would want to set up any
necessary event handle routines, for example:

AddHandler ControlReference.EventName, AddressOf

➥

 EventHandlerInThePageMessageControl

SetupRepeaterAndPanel Method

This method accepts a repeater (

R

), a panel (

P

), and a

MessageDataCollection

(

Data

) as param-
eters. The method first checks to see whether or not the repeater was found. If so, it sets the
repeater’s data source and calls its

DataBind

 method. This populates the repeater with any
message information stored in the

MessageDataCollection

.
Next, the

SetupRepeaterAndPanel

 method checks to see if the panel exists. If so, it then
determines if the

MessageDataCollection

 contains any messages. If it contains messages, the
panel is set to

visible

. If the

MessageDataCollection

 is

Nothing

 or does not contain any
messages, then the panel is set to

invisible

.
Checking for the existence of the controls in the skin before actually using them ensures

that you won’t get an error if one or more of the controls are missing. In effect, this means that
the controls are not required and the skinned control gracefully handles their absence. This
allows for a degree of flexibility because you could, for example, create a page-message

UserControl

 skin that only displays one type of message. Of course, you may not want your
skinned control to be so forgiving. If controls are required to be in the

UserControl

 skin, then
feel free to throw an exception if they are not present.

6293_ch04.fm Page 139 Tuesday, November 15, 2005 2:47 PM

140 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

Defining a Standard Tag Prefix for Your Control Library
All server controls are required to have a tag prefix when they are added to a web form.
You may have noticed how all the standard web control use asp as the tag prefix, as in
<asp:label /> or <asp:textbox />. You may have also noticed when you drag a user control
onto a web form, a registers directive is created for you defining a tag prefix of cc1, cc2, and so
on, depending on how many custom controls (hence the cc) have been added to the page.

If you do not define a standard tag prefix for your custom control library, then Visual
Studio automatically creates a tag prefix for your control library on a page-by-page basis. Thus,
on one page, PageMessageControl may be defined as <cc1:PageMessageControl/> whereas on
another page it may be defined as <cc3:PageMessageControl/>.

If you want to use a specific tag prefix for the controls in your library, then you can define
it in the AssemblyInfo.vb file using the TagPrefix attribute. This helps ensure that the same
prefix is used each time your control is added to a page.

Getting to the AssemblyInfo.vb, however, is confusing the first time around because
it’s obscured in Visual Studio 2005. If you look in your Solution Explorer, you’ll see a
special project item named My Project located directly under the Messaging project. The
AssemblyInfo.vb file is actually displayed in this folder, but it isn’t visible until you click the
Show All Files icon in the Solution Explorer.

After the AssemblyInfo.vb file is visible, double-click it. It opens in the Visual Studio IDE.
Make sure that Imports System.Web.UI appears at the top of the file. Below the imports state-
ments, add the following code:

<Assembly: TagPrefix("Messaging", "msgControls")>

This informs the Visual Studio IDE to use msgControls as the tag prefix whenever it is
adding a control from the Messaging namespace to a web form.

Design Time Rendering
If you drop a PageMessageControl onto a web form in design mode, that PageMessageControl
won’t render because it has no messages to display. If you want your PageMessageControl to
display in design time, then you must implement your own design-time rendering capabilities
by implementing your own ControlDesigner class.

The System.Web.UI.Design.ControlDesigner is a base class that defines design-time
rendering capabilities for a control. By overriding the GetDesignTimeHtml function of this class,
you can make your control appear however you want on the design surface. Here’s the code for
the class:

Imports System.Web.UI.Design

Public Class PageMessageControlDesigner
 Inherits System.Web.UI.Design.ControlDesigner

6293_ch04.fm Page 140 Friday, November 11, 2005 2:52 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 141

 '===
 Public Overrides Function GetDesignTimeHtml() As String

 Const Style As String = "width:100%; padding:2px; " & _
 "background-color:Gainsboro;" & _
 "border:1px solid black;"

 Return String.Format("<div style='{0}'>Page Messages ({1})</div>
", _
 Style, ID)
 End Function

End Class

GetDesignTimeHtml returns a string containing the HTML that should be used to render the
control on the designer’s surface. In this case, the control appears as a gray-colored rectangle
with a black border that contains the name of the control. The style was broken out on another
line for readability; you can return the string from a single statement if you want to.

Now that you have this class defined, the Designer attribute on the PageMessageControl
should make a bit more sense:

<ToolboxData("<{0}:PageMessageControl runat=server></{0}:PageMessageControl>"), _
 Designer(GetType(PageMessageControlDesigner))> _
Public Class PageMessageControl

Before the Visual Studio IDE renders the PageMessageControl, it checks to see if the control
has a Designer associated with it. If so, it creates an instance of the Designer, calls the
GetDesignTimeHtml function, and displays the resulting HTML on the design surface. If there is
no designer, then the IDE instantiates an instance of your control and tries to render it as
thought it were on an actual page

Referencing the PageMessageControl in Your Web Project
Before you can use the PageMessageControl in your web project, you must add a reference to
the Messaging assembly. To do this, right-click on your web project and select Add Reference
from the context menu. When the Add Reference dialog box appears, select the Projects tab.
You should see Messaging listed in the selection area. Double-click the Messaging item and
the project reference is added to your web project. Your web project will be updated automat-
ically whenever you compile the Messaging assembly.

After adding the reference, the toolbox displays a new section called Messaging Compo-
nents containing the controls in the assembly whenever you are viewing a web form. In Visual
Studio 2003, you had to manually add controls to the toolbox even if your project already refer-
enced those tools, so this is definitely a step up. In the Messaging Components section, you’ll
find the PageMessageControl, which you can drag and drop onto a web form just like any other
server control.

6293_ch04.fm Page 141 Friday, November 11, 2005 2:52 PM

142 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

Creating the PageMessageControl’s Skin Files
Now that you’ve built the page-message server control, it’s time to create the skin files that the
control uses. As mentioned earlier, UserControl skin files are placed under the Skins folder of
your web application. Inside the Skins folder, you should have subfolders that match the direc-
tory structure of your App_Themes folder as shown in Figure 4-9.

Figure 4-9. As shown earlier in the chapter, subfolders in the Skins folder mimic the Themes in the
App_Themes folder.

You may look at the directory structure and, thinking that it looks a bit repetitive, wonder
why you can’t simply put your control skins in the Themes folder. ASP.NET does not allow any
files, other than .skin and .css files for Themes to be placed in the App_Themes folder. Hence
the reason why you need to build out the separate directory structure. You mimic the
App_Themes directory because you use the theme information from the page to find the appro-
priate skin, for example, /Skins/<ThemeName>/<UserControlSkin>.ascx. You can see the code
used to build the path to your skin file in the LoadSkin function of the SkinnedWebControl
abstract class.

Over the course of the next few sections, you’ll build the UserControl skin files for the
page-message control. Figure 4-10 depicts how these controls will display in the browser when
they are completely finished.

Creating the PageMessageDefault.ascx Skin

The first skin you need to create is the default skin file that your control will use if the Skin➥

FileName property is not set. In this case, the name of the file is PageMessageDefault.ascx,
but that name will be different for every control you make. The file should be placed in the
Skins/Default folder of your website. By placing it in the folder, the SkinnedWebControl class
will use it if no themed version of the skin can be found.

6293_ch04.fm Page 142 Friday, November 11, 2005 2:52 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 143

Figure 4-10. Note how page messages and error messages are displayed using different skins. The
PageMessageIcons.aspx skin is included in the sample code, although it isn’t covered in this book.

This skin displays the page messages in a tabular format inside of a rectangular div
element with a gray (Gainesboro to be exact) background and Black border. Each message is
displayed on its own row of the table. System message and page message text is shown in
DarkGreen while error message text is shown in DarkRed. Each message is also prefixed with a
dash (-). The panel and repeater controls that are used by the PageMessageControl have been
bolded so they stand out:

<%@ Control Language="VB" %>
<div style="background-color:Gainsboro; width:100%;
 border:1px solid black;padding:5px;">
 <asp:Panel Runat=server ID=SystemMessagesPanel Visible=False>
 <asp:Repeater Runat=server id=SystemMessagesRepeater>
 <HeaderTemplate>
 <table cellspacing=0 cellpadding=2>
 </HeaderTemplate>
 <ItemTemplate>
 <TR>
 <td style="width:5px;font-weight:bold;">-</td>
 <td style='color:DarkGreen;'>
 <%#CType(Container.DataItem, Messaging.MessageData).Message%>
 </td>
 </TR>
 </ItemTemplate>
 <FooterTemplate>
 </table>

6293_ch04.fm Page 143 Friday, November 11, 2005 2:52 PM

144 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

 </FooterTemplate>
 </asp:Repeater>
 </asp:Panel>
 <asp:Panel Runat=server ID=MessagesPanel Visible=False>
 <asp:Repeater Runat=server id=Messages>
 <HeaderTemplate>
 <table cellspacing=0 cellpadding=2>
 </HeaderTemplate>
 <ItemTemplate>
 <TR>
 <td style="width:5px;font-weight:bold;">-</td>
 <td style='color:DarkGreen;'>
 <%#CType(Container.DataItem, Messaging.MessageData).Message%>
 </td>
 </TR>
 </ItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>
 </asp:Panel>
 <asp:Panel Runat=server ID=ErrorMessagesPanel Visible=False>
 <asp:Repeater Runat=server id=ErrorMessages>
 <HeaderTemplate>
 <table cellspacing=0 cellpadding=2>
 </HeaderTemplate>
 <ItemTemplate>
 <TR>
 <td style="width:5px;font-weight:bold;">-</td>
 <td style='color:DarkRed;'>
 <%#CType(Container.DataItem, Messaging.MessageData).Message%>
 </td>
 </TR>
 </ItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>
 </asp:Panel>
</div>

After the PageMessageControl loads this skin file, assuming there are messages to output,
the appropriate MessageDataCollection is bound to its corresponding repeater. This causes the
HeaderTemplate of the repeater, which begins an HTML table, to be printed out. Then, the
ItemTemplate is printed out for each message in the MessageDataCollection, filling the table
with rows of messages. When all the messages have been output, the FooterTemplate is output,
closing the table off. Refer to Figure 4-10 to see how this skin is displayed in the browser.

6293_ch04.fm Page 144 Friday, November 11, 2005 2:52 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 145

Creating the PageMessageJScriptAlert.ascx Skin

One of the reasons I chose to implement the PageMessageControl using Repeater controls
instead of DataGrid controls is that the repeater allows for a greater deal of flexibility. This next
example highlights that flexibility and shows you how you can use skins to completely change
the UI of the control. Instead of outputting messages visibly on the page, as in the last example,
the PageMessageJScriptAlert.ascx skin constructs a JavaScript message and calls the alert
function to display the message to the user as an alert box:

<%@ Control Language="VB" %>
<asp:Panel Runat=server ID=SystemMessagesPanel Visible=False>
 <script language=javascript>
 var SystemMessages = "System Message\n";
 <asp:Repeater Runat=server id=SystemMessagesRepeater>
 <ItemTemplate>
 SystemMessages +=
 ' - <%#CType(Container.DataItem, Messaging.MessageData).Message%>\n';
 </ItemTemplate>
 </asp:Repeater>
 alert(SystemMessages);
 </script>
</asp:Panel>
<asp:Panel Runat=server ID=MessagesPanel Visible=False>
 <script language=javascript>
 var Messages = "Messages:\n";
 <asp:Repeater Runat=server id=Messages>
 <ItemTemplate>
 Messages +=
 ' - <%#CType(Container.DataItem, Messaging.MessageData).Message%>\n';
 </ItemTemplate>
 </asp:Repeater>
 alert(Messages);
 </script>
</asp:Panel>
<asp:Panel Runat=server ID=ErrorMessagesPanel Visible=False>
 <script language=javascript>
 var ErrorMessages = "Error Messages:\n";
 <asp:Repeater Runat=server id=ErrorMessages>
 <ItemTemplate>
 ErrorMessages +=
 ' - <%#CType(Container.DataItem, Messaging.MessageData).Message%>\n';
 </ItemTemplate>
 </asp:Repeater>
 alert(ErrorMessages);
 </script>
</asp:Panel>

6293_ch04.fm Page 145 Friday, November 11, 2005 2:52 PM

146 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

If you look carefully, you’ll notice that this skin contains three panels and three repeaters,
exactly as the last example did. The difference is that this skin constructs JavaScript to output
a message in an alert box. So, you can make anything you want with a PageMessageControl skin
file, as long as you can do it with repeaters and panels. Refer to Figure 4-7 to see how this skin
is displayed in a browser.

■Note Check out the example application to see the PageMessageIcons.ascx skin, which places icons
next to each set of messages.

Control Skins and Themes

Just to clarify, you can have multiple skins in a single theme. You do this by creating skins with
different file names. That is why you have the PageMessageDefault.ascx, PageMessageJScript➥

Alert.ascx, and the PageMessageIcons.ascx files all residing in the same Skin directory
(Skins/Default).

You can also have themed skins. This requires creating a subfolder in your Skins folder
with the same name as one of your themes (for example, Skin/GreenTheme). Then you can place
a Skin file in the Skin/GreenTheme folder, and it will be used instead of the default skin when
that particular theme is being employed by the page. So, you may have a directory structure
that looks something like Figure 4-11 in your project.

Figure 4-11. File structure and contents of the Skin directory. Notice that it mimics the structure of
the Themes folder. Also notice that the PageMessageJScriptAlert.ascx file only appears in the
Default Skin folder.

If the control finds a UserControl skin in the theme’s directory, it uses that skin. If it does
not find the skin, then it reverts to the skin located in the Default folder If no theme is specified
for a given page, then the SkinnedWebControl looks for the control skin in the Default directory
of the Skins folder.

6293_ch04.fm Page 146 Friday, November 11, 2005 2:52 PM

C H A P T E R 4

■

 D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

147

Notice that the

PageMessageJScriptAlert.ascx

 skin does not appear in the

GreenTheme

 or

RedTheme

 folders. Because it’s a JavaScript alert box, there is very little you can do to change its
UI. Thus, this skin is left unimplemented in these themes. If a themed page requires the

PageMessageJScriptAlert.ascx

 skin, then the

SkinnedWebControl

 reverts to the

Default

 folder
to find the skin.

There are many valid reasons for not implementing a themed version of a skin. If you need
one, make it. If you don’t, just let the

SkinnedWebControl

 revert to the default skin.

■

Note

The sample code (available in the Source Code area of the Apress Web site) includes themed skins
for you to review. For the most part, they contain only cosmetic changes (different colors, backgrounds, and
so on), which is why they are not shown in this text. You can see these themed skins in action from the

MessagingDemo.aspx

 page.

Using the PageMessageControl

After you’ve added a project reference to the

Messaging

 assembly, the

PageMessageControl

appears in the Visual Studio toolbox in a section titled Messaging Components. You can drag
the

PageMessageControl

 onto the surface of a web form and drop it wherever you want it to
appear. The Visual Studio IDE uses the information from the

ToolboxData

 attribute to automat-
ically create the appropriate HTML markup to add to your web form. This includes both the
control and the appropriate

Register

 directive:

<%@ Register TagPrefix="msgControls" Namespace="Messaging" Assembly="Messaging" %>
<!-- Note: you could also make this a global registration tag if you wanted -->
...
<msgControls:PageMessageControl ID="PageMessageControl1" Runat="server" />

The only design-time change you can make to the

PageMessageControl

 is to specify an
alternative

SkinFileName

 property. You can do this directly by adding the property to the
control definition in HTML, or you can type in a new

SkinFileName

 in the Visual Studio prop-
erty editor. Either way, the HTML markup on the page is updated with the new

SkinFileName

property:

<msgControls:PageMessageControl ID="PageMessageControl1" Runat="server"

SkinFileName="PageMessageIcons.ascx"

/>

You can see a full-fledged demo of the

PageMessageControl

 on the

MessageDemo.aspx

 page
in the Source Code area on the Apress website.

Using Page Messages and Error Messages

After you’ve added a

PageMessageControl

 to your web form, you can add messages to it in code.
Most messages originate in try/catch statements or in decision trees that determine whether
an operation succeeded or failed.

6293_ch04.fm Page 147 Tuesday, November 15, 2005 6:03 PM

148 C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L

Try
 'Some operation that may or may not succeed
 PageMessageControl1.AddMessage("Operation Succeeded.")
Catch ex as Exception
 PageMessageControl1.AddErrorMessage("Operation Failed.")
End Try

Although the need for it should be rare, you can also clear page messages and error
messages:

PageMessageControl1.AddMessage("Operation Succeeded.")
PageMessageControl1.ClearMessages()

PageMessageControl1.AddErrorMessage("Operation Failed.")
PageMessageControl1.ClearErrorMessages()

Also know that you can add as many messages as you want to a page, and you can mix and
match different types of messages. They all will be displayed when the page is rendered. Be
conscious, however, of sending too many messages out at once. Information overload is just as
much of a problem as no information at all.

Using System Messages

System messages are designed for ad-hoc messages that need to be disseminated to users of
your application. Some good examples of system messages include notifications regarding a
system shutdown or performance issues. For example, if you are running a database backup
and you need to notify users that the system may be somewhat unresponsive during that
period of time, you can use a system message to help users understand why their access times
are slower than normal. This can reduce help calls while you are trying to get your backup
completed.

Following is an example of how to add system messages to the PageMessageControl:

PageMessageControl.AddSystemMessage("System may be slow during backup.")
PageMessageControl.AddSystemMessage("System Message #2")
PageMessageControl.AddSystemMessage("System Message #3")

After you’ve added a system message, it continues to display until it is removed. You can
remove system messages by clearing them out entirely or by removing a specific message
using its index:

PageMessageControl.RemoveSystemMessage(2)
PageMessageControl.ClearSystemMessages

The RemoveSystemMessage method removes the system message at the specified index.
Remember that the index is zero based, so the preceding code removes the third message in
the list. The next line clears out the system messages entirely. Also remember that if you restart
IIS, all system messages will be lost because they are stored in memory.

6293_ch04.fm Page 148 Friday, November 11, 2005 2:52 PM

C H A P T E R 4 ■ D E V E L O P I N G R E U S A B L E C O M P O N E N T S : T H E S K I N N E D P A G E - M E S S A G E C O N T R O L 149

Summary
After reading this chapter, you should be aware of the potential reusable controls have for
shaving time and effort off your overall project timeline. There are always benefits to spending
a little bit of time upfront to design tools to help you during the entire life of your project. You
also had a chance to look at some of the new features in ASP.NET 2.0, such as global tag regis-
tration, the design time rendering of UserControls, and the ControlState mechanism. And you
finished it all off by implementing a skinned control that allows you to easily communicate
status messages to the people who use your application. Let’s finish up with a thought on
skinned server controls.

Although the skinned page-message control is a very useful tool, it only scratches the
surface in terms of the potential for skinned controls. You can see the full potential of skinned
controls by taking a look at Community Server, a forum, gallery, and blogging application built
by Telligent Systems. Community Server is built almost entirely from skinned controls, which
allows you to customize the look and feel of the entire application to match the look and feel of
an existing site. All the following sites look completely different, but use the same core
Community Server blogging software to manage their content:

• http://gearlog.com/blogs/gearlog/default.aspx

• http://microsoftgadgets.com/

• http://blogs.msdn.com/

In effect, these companies rebranded the core Community Server application to visually
integrate with the rest of their website. If you are building an application intended for use by
multiple corporate clients, you can make your product much more attractive by building in
rebranding capabilities using skinned controls. It takes time and effort, but clients are
demanding more and more these days as web technology gets more sophisticated. You can
pull down the C# source for Community Server from http://www.CommunityServer.org to see
how it was put together.

6293_ch04.fm Page 149 Friday, November 11, 2005 2:52 PM

6293_ch04.fm Page 150 Friday, November 11, 2005 2:52 PM

151

■ ■ ■

C H A P T E R 5

User Management Tools and
Login Controls for Forms
Authentication

M

any business applications are intended solely for internal use and, as such, may rely on
corporate domain controllers and Active Directory to maintain users and their login informa-
tion. Of course, applications are not always solely intended for internal use; customers,
suppliers, partners and other external users with no access to a corporate domain regularly
need access to business applications. In fact, customer-facing business applications are often
huge revenue generators for companies. Just think about how many average people sign in to
eBay, PayPal, and Amazon every day. Smaller companies are also finding niche markets for
outsourced services using web applications. Two consulting firms I worked for paid a fairly
substantial monthly sum for an outsourced, web-based time-tracking and billing system.
Supporting external users is undoubtedly a common need in business application
development.

Microsoft was well aware of the need to support external users and designed ASP.NET with
an authentication mechanism known as Forms Authentication, which derives its name from
the fact that external users normally sign in to an application by entering their username and
password in a web-based form (domain users log in via a browser dialog box). Forms Authen-
tication relies on you, the developer, to manually authenticate a user against a data store and,
upon successful authentication, use the

System.Web.Security.FormsAuthentication

 class to
issue the user an authentication ticket. On subsequent requests, ASP.NET automatically picks
up that ticket, determines whether or not it’s valid, loads the username and ticket information
into an object, and places that object into the request context making it accessible from the
executing page via

Context.User

. This enables you to see who is accessing your application.
Most applications, however, also rely on user roles to allow different people varying

degrees of access to the system. Unfortunately, Forms Authentication does not automatically
load role information into the

Context.User

 object. If you want access to role information, you
must manually set and parse that information out of the authentication ticket or access role
information from a database or other data store. You’re also completely responsible for setting
up the database used to store user credentials and, as mentioned before, the code to authenti-
cate users against the database. All in all, Forms Authentication is a great mechanism, but it
does take a bit of setup and coding to actually use...at least it did before ASP.NET 2.0.

6293_ch05.fm Page 151 Friday, November 11, 2005 4:05 PM

152

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Microsoft augmented Forms Authentication by releasing a series of pretty spectacular
providers and login controls that automatically handle all the grunt work associated with
user management for your site. The membership provider can automatically create a user-
management database capable of storing user and roles. The Web Site Administration Tool
gives you a way to add, edit, and delete users and their respective roles in that database. The
login controls automatically authenticate users from the database and load the appropriate
user

and

 their roles into the request context. In other words, you can implement an entire user-
management system for your application without having to write a single line of code.

In this chapter, you’ll explore the new user-management features of ASP.NET 2.0 and see
the new login controls that are now available. Here’s a synopsis of the chapter:

•

Forms Authentication in ASP.NET:

 Describes how to manually implement Forms
Authentication in your applications. Remember, all the new tools in ASP.NET 2.0 are
augmentative in nature and are not meant to replace Forms Authentication. You can
still implement Forms Authentication manually if your application requires.

•

Working with the

Membership

 and

RoleManager

 Objects:

 Discusses the new providers that
make the automated user-management features of ASP.NET possible.

•

Managing Users with the Web Site Administration Tool:

 Demonstrates all the ins and
outs of adding, editing, and deleting users, setting up roles, and assigning users to roles
using the built-in web-based interface in ASP.NET.

•

Login Controls Overview:

Presents all the new login controls available in the Visual
Studio Toolbox and how to use them in your applications.

Before you get too deep into all the new features in ASP.NET, let’s take a minute to look at
some Forms Authentication basics and how to manually implement Forms Authentication for
your application.

Forms Authentication in ASP.NET

You can’t fully appreciate how much time and trouble the new user-management features in
ASP.NET 2.0 save you unless you understand how to manually implement Forms Authentica-
tion in your application. If you are already familiar with Forms Authentication from ASP.NET
1.x, everything you learned about Forms Authentication still applies because the Forms
Authentication architecture is still in place. All the new features simply make it easier to use
what is already there, and they do a lot of the grunt work for you. If you are not familiar with
Forms Authentication, then this section will familiarize you with it and teach you how to
implement it manually.

A manual implementation may be necessary for custom role and authentication schemes
that break the mold of a normal user-management scenario or at least a normal user manage-
ment scenario in the eyes of ASP.NET 2.0. I recently worked on an application designed to
support multiple corporate clients. It runs as a single application, but each corporate client has
a separate database in which to store application data. The new built-in user management
features in ASP.NET 2.0 expect all user information to be stored in a single database, so that
particular application required a manual Forms Authentication implementation. You never
know what kind of quirky situation may arise, so it’s best to be prepared for anything. In the
sections that follow, you’ll learn about a number of Forms Authentication topics. Pay careful

6293_ch05.fm Page 152 Friday, November 11, 2005 4:05 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

153

attention because many of the topics discussed apply regardless of whether or not you are
using the new ASP.NET 2.0 login tools.

■

Note

Examples for everything we discuss about manually implementing Forms Authentication in an appli-
cation can be found in the

ManualFormAuthWebsite

 in the sample application in the Source Code area of

the Apress website (http://www.apress.com).

Authentication Modes

Authentication

 is the process by which a system determines a user’s identity, and no discus-
sion about Forms Authentication is complete without a quick rundown of the other
alternatives. Knowing your options helps you know if you have chosen the correct one.

ASP.NET allows you to configure your applications using any one of four different authen-
tication modes: Windows, Forms, Passport, or None. The following sections provide a brief
synopsis of each authentication mode and the situations for which they are intended. Under-
stand, however, that a security architecture is operating behind the scenes when you use any
of these authentication options. Chapter 12 covers security in much more detail.

Windows Authentication

Windows Authentication allows IIS to authenticate the user via Basic (clear text), Digest, or
Integrated Windows Authentication. IIS checks the username and password acquired through
this process against the local or domain (Active Directory) user accounts to determine their
validity. If the username and password are not valid, then the browser prompts the user for a
valid username and password using a generic login dialog box (not a page-based login form).

One of the greatest benefits of Windows Authentication is that the authentication process
is highly transparent to Internet Explorer users. When people access an ASP.NET application
that uses Windows Authentication, Internet Explorer automatically sends their Windows
account information to the web server. Thus, Internet Explorer users do not have to continu-
ally reenter their login information to access web applications. Of course, this means that your
users must be using Internet Explorer. Other browsers such as Firefox and Netscape lack the
transparency because they do not automatically send account information to the web server.
Instead, they start off by displaying the generic login dialog box mentioned previously.

Windows Authentication requires all the people who use your application to have a local
Windows account or a domain (Active Directory) account. As such, internal business applica-
tions are most likely to use Windows Authentication because most businesses already have
Windows accounts in place for their employees.

■

Note

You cannot create Windows users via the ASP.NET 2.0 tools. You must use Active Directory to create

domain accounts or the User Accounts applet in the Control Panel to create local accounts.

6293_ch05.fm Page 153 Friday, November 11, 2005 4:05 PM

154

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Internal business applications also have the most to gain in terms of the transparency
provided by Internet Explorer. Employees normally do not enjoy having to log in to their
computer when they first boot up, then when they access the sales system, then when they
access customer information, and then again when they hit the HR application. And most
businesses tend to standardize on a single platform, so you can be relatively assured that
everyone is using the same browser, for example Internet Explorer.

Unless you have some compelling reason to do otherwise, you should not use Windows
Authentication for public-facing applications. Home users have their own local accounts and
cannot authenticate using that account on your web server. As such, they are forced to enter
their login information (that is, their Windows login for your network, not their home
computer) in that generic login dialog box discussed earlier, which is none to intuitive for the
average computer user. Plus, maintaining Windows accounts for a large number of external
users is a maintenance nightmare.

Forms Authentication

Forms Authentication allows people to identify themselves by entering their username and
password in a web-based login form instead of the generic login dialog box generated by the
browser. A person’s username and password are validated against a user information data
store (database, XML file, and so on). After being successfully authenticated, the system issues
that person an authentication ticket that identifies the authenticated user on subsequent
requests. People are considered authenticated as long as their authentication ticket is valid.

Public-facing sites typically use Forms Authentication for a couple of important reasons.
First, the actual login experience is much more user friendly. The web-based form can include
instructional text, graphics, and helpful links to quickly help people retrieve forgotten pass-
words or contact customer service. So the login look and feel can match your site and you can
make it far more intuitive than the generic login dialog box associated with Windows Authen-
tication. Second, Forms Authentication uses login credentials that are not tied to Windows
accounts, so you can easily support and maintain a massive user base by storing login informa-
tion in a database.

Many of the pitfalls associated with Forms Authentication were outlined in the opening of
this chapter. What it boils down to is that you have to do some auxiliary work to get Forms
Authentication up and running. This includes building a user-management database, devel-
oping code to validate user credentials against that database, and manually adding role
information to the

Context.User

 principal object (principal objects are discussed in more
detail in Chapter 12).

When it comes to public-facing sites, Forms Authentication is definitely the route you
want to take. You may also want to consider Forms Authentication if your company has stan-
dardized on something other than Internet Explorer because it at least provides you a bit of
control over the login experience.

Passport Authentication

Passport Authentication is Microsoft’s single-login framework, and it is supported in ASP.NET
2.0. This authentication method seems to be losing industry acceptance and is slowly disap-
pearing from non-Microsoft sites.

6293_ch05.fm Page 154 Friday, November 11, 2005 4:05 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

155

No Authentication

Specifying

None

 as the authentication type removes all authentication from your application.
This is the best option if your application does not need to authenticate users because it
removes the authentication overhead from your application.

Configuring an Authentication Mode for Your Application

You configure the authentication mode type for your application by setting the

mode

 attribute in
the

<authentication>

 section of

Web.config

. The mode attribute can accept one of four settings,
which correspond to the mode discussed earlier:

Windows

,

Forms

,

Passport

, or

None

. Windows
Authentication is the default mode for new web applications. Listing 5-1 provides an example
configuration that shows you how to enable Forms Authentication for your application.

Listing 5-1.

 Configuring an Application to Use Forms Authentication

<configuration>
 ...
 <system.web>
 ...

 <authentication mode="Forms" />

 </system.web>
</configuration>

Setting the

mode

 attribute value to

“Forms”

 enables Forms Authentication for your applica-
tion, but that is only the beginning. A lot of work is still involved with manually implement
Forms Authentication on an application.

Authentication Tickets in Concept

Conceptually, an authentication ticket is like a movie ticket. When you go to the movies you
stop at the ticket booth, pay the attendee, and in return he gives you a ticket. That ticket means
that you have paid for a movie and should be admitted to the movie theater. If you attempt to
get into the movie theater without a ticket, then you are simply denied admittance. If you
attempt to get into a movie using an outdated ticket, you will also be denied admittance.

Similarly, when you log in to an ASP.NET web application that uses Forms Authentication,
ASP.NET issues you an authentication ticket. That ticket tells ASP.NET that you have already
entered your username and password, that your username and password were valid, and that
you should be considered authenticated as long as the ticket is valid. Authentication tickets
also have expirations. If a ticket has expired, ASP.NET disregards the ticket because it is invalid,
and the user must log in again.

Authentication Cookies

Most applications issue authentication tickets via authentication cookies, which is just a way
of saying a cookie that contains an authentication ticket. This has some interesting implica-
tions when it comes to expirations. Although authentication tickets have expirations and
cookies have expirations, they are two completely separate things.

If your authentication ticket expires before your cookie expires, then ASP.NET disregards
the ticket because it has expired. If your cookie expires before your authentication ticket, then

6293_ch05.fm Page 155 Friday, November 11, 2005 4:05 PM

156

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

ASP.NET never receives the authentication ticket because the browser simply deletes the
cookie. Either way, you have to reauthenticate. This tends to cause a lot of problems when
creating persistent authentication tickets (that is, the “Remember Me” functionality that
allows users to remain logged in between browser session). If you make a persistent authenti-
cation ticket, make sure you place it in a persistent cookie.

Specifying a Default Login Page and Login Redirection URL

Although you can put a login form on any page you want, there should be one page that acts as
the default login page. ASP.NET sends users to the default login page when they attempt to
access a protected resource before logging in to the application. You configure the default
login page via the

loginUrl

 attribute of the

<forms>

 element.
When ASP.NET redirects users to the default login page, it appends a query string variable

named

ReturnUrl

 containing the location to which the user was denied access. After the user
successfully logs in, you can redirect them back to this page so they do not have to navigate to
it again. Of course, users can also manually navigate to the default login page (by clinking on a
link), in which case, there is no

ReturnUrl

 variable. In this case, the user should be redirected
to a default page for logged in users. You can specify this default login redirection URL via the

defaultUrl

 attribute of the

<forms>

 element. Tools in the

FormsAuthentication

 class automati-
cally determine whether the user should be redirected using the

ReturnUrl

 in the query string
or the

defaultUrl

 in

Web.config

. You’ll see examples of these shortly.
Listing 5-2 is an example showing how to configure a default login page and a default login

redirection page.

Listing 5-2.

 Configuring a Default Login Page and Login Redirection URL

<configuration>
 ...
 <system.web>
 ...
 <authentication mode="

Forms

">

 <forms loginUrl="MyLoginForm.aspx" defaultUrl="SuccessfulLogin.aspx"/>

 </authentication>
 </system.web>
</configuration>

If you do not specify a default login page, then ASP.NET redirect the user to

Login.aspx

 in
the root folder of your application. And, in turn, if you do not have a

Login.aspx

 page in your
application root, then your users will see a 404 not found error because the page does not exist.
So, it is in your best interest to define a default login page or make sure that the

Login.aspx

page exists in your application root.

Other Forms Authentication Configuration Options

Aside from defining the default login page and default login redirection URL, you can also
configure a number of other Forms Authentication options within the

<forms>

 element. Table
5-1 provides a quick rundown of the various attributes you can specify and what they do.

6293_ch05.fm Page 156 Friday, November 11, 2005 4:05 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

157

Table 5-1.

<forms>

 Element Attribute Descriptions

Attribute Name Default Value Description

loginUrl login.aspx

Defines the location relative to

Web.config

 to which
unauthorized users are redirected when they attempt
to access a protected resource. When they are sent to
this page, the redirection includes a query string value
indicating the page they were attempt to access so they
can be redirected there after logging in.

defaultUrl default.aspx

Defines the default location to which users are redirected
after successfully logging in. If the user was directed to
the login page while trying to access a protected resource,
then the user is returned to the protected resource, not to
the location defined by this attribute.

cookieless UseDeviceProfile

Forms Authentication can store a user’s authentication
data in a cookie or as a query string value. The query
string is widely supported, but often results in authenti-
cation data being lost during navigation. Cookies are
more reliable, but cookie support may be disabled by
security-conscious users. The cookieless attribute has
four settings that allow you to configure how Forms
Authentication should store authentication data:

cookieless Values Description

UseCookies

Forms Authentication always uses cookies. If the
browser does not support cookies, or cookies have
been disabled, the user is not allowed to access the
application.

UseUri

Forms Authentication always stores authentication
data in the query string and does not attempt to use
cookies. This is good if your target users normally have
cookies disabled or are using older browsers that do
not support cookies.

AutoDetect

Browsers send information identifying the type and
version of the browser, and ASP.NET maintains a
repository of browser types, versions, and the features
they support. If ASP.NET knows, based on that reposi-
tory, that the browser supports cookies, then ASP.NET
probes the browser to determine if cookies are
enabled. If cookies are enabled, then ASP.NET writes
authentication data to the cookie. Otherwise, ASP.NET
writes data to the query string.

UseDeviceProfile

This works similarly to the

AutoDetect

, but the deci-
sion to use cookies is solely based on ASP.NET’s
browser feature repository. ASP.NET does not probe to
check whether cookies are enabled. If the browser is
known to support cookies, but the user has disabled
cookies, the user is unable to access the application.

6293_ch05.fm Page 157 Friday, November 11, 2005 4:05 PM

158

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Table 5-1.

<forms>

 Element Attribute Descriptions (Continued)

Attribute Name Default Value Description

name .ASPXAUTH

Defines the name of the cookie that contains the user’s
Forms Authentication data. If you are running multiple
applications on a single server and each one requires its
own authentication cookie, then you’ll need to change
the name of this cookie for each individual application
to avoid issues with overwriting authentication data.

timeout 30

Defines the length of time a cookie is valid (in
minutes). Users who are idle for more than this time
period must log in to the application again. The cookie
timeout does not apply to permanent cookies.

slidingExpiration False Conventional logic dictates that cookie timeouts
should be reset on every request. Using the default
30-minute timeout as a guide, this means that if a user
accesses a page at page at 12:00 and then again at
12:10, the timeout will not occur until 12:40. Such is
not the case because ASP.NET is optimized to reduce
cookie setting to lessen network traffic and to avoid
accosting users who have cookie alerts enabled. By
default, ASP.NET only resets the timeout when more
than half of the timeout time has passed. So, a user
accessing a page at 12:00 and then again at 12:10, is
still subject to a timeout at 12:30. You can force
ASP.NET to reset the timeout on each request by
setting the slidingExpliration attribute to True.

domain Defines the domain for which the cookie is valid.
Before the browser requests a page, it checks to see if
any cookies match the domain and path of the request.
If so, it sends that cookie along with the request.

path / Defines the path in your application past which
authentication cookies should be sent. For example, if
you specify /Protected/ as the path, then cookies are
only sent to your application if the user requests some-
thing in the /Protected/ folder or a subfolder of the
/Protected/ folder. Be wary of using this setting
because case-sensitivity issues may result in a browser
not sending the cookie.

protection All Defines the protection placed on Forms Authentica-
tion cookies.

6293_ch05.fm Page 158 Friday, November 11, 2005 4:05 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

159

Forms Authentication also supports a

<credentials>

 section that allows you to hard-code
users and passwords directly in

Web.config

. This was a quick and dirty way for developers
to create users for a Forms Authentication application without having to use a database. It
was seldom used in ASP.NET 1.1, and its use continues to decline because of the built-in
membership and role providers in ASP.NET 2.0 (see Chapter 5).

All the configuration options from the Table 5-1 apply regardless of whether you are doing
a manual implementation or using the new ASP.NET 2.0 login tools.

Manually Implementing Forms Authentication

All the information about Forms Authentication that you have read so far applies regardless of
whether or not you are using the new ASP.NET 2.0 login controls. In this section, however,
you’ll be looking at how Forms Authentication was handled in ASP.NET 1.x. As mentioned
before, Forms Authentication has not changed in ASP.NET 2.0, so you can still use this
approach to manually implement Forms Authentication in your ASP.NET 2.0 applications if
the new login tools do not fit your needs.

Value Description

Protection value

Cookies are not validated or encrypted. This has a slight
performance benefit, but it means that malicious users
could read and or alter cookie information. Only consider
using this option if your application requires SSL (HTTPS)
because cookies are encrypted along with all other
communications over SSL connections.

Validation

Creates a message authentication code (MAC) by hashing
the cookie data using a validation key. The resulting MAC
hash is then appended to the cookie data. When ASP.NET
receives the cookie on a subsequent request, it hashes the
cookie data using the same validation key and checks the
result against the MAC hash in the cookie. If both items
match, then the data in the cookie has not been altered
and the cookie is considered valid.

Encryption

Cookie data is encrypted using DES (Data Encryption Stan-
dard) or Triple-DES encryption and stored in the cookie.
On subsequent requests, ASP.NET decrypts the cookie
data. Validation is not used in this scenario, so the cookie
may be susceptible to attacks. You specify the encryption
algorithm in the

<machineKey>

 element in

Machine.config

or

Web.config.

All

Applies both

Validation

 and

Encryption

 to the cookie.

All

is the most secure option and is therefore both the recom-
mended and default option as well.

Attribute Name Default Value Description

requireSSL False

Defines whether an SSL connection is required to send the
authentication cookie. When set to

True

, ASP.NET informs
the browser that the cookie should only be sent over a
secure connection.

6293_ch05.fm Page 159 Tuesday, November 15, 2005 5:39 PM

160 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

In the sections that follow, you’ll see how to build a login form, authenticate users, construct
an authentication ticket, fill that authentication ticket with role information, and parse that role
information out on subsequent requests so you can use it on the pages in your application.

Building a Login Form

Before you can let people log in to your application, you need a login form, and almost every
login page ever built has two text boxes to allow people to entire their username and password.
Our login form has both of these entry controls as well as a Remember Me check box that
allows users to decide whether they want the application to remember their login information
when they close down the browser. This allows them to return to your application and use it
without having to log back in.

The login form also has two login buttons. One demonstrates how to log in by placing role
information directly in the authentication ticket, and the other demonstrates how to log in
without placing role information in the authentication ticket. Listing 5-3 provides the defini-
tions for the controls in the login form without any visual or layout formatting.

Listing 5-3. Textbox Controls for a Username and Password

<asp:TextBox runat="server" ID="txtUsername" />
<asp:TextBox runat="server" ID="txtPassword" TextMode="password" />
<asp:Button runat="server" ID="btnLogin" Text="Login with Roles" />
<asp:Button runat="server" ID="btnLoginNoRoles" Text="Login without Roles" />

After users enter their login credentials you have to authenticate those users by checking
their credentials against a data store. We’ll tackle that next.

Authenticating Users Against a Data Store

One aspect of manually implementing Forms Authentication is writing the code to authenticate
users by validating their login credentials. Normally, you authenticate users against a database of
usernames and passwords using a standard SQL query. For the sake of simplicity, the usernames
and passwords are hard-coded directly in the sample application as shown in Listing 5-4.

Listing 5-4. Example Authentication Method

'***
Private Function AuthenticateUser(ByVal Username As String, _
 ByVal Password As String) As Boolean
 Select Case UCase(Username)
 Case "BOB" : Return CBool(Password = "bobpassword")
 Case "JANE" : Return CBool(Password = "janepassword")
 Case "MARK" : Return CBool(Password = "markpassword")
 Case Else : Return False
 End Select
End Function

This method accepts a username and password and then checks to see if the user-
name and password match any of the three hard-coded users in the sample application. The

6293_ch05.fm Page 160 Friday, November 11, 2005 4:05 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

161

username is not case sensitive because the method forces it into uppercase before checking it,
but the passwords are case sensitive.

Determining User Roles

Your application is likely to store role information in a database along with the relationships
that associates users to those roles. Figure 5-1 depicts a simple but commonly used database
structure for storing users, roles, and user-role assignments. Normally, you pull role informa-
tion out of the database by executing a query requesting roles for the authenticated user.
Again, for simplicity, the example application uses hard-coded role information instead of
accessing role information from a database as shown in Listing 5-5.

Listing 5-5.

 Example User-Role Acquisition Method

'***
Private Function GetUserRoles(ByVal username As String) As String
 Select Case UCase(username)
 Case "BOB" : Return "employee|sales"
 Case "JANE" : Return "executive|marketing"
 Case "MARK" : Return "contractor|support|admin"
 Case Else : Return ""
 End Select
End Function

The

GetUserRoles

 function accepts a username as a string and returns a string containing
a pipe-delimited list of roles for the user. Again, the username is not case sensitive because the
method forces it into uppercase before comparing it to the hard-coded values.

Figure 5-1.

 Simple entity relationship diagram for storing users, roles, and role assignments in a
database

Issuing an Authorization Ticket Without Role Information

Authentication tickets must include a value that identifies the user and can optionally include
role information. If your application does not require any role information, then you can issue
an authentication ticket without too much hassle using the not intuitively named

Forms

➥

Authentication.RedirectFromLoginPage

 method.
The

RedirectFromLoginPage

 method accepts two parameters:

username

 and

create

➥

PersistentCookie

.

Username

 is the name of the authenticated user and

createPersistentCookie

denotes whether the cookie issued to the user is persistent (persists between browser sessions)
or deleted when the user closes the browser. The method issues the user an authentication
ticket in accordance with the configuration settings in the

<forms>

 element in

Web.config

 and
then redirects the user to the

ReturnUrl

 in the query string, if available, or the

defaultUrl

specified in

Web.config

. Listing 5-6 is the code from the

Click

 event handler for the

btnLogin

➥

NoRoles

 button, which demonstrates how to use the

RedirectFromLoginPage

 method.

6293_ch05.fm Page 161 Tuesday, November 15, 2005 3:51 PM

162

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Listing 5-6.

 Issuing an Authentication Ticket Without Role Information

'***
Protected Sub btnLoginNoRoles_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnLoginNoRoles.Click

 If AuthenticateUser(txtUsername.Text, txtPassword.Text) Then

 FormsAuthentication.RedirectFromLoginPage(txtUsername.Text, _
 chkRememberMe.Checked)

 End If

 End Sub

Notice that the event handler first authenticates the user information entered into the
form and then calls the

RedirectFromLoginPage

 method. Remember, the authentication ticket
implies that you have authenticated the user already so you shouldn’t issue it until the user has
actually been authenticated.

Issuing an Authorization Ticket with Role Information

Authentication tickets have a string property that allows you to store custom user data along
with the rest of the ticket information. This was not expressly designed to store roles, but it
works well for the task. Unfortunately, the

FormsAuthentication

 class does not give you a
way to set that custom user data property from a convenient method such as

RedirectFrom

➥

LoginPage

, so you have to manually create the authentication ticket to get access to the custom
user data property. You also have to manually create the authentication ticket that stores that
authentication ticket.

Listing 5-7 is the code for the

Click

 event handler for the

btnLogin

 button, along with the
code for

CreateAuthenticationTicket

, which handles building the authentication ticket and
cookie.

Listing 5-7.

 Manually Building an Authentication Ticket and Cookie

'***
Protected Sub btnLogin_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnLogin.Click

 If AuthenticateUser(txtUsername.Text, txtPassword.Text) Then
 CreateAuthenticationTicket(txtUsername.Text, chkRememberMe.Checked)
 End If

End Sub

'***
Private Sub CreateAuthenticationTicket(ByVal username As String, _
 ByVal isPersistent As Boolean)

6293_ch05.fm Page 162 Tuesday, November 15, 2005 3:51 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

163

 'Set up variables for authentication ticket
 Dim version As Integer = 1
 Dim issueDate As DateTime = Now
 Dim expirationDate As Date
 Dim userData As String = GetUserRoles(username)
 Dim cookiePath As String = "/"

 'Set the expirationDate
 If isPersistent Then
 expirationDate = Now.AddYears(1)
 Else
 expirationDate = Now.AddMinutes(60)
 End If

 'Set up the authentication ticket
 Dim FormAuthTicket As FormsAuthenticationTicket = _
 New FormsAuthenticationTicket(version, username, issueDate, _
 expirationDate, isPersistent, userData, cookiePath)

 'Encrypt the ticket content as a string so it can be stored in a cookie
 Dim encTicket As String = FormsAuthentication.Encrypt(FormAuthTicket)

 'Place the encrypted ticket in a cookie
 Dim AuthCookie As HttpCookie = _
 New HttpCookie(FormsAuthentication.FormsCookieName, encTicket)

 'Set cookie duration if necessary
 If isPersistent Then AuthCookie.Expires = Now.AddYears(1)

 'Send cookie back to user
 Response.Cookies.Add(AuthCookie)

 'Redirect user to the page from whence they came
 Response.Redirect(FormsAuthentication.GetRedirectUrl(username, isPersistent))

End Sub

As you can see the, the

btnLogin_Click

 method simply authenticates the user and then
calls the

CreateAuthenticationTicket

 method.

CreateAuthenticationTicket

 accepts two
parameters:

username

 identifies the user who has been authenticated, and

isPersistent

 deter-
mines whether or not to issue a persistent authentication ticket. The

isPersistent

 value comes
from the

Remember Me

 check box on the login form.
The

CreateAuthentictionTicket

 method starts out by setting up a series of variables used
to create the authentication ticket. Notice that

issueDate

 is set to the current date and time
using the

Now()

 method,

userData

acquires a pipe delimited list of user roles using the

GetUserRoles()

 method, and

expirationDate

 is set to either 60 minutes or 1 year in the future
depending on the value of the

isPersistent

 method parameter (these are arbitrary values, you
can make them shorter or longer depending on your particular needs). Next, the method

6293_ch05.fm Page 163 Tuesday, November 15, 2005 3:51 PM

164 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

creates a FormsAuthenticationTicket using the values it just defined. For reference, the
version, cookiePath, and isPersistent values are informative in nature and have no bearing
on the way ASP.NET handles an authentication ticket. In theory, you can use the version value
to vary how your custom code handles authentication tickets, but it’s rarely used. The
cookiePath value has absolutely no bearing on the actual authentication cookie path. Nor does
isPersistent value have any bearing on the expiration dates on the authentication ticket or the
authentication cookie. They really are only there for reference.

After creating the FormsAuthenticationTicket object, the CreateAuthenticationTicket
method encrypts the ticket by passing it into the FormsAuthentication.Encrypt method. The
Encrypt method uses cryptographic settings from the <MachineKey> element in Machine.config to
encrypt the ticket as a string. Web applications that reside on the same server encrypt their tickets
using the same encryption settings, unless those settings are explicitly changed by creating a
custom <MachineKey> section in your application’s Web.config file (see the “Encrypted Passwords
and the <MachineKey> Element” sidebar for information). Applications that use the same
<MachineKey> settings can decrypt each other’s encrypted authentication tickets, so it’s possible to
share authentication cookies between two different applications. You must also create matching
<MachineKey> settings for applications hosted by a web farm. Any server in the farm could create
an authentication ticket, and any other server in the farm could have to decrypt it. As such, they all
need matching <MachineKey> settings to function properly. A full description about sharing
authentication tickets is beyond the scope of this book. You should understand, however, that the
<MachineKey> settings and authentication cookie names must be identical, and the cookie path
must be set to a value that allows both applications to receive the cookie.

After the method encrypts the ticket, it creates an authentication cookie object using the
value from FormsAuthentication.FormsCookieName as the cookie name. Remember, you
configure the authentication cookie name in Web.config (refer to the name attribute in Table
5-1), so ASP.NET expects the authentication ticket to be in a cookie with that name. Also note
that the cookie value uses the value from the encrypted ticket string.

After the cookie is created, the CreateAuthenticationTicket method checks to see if the
authentication ticket is persistent. If so, it makes the cookie persistent by settings is expiration to
one year in the future. You can make the cookie expiration date higher if you want, but normally a
year is sufficient. The method then adds the cookie to the outgoing response so it will be sent back
to the browser. Finally, it redirects the user via the FormsAuthentication.GetRedirectUrl method,
which determines whether the user should be redirected to the default login page defined in
Web.config or to the page specified in the ReturnUrl variable that comes in on the query string.

■Caution When you implement your own authentication tickets, you lose the ability to configure cookie
and ticket settings in Web.config because you are manually setting those values in code.

Making Role Information Available to Pages in Your Application

Placing role information into the authentication ticket does not automatically make it avail-
able to the application. Remember, the authentication ticket stores the role information in an
ad-hoc user-data property, so it has no idea that it’s supposed to be used to define roles. You
have to manually parse out the role information, place it in a principal object, and then set the
Context.User property equal to that principal object (principal objects are discussed in more
detail in Chapter 12).

6293_ch05.fm Page 164 Friday, November 11, 2005 4:05 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

165

You need to complete these tasks in the

AuthenticateRequest

 event of the application
because the ASP.NET security model expects authentication information to be available
immediately after the event fires. The code to make roles available to the pages in your appli-
cation appears in the

Global.asax

 file (see Listing 5-8).

Listing 5-8.

 Making Role Information Availble to Pages in Your Application

'***
Protected Sub Application_AuthenticateRequest(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 Dim authCookie As HttpCookie
 Dim authTicket As FormsAuthenticationTicket
 Dim roles() As String
 Dim identity As FormsIdentity
 Dim principal As GenericPrincipal

 'Acquire the authorization cookie
 authCookie = Request.Cookies(FormsAuthentication.FormsCookieName)

 'Only process the authorization cookie if it is available
 If Not authCookie Is Nothing Then

 'Decrypt authorization cookie to acquire the authentication ticket
 authTicket = FormsAuthentication.Decrypt(authCookie.Value)

 'Make sure the authentication ticket has not expired
 If Not authTicket.Expired Then

 'Parse the pipe-delimited role string into a string array
 If Not authTicket.UserData = Nothing Then
 roles = authTicket.UserData.Trim.Split("|")
 Else
 roles = New String() {}
 End If

 'Create the principal object and assign it to Context.User
 identity = New FormsIdentity(authTicket)
 principal = New GenericPrincipal(identity, roles)
 Context.User = principal

 End If

 End If

End Sub

The

Application_AuthenticateRequest

 method begins by acquiring the authentication
cookie from the

Request

 object. Assuming the cookie exists, the method acquires the

6293_ch05.fm Page 165 Tuesday, November 15, 2005 3:52 PM

166

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

authentication ticket by passing the cookie value into the

FormsAuthentication.Decrypt

method. The method then checks to make sure the authentication ticket has not expired. If the
cookie is not present or the authentication ticket has expired, the user is not authenticated.

After determining the user has a valid authentication ticket, the method checks to see if
there is any data in the

UserData

 property of the authentication ticket. If so, it assumes the data
is a pipe-delimited list of roles, splits them into a string array using the pipe as a delimiter, and
stores them in the

roles

 variable. If no data is present in the

UserData

 property, then the
method assigns

roles

 an empty string array.
Finally, the method constructs a

FormsIdentity

 object by passing in the authentication
ticket to the

FormsIdentity

 object constructor. This creates an object that represents the
authenticated user. Then the method creates a new

GenericPrincipal

 object by passing in the

FormsIdentity

 object it just created along with the

roles

 array to the

GenericPrincipal

constructor. This creates an object that represents an authenticated user and the roles to
which that user belongs. Finally, the method assigns the

GenericPrincipal

 object to the

Context.User

 property. This makes the user and role information available to the page in your
application.

■

Tip

You do not have to store role information directly in the authentication ticket. You can use this same
technique to acquire role information directly out of a database or other data store. Also, if your users tend to
have a large number or roles (15–20), then you may want to shy away from storing them directly in an authen-
tication ticket for performance purposes. The authentication ticket works best when storing a relatively limited

number of roles (1–5).

Using Roles Information in Your Application

After you load the role information into the

Context.User

 object, you access role information in
your page via the

User.IsInRole

 method. This method accepts a string containing a role name
and checks through all the roles with which that user is associated. If the user is in the specified
role, then the method returns

True

, otherwise, it returns

False

.
Listing 5-9 demonstrates the

User.IsInRole

 method.

AddLabelText

is a utility method that
appends the specified text to a label on the page.

Listing 5-9.

User.IsInRole

 Example

AddLabelText("You are logged in as " & User.Identity.Name)
If User.IsInRole("admin") Then AddLabelText("You are in the admin role")
If User.IsInRole("contractor") Then AddLabelText("You are in the contractor role")
If User.IsInRole("employee") Then AddLabelText("You are in the employee role")

Now, it took a lot of work to make roles available to the application and you didn’t even
have to get into creating the database to store the user and role information or the database
queries required to pull information out of a database. On top of that, you still need a way to
maintain users, roles, and user-role assignments. Now let’s shift focus and take a look at how
ASP.NET 2.0 can take care of all the grunt work automatically.

6293_ch05.fm Page 166 Tuesday, November 15, 2005 3:52 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 167

Working with the Membership and Roles Objects
Microsoft designed many of the new features in ASP.NET 2.0 to be completely data-source
independent by implementing those features using the provider model. In the provider model,
you have a broker class that exposes properties and methods but does not have any logic to
implement them, an abstract base class that defines the functionality required to implement
the method and properties in the broker class, and a number of “provider classes” that provide
various data-source specific implementations of the method and properties defined in the
abstract class.

As a developer, you only interact with the properties and methods on the broker object,
which, of course, do not contain any implementation logic. Behind the scenes, the broker
object uses configuration settings in Web.config to load an appropriate provider class to actu-
ally do the work. This abstracts you from the implementation details. Behind the scenes, your
application could be accessing SQL Server, Oracle, MySQL, Access, an XML file, or even an
Excel spreadsheet, and you would never know the difference. Plus you have the added benefit
of being able to change provider classes via the configuration without having to change your
code.

The Membership and Roles are both “broker” objects that use the provider model to shield
you from the nasty implementation details of user and role management. In this chapter, you’ll
see how to configure and use them in your applications.

The Membership Object
The Membership object exposes all the ASP.NET 2.0 user-management functionality from a
single location. Because it uses the provider model, you can configure the Membership object to
access any data source for which a membership provider exists. Out of the box, ASP.NET 2.0
only has two providers: the SqlMembershipProvider, which provides the Membership object with
functionality for SQL Server, and the AspNetActiveDirectoryMembershipProvider, which
provides support for Active Directory. You can expect other vendors and third-party software
developers to create their own providers as the technology progresses. For reference, all
membership providers inherit from the abstract MembershipProvider class in the
System.Web.Security namespace.

A number of new tools and controls in ASP.NET rely on the Membership object for
user-management functionality. The Web Site Administration Tool, for example, uses the
Membership object extensively to support adding, editing, and deleting users. Many of the new
login controls also rely on the Membership object to validate login credentials, look up email
addresses, and add new users to the application.

Tables 5-2 and 5-3 list the more important properties and methods of the Membership
object. Also understand that membership providers have many of the same properties and
methods. Ultimately, the Membership object uses a membership provider for its functionality,
so they naturally have a lot in common.

6293_ch05.fm Page 167 Friday, November 11, 2005 4:05 PM

168

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Table 5-2.

Membership

 Object Properties

Property Name Type Description

ApplicationName String

Name of the application. The membership
provider may store data for multiple applications,
so it needs to know the identify of the application.

EnablePasswordReset

(Read-Only)

Boolean

True if the membership provider allows users to
reset their password.

EnablePasswordRetrieval

(Read-Only)

Boolean

True if the membership provider allows users to
retrieve a forgotten password.

MaxInvalidPasswordAttempts

(Read-Only)

Integer

Maximum number of times users may enter a
password without being locked out of their
account. The number of invalid attempts must
occur in the time frame defined by the

PasswordAttemptWindow

 property.

MinRequiredNon

➥

AlphanumericCharacters

(Read-Only)

Integer

Minimum number of nonalphanumeric charac-
ters (not A–Z or 0–9) required for a user’s
password to be valid.

MinRequiredPasswordLength
(

Read-Only)

Integer

Minimum number of characters required for a
user’s password to be valid.

PasswordAttemptWindow

(Read-Only)

Integer

Number of minutes in which the maximum
number of invalid password attempts must occur
for a user to be locked out.

PasswordStrength

➥

RegularExpression
String

Regular expression used to validate password
strength. Password strength is usually dictated by
length and presence of nonalphanumeric charac-
ters (for example, MyDogSkip vs. My_D0g_$k1p!).
You can use this property to define a regular
expression that forces users to have a minimum
amount of numbers and nonalphnumeric charac-
ters for their password.

Provider MembershipProvider

Returns a reference to the default

Membership

➥

Provider

 for the application.

Providers MembershipProvider

➥

Collection

Returns a collection of the

MembershipProviders

available to the application.

RequiresQuestionAndAnswer

(Read-Only)

Boolean

True if the membership provider requires users to
answer a security question before retrieving or
resetting a password.

UserIsOnlineTimeWindow

(Read-Only)

Integer

Number of minutes after the last user activity that
the user is considered to be online. This affects the
membership provider’s

GetNumberOfUsersOnline

function.

6293_ch05.fm Page 168 Tuesday, November 15, 2005 5:40 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

169

You may have noticed that the overwhelming majority of the

Membership

 object properties
are read-only. You have to set them when you configure the provider. We’ll discuss that
shortly.

Table 5-3.

Membership

 Object Methods

Method Name Parameters Returns Description

CreateUser username

As String

password

As String

email

As String

passwordQuestion

As
String

password
Answer

As String

isApproved

As Boolean

providerUserKey As
Object
ByRef status As
Membership
CreateStatus

MembershipUser

Adds a new user to the system and returns a

MembershipUser

 object populated with the
user information. Note that the status
parameter is a

ByRef

 value and contains an
enumeration that indicates whether or not
the user was added successfully when the
function exists. The status enumeration
contains a number of specific errors that
may occur such as

DuplicateEmail

,

DuplicateUserName, InvalidEmail,
InvalidPassword,

 and so on.

DeleteUser username

As Strin

g
delete
AllRelatedData

As
Boolean

Boolean

Deletes the specified user and all data
related to that user (assuming the

deleteAllRelatedData

 value is

True

).
Returns

True

 if the deletion succeeds.

FindUsers
ByEmail

emailToMatch

As String

pageIndex As Integer
pageSize As Integer
ByRef totalRecords As
Integer

Membership
UserCollection

Locates all users in the system with the
specified email address and returns a page
of records based on the

pageIndex

 and

pageSize

 parameters. Notice that the

totalRecords

 is a

ByRef

 value that contains
the total number of records located when
the function exits.

FindUsersByName usernameToMatch

As
String

pageIndex As Integer
pageSize As Integer
ByRef totalRecords As
Integer

Membership
UserCollection

Locates all users in the system with the
specified username and returns a page of
records based on the

pageIndex

 and

pageSize

 parameters.

GetAllUsers pageIndex As Integer
pageSize As Integer
ByRef totalRecords As
Integer

Membership
UserCollection

Locates all users in the system and returns a
page of records based on the

pageIndex

 and

pageSize

 parameters.

GetNumberOf
UsersOnline

Integer

Returns the number of users who are
currently online. The provider calculates
this number based on the last-activity
timestamp of the user and the

UserIs

➥

OnlineTimeWindow

 value. Any users who
have accessed the system within that time
window are considered online.

GetPassword username

As String

answer

As String

String

Checks to see if the answer provided matches
the user’s security answer. If so, it returns the
user’s password. You should only call this
method when the membership provider
supports password retrieval, otherwise a

NotSupportedException

 will be thrown.

6293_ch05.fm Page 169 Tuesday, November 15, 2005 4:06 PM

170

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

If you work with these functions, you’ll quickly notice that you never have to worry about
passing them data store–specific parameters or settings. You just call the method or property,
and the membership provider returns the appropriate data. Configuration settings for the
membership provider are stored in

Web.config

, and the membership provider implementation
is responsible for reading those settings and accessing a specific type of data store completely
behind the scenes.

GetUser [userIsOnline

As
Boolean

]
MembershipUser

Locates the currently logged in user and
returns a

MembershipUser

 object containing
the user’s information. If no user is found,
then the method returns

Nothing

. If you are
requesting the user in response to online
activity, then set

userIsOnline

 to

True

 so the
membership provider can keep track of
which users are still online.

GetUser username

As String

[userIsOnline

As
Boolean

]

MembershipUser Locates a user based on the username and
returns a MembershipUser object containing
the user’s information. If no user is found,
then the method returns Nothing. If you are
requesting the user in response to online
activity, then set userIsOnline to True so the
membership provider can keep track of
which users are still online.

GetUser providerUserKey As
Object
[userIsOnline As
Boolean]

MembershipUser Locates a user based on the unique key the
provider uses internally to identify users.
Database providers, for example, may iden-
tify users via GUID values and not
usernames. This allows you to search for a
user with that native identifier and returns a
MembershipUser object containing the user’s
information. If no user is found, then the
method returns Nothing. If you are
requesting the user in response to online
activity, then set userIsOnline to True so the
membership provider can keep track of
which users are still online.

GetUserNameBy➥
Email

email As String String Returns the username associated with the
given email address.

UpdateUser user As MembershipUser Updates the membership provider data
source with the information in the
MembershipUser object. There is no return
value from this method denoting whether
the update succeeded or failed.

ValidateUser username As String
password As String

Boolean Returns True if the username and password
are valid.

Table 5-3. Membership Object Methods (Continued)

Method Name Parameters Returns Description

6293_ch05.fm Page 170 Tuesday, November 15, 2005 4:06 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 171

The Roles Object
The Roles object exposes role-management functionality in much the same way that member-
ship functionality is exposed by the Membership object. The Web Site Administration Tool uses
the Roles object to manage roles and user-role assignments, but the login controls do not user
the Roles object directly. Some of the controls do access role information, but they do so via the
Context.User.IsInRole function. The role provider is responsible, however, for setting up role
information in the Context.User object on each request, so it does play an indirect part. Tables
5-4 and 5-5 list the more important properties and methods of the Roles object.

Table 5-4. Roles Object Properties

Property Name Type Description

ApplicationName String Name of the application. The role provider may store data
for multiple applications, so it needs to know the identity of
the application.

CacheRolesInCookie
(Read-Only)

Boolean True if the user’s roles should be cached in a cookie.

CookieName
(Read-Only)

String Name of the cookie where roles are cached.

CookiePath
(Read-Only)

String Path of the cookie where roles are cached. The path tells the
browser which pages of the application should receive the
cookie. For example, a value of / means that the cookie should
go to every page, whereas a value of /Secure means that the
cookie should only go to pages located in the /Secure folder.

CookieProtection➥
Value (Read-Only)

CookieProtection➥
Value

Determines the level of protection on the role cookie.
Possible values are All, Encryption, None, and Validation.
Refer to Table 5-1 for more information on cookie
protection.

CookieRequireSSL
(Read-Only)

Boolean True if the role cookie should only be sent over a secure
communication channel (HTTPS).

CookieSliding➥
Expiration
(Read-Only)

Boolean True if the expiration for the cookie should be updated on
each request. Refer to Table 5-1 for more information on
sliding expirations.

CookieTimeout
(Read-Only)

Integer Number of minutes before a cookie expires.

CreatePersistent➥
Cookie (Read-Only)

Boolean True if the cookie should not expire.

Domain (Read-Only) String Specifies the domain for which the cookie is valid.

Enabled Boolean True if role management is enabled for the application.

MaxCachedResults
(Read-Only)

Integer Maximum number of roles to cache for the user.

Provider (Read-Only) RoleProvider Returns a reference to the default RoleProvider for the
application.

Providers
(Read-Only)

RoleProvider
Collection

Returns a collection of the RoleProviders available to the
application.

6293_ch05.fm Page 171 Tuesday, November 15, 2005 4:06 PM

172 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Table 5-5. Roles Object Methods

Method Name Parameters Returns Description

AddUsersToRole usernames() As String

roleName As String

Adds all the users in the usernames array to
the specified role.

AddUsersToRoles usernames() As String

roleNames() As String

Adds all the users in the usernames array to
all the roles in the roleNames array.

AddUserToRoles username As
StringroleNames() As
String

Adds the specified user to all the roles in
the roleNames array.

AddUserToRole username As String

roleName As String

Adds the specified user to the specified
role.

CreateRole roleName As String Creates a new role with the specified name.

DeleteCookie Deletes the cookie containing the cached
roles for the currently logged on user.

DeleteRole roleName As String

[throw
OnPopulatedRole as
Boolean]

Boolean Deletes the specified role and returns
True if the delete succeeded. You can also
tell the method to throw an exception if
any users are assigned to the role by
setting the throwOnPopulatedRole
parameter to True.

FindUsersInRole roleName As String

usernameToMatch As
String

String () Returns a list of users who are in the
specified role and who match the
usernameToMatch string. If you want to
return all users in a role without using
matching then use the GetUsersInRole
method.

GetAllRoles String() Returns a list containing all the roles in the
application.

GetRolesForUser username As String String() Returns a list containing all the roles to
which a user has been assigned.

GetUsersInRole roleName As String String() Returns a list containing usernames for
every user in the given role.

IsUserInRole username As String

roleName As String

Boolean True if the specified user is in the specified
role.

RemoveUserFromRole username As String

roleName As String

Removes the specified user from the speci-
fied role.

RemoveUserFromRoles username As String

roleNames() As String

Removes the specified user from all the
roles in the roleNames array.

RemoveUsersFromRole usernames() As String

roleName As String

Removes all the users in the username array
from the specified role.

6293_ch05.fm Page 172 Tuesday, November 15, 2005 4:06 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

173

Programming with the Membership and Role Objects

Both the

Membership

 and

Role

 objects reside in the

System.Web.Security

 namespace and are
accessible from every page in your application. You do not have to reference any special
assemblies or use any

Imports

 statements because the

System.Web.Security

 namespace is
inherently available on web form pages. Listing 5-10 is a brief example showing how you can
authenticate a user and determine if that user is in a specific role

Listing 5-10.

Membership

 and

Role

 Object Usage Examples

'***
Sub DeleteAllUsersInRole(ByVal roleName As String)

 Dim usernameList() As String = Roles.GetUsersInRole(roleName)

 For Each username As String In usernameList
 Membership.DeleteUser(username)
 Next

End Sub

This example function deletes all the users in the role passed in as a parameter of the func-
tion. It begins by getting a

String

 array containing a list of all the users in the requested role
using the

Roles.GetUsersInRole

 method. Then it iterates over all the users it found and deletes
them using the

Membership.DeleteUser

 method. You can automate literally hundreds of
different user-management tasks using the

Membership

 and

Roles

 objects.

Configuring the Membership and Role Providers

Both the

Membership

 and

Role

 objects rely on data-source–specific providers to “provide” their
functionality. As such, you must configure the membership and role providers for your appli-
cation so it knows which providers to use. One thing you need to be aware of is that a single
provider class can have multiple provider configurations. The provider configurations define a
provider, not the actual class itself. So, even though ASP.NET 2.0 only ships with a single
membership provider class (

SqlMembershipProvider

), you can have multiple providers with

RemoveUsers

➥

FromRoles
usernames()

 As String

roleNames()

 As String

Removes all the users in the

username

 array
from all the roles in the

roleNames

 array.

RoleExists roleName

 as String

Boolean True

 if the specified role exists.

Table 5-5.

Roles

 Object Methods (Continued)

Method Name Parameters Returns Description

6293_ch05.fm Page 173 Tuesday, November 15, 2005 5:41 PM

174 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

various configurations using the class. This may seem a bit confusing at first, but you’ll quickly
get used to it as you use it.

Membership Provider Configuration

You can configure a membership provider for your application in the <providers> element of
the <membership> section in Web.config. If the provider configuration is to be used for multiple
applications, you can also define it in Machine.config so you can manage the provider from a
single location.

Listing 5-11 shows a sample membership provider configuration. Remember all the read-
only settings for the Membership object from Table 5-2? This is where you can set those values
(see Listing 5-11).

Listing 5-11. Membership Provider Configuration

<configuration>
 ...
 <system.web>
 ...
 <membership defaultProvider="MySqlMembershipProvider">
 <providers>
 <add name="MySqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider, System.Web,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="LocalSqlServer"
 enablePasswordRetrieval="true"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 applicationName="/"
 requiresUniqueEmail="true"
 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="5"
 passwordAttemptWindow="10"
 passwordStrengthRegularExpression="" />
 </providers>
 </membership>
 </system.web>
</configuration>

There are a few key points to cover about this configuration. First, you can create multiple
provider configurations in the <providers> element. This is helpful if you have different envi-
ronments that require different provider configurations. However, the Membership object can
only use one of the configurations, so you need to identify the default provider by specifying a
value for the defaultProvider attribute in the <membership> element. In Listing 5-11, we
created a new provider named MySqlMembershipProvider so we set up the defaultProvider
value to use it.

6293_ch05.fm Page 174 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 175

Also notice that this provider has a connectionStringName attribute, but you won’t find a
connectionStringName attribute listed in Table 5-2. This is a custom attribute specific to the
SqlMembershipProvider class. Each provider class may have its custom attributes, so you need
to read the configuration instructions for new provider classes to see what kind of configura-
tion options it exposes. This example uses the LocalSqlServer connection string. The
LocalSqlServer connection string is defined in Machine.config and points to a database
named ASPNETDB.mdf in the App_Data folder of the current application.

ASP.NET 2.0 ships with a single preconfigured membership provider named
AspNetSqlMembershipProvider defined in Machine.config. This provider allows you to store
user information in a SQL Server database. If you do not specify a value for the defaultProvider
attribute in the <membership> section of Web.config, or you leave the <membership> section out
entirely, then your application will default to AspNetSqlMembershipProvider. This provider also
uses the LocalSqlServer connection string, so it employs the ASPNETDB.mdf database in the
App_Data folder of the current application as its data source.

Role Provider Configuration

You can configure a role provider for your application in the <providers> element of the
<roleManager> section in Web.config. You can also configure role providers in Machine.config
if you want to centralize configuration for multiple applications. Listing 5-12 is a sample role
provider configuration.

Listing 5-12. Role Provider Configuration

<configuration>
 ...
 <system.web>
 ...
 <roleManager enabled="true" defaultProvider="MySqlRoleProvider">
 <providers>
 <add name="MySqlRoleProvider"
 connectionStringName="LocalSqlServer"
 applicationName="/"
 type="System.Web.Security.SqlRoleProvider, System.Web,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
 </roleManager>
 </system.web>
</configuration>

The most important thing to know about the role provider for your application is that you
must explicitly enable it by setting the enabled attribute of the <roleManager> element to True.
Otherwise your application won’t have access to any role-management functionality. You also
need to specify the default provider via the defaultProvider attribute in the <roleManager>
element. Unlike membership providers, role providers do not expose nearly as many config-
urable options, so you will probably not find yourself creating role providers nearly as often.

6293_ch05.fm Page 175 Friday, November 11, 2005 4:05 PM

176

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

ASP.NET 2.0 comes with two preconfigured role providers defined in

Machine.config

. The
first is the

AspNetSqlRoleProvider

, which provides the

role

 object the capability to store role
information in a SQL Server database. The second is the

AspNetWindowsTokenRoleProvider

,

which is used for applications running Windows Authentication. The

AspNetSqlRoleProvider

uses the

LocalSqlServer

 connection string so it uses the

ASPNETDB.mdf

 database in

App_Data

folder of the current application as its data source. If you don’t specify a default role provider,
then your application will default to the

AspNetSqlRoleProvider

.
Your website needs to have a properly configured membership provider if you plan to

administer users and roles via the Web Site Administration Tool and the

Membership

 or

Roles

objects, or use many of the advanced features on the new ASP.NET 2.0 login controls.

The sample code for this chapter (in the Source Code area of the Apress website) uses the
SQL Server membership provider to store all the user and role information, so you can learn all
about membership provider configuration by setting it up. Create a new website (or open the
Chapter 5 sample website) and click on

Website

➤

ASP.NET Configuration

 to launch the Web
Site Administration Tool.

Selecting a Provider in the Web Site Administration Tool

The

Provider

 tab in the Web Site Administration Tool allows you to select which membership
and role providers you want your application to use. First, you have to configure the providers
in

Web.config

, however, before they appear in the

Provider

 tab. If you need to use a custom
provider in your application, you might as well configure it manually while you are in

Web.config

. If you want to use a preconfigured provider, you can use the Web Site Administra-
tion Tool to select it from a list. You’ll learn more about the

Provider

 tab shortly, when we
discuss the Web Site Administration Tool.

ENCRYPTED PASSWORDS AND THE

<machineKey>

 ELEMENT

You can configure the

SqlMembershipProvider

 class to encrypt user passwords before storing them to
the database, and you can expect that other providers will do the same as they are released. When
dealing with encrypted password you may run across the following error when you visit the

Security

 tab
of the Web Site Administration Tool:

You must specify a non auto-generated machine key to store password in the
encrypted format. Either specify a different passwordFormat or change
machineKey configuration to use a nonauto-generated decryption key.

This means that you have an auto-generated

<machineKey>

, and that you need to specify a nonauto-
generated

<machineKey>

 for the password encryption to work. The

<machineKey>

 element takes three
parameters as listed in the following table.

6293_ch05.fm Page 176 Tuesday, November 15, 2005 4:21 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

177

<machineKey>

 Parameters

Following is an example of a

<machineKey>

 entry. You can place this either in

Web.config

 or in

Machine.config

. If you place it in

Machine.config

, then you won’t receive the error again when you
are developing another website.

<configuration>
 ...
 <system.web>
 ...

 <!--The validation key and decryption key values CANNOT be
 split out
 on multiple lines. They need to be on a single line-->
 <machineKey
 validationKey="ba843845853defaba779d4637882706683bd2a7b795b7cbfab

854a799

➥

 5435eb185e7a39f4d3a872bdbed21d592753a9b5bb6b798b9c5538038

➥

 dfb7665796fb75"

decryptionKey

="341a60c25c779d47d64697a55afd498ebff2584c28783115"

validation

="3DES"
 </system.web>
</configuration>

As the

validationKey

 and

decryptionKey

 are fairly long, you may be wondering about a
good way to generate them. Discussing the generation of cryptographic strings is a bit outside
of the scope of this book, but you can look at the sample application (in the Source Code area
of the Apress website) or the website for this book to find helpful links to utilities that can help
you generate cryptographic strings.

■

Tip

If you ever find yourself developing a web-farm environment, you must ensure that the

<machineKey>

 is the same across all the servers in the farm. This ensures that the encryption, decryption,

and validation will work between machines.

Attribute Description Format

validationKey

Key used to create validation
hashes to ensure data has not
been altered. An example
would be the

ViewState

 MAC
generated to ensure the

ViewState

 has not been
altered at the client-side.

40–128 hex characters (0–9, A–F).

decryptionKey

Key used to encrypt and
decrypt data.

16 hex characters when using DES encryption.
48 hex characters when using Triple DES
encryption.

validation

The type of encryption used. Can be either SHA1, MD5, or Triple DES.

6293_ch05.fm Page 177 Tuesday, November 15, 2005 4:21 PM

178 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Managing Users and Security with the Web Site
Administration Tool
Applications that rely on Forms Authentication need some way to manage users, roles, and
user-role assignments. When money is tight and time is running out, however, administration
sections are normally the first feature that gets scrubbed because you can use preexisting data-
base tools, such as Enterprise Manager, to keep the user-management database current.
Although this approach works for developers and database administrators, you cannot expect
(nor would you want) a business user to use a database administration tool for adding and
removing information directly.

Microsoft leveraged the Membership and Role objects to build a standard Web Site Admin-
istration Tool. This tool allows you to configure a number of security and configuration options
in your application, and it gives you web-based user- and role-management capabilities. In
this section, you’ll learn about each tab of the Web Site Administration Tool and how it can
help manage users and security for your application.

Opening the Web Site Administration Tool
You can access the Web Site Administration Tool by clicking on the Website ➤ ASP.NET
Configuration menu item in the Visual Studio IDE. The Website menu item is only available
when you have an item under a web application project selected in the Solution Explorer, so
you may not see it when you first open Visual Studio. After you click on the ASP.NET Configu-
ration menu item, Visual Studio fires up a new browser instance and displays the Home tab of
the Web Site Administration Tool.

Home Tab
When you first open the Web Site Administration Tool, it displays the Home tab. The Home tab
is simply a starting point from which you can access other tabs of the application. The links on
the page correspond to the tabs that run across the top of the page and contain additional text
describing what you can do from that particular tab. Figure 5-2 shows the Home tab.

The Provider Tab
I highly recommend that you set up the membership and role providers before you start
managing users from the Web Site Administration Tool, so we’ll discuss the Provider tab first.
The Provider tab allows you to choose from existing providers that you have configured in
Web.config of the application or Machine.config for the system. I outlined how to do this earlier
in the chapter in the “Configuring the Membership and Role Providers” section.

6293_ch05.fm Page 178 Friday, November 11, 2005 4:05 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

179

Figure 5-2.

 Home tab of the Web Site Administration Tool

When you open the

Provider

 tab, you are greeted with two options presented as links in
the middle of the page:

Select a single provider for all site management data

 and

Select a
different provider for each feature (advanced)

 as shown in Figure 5-3.

6293_ch05.fm Page 179 Tuesday, November 15, 2005 4:29 PM

180

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Figure 5-3.

 Initial Provider tab page

Selecting a Single Provider for All Site Management Data

If you want to use a single provider for all site management data, then you should choose the

Select single provider for all site management data

 link from the initial

Provider

 tab page.
This takes you to a page that displays a list of providers that can handle all site management
data. ASP.NET 2.0 only ships with the

AspNetSqlProvider

, so it’s your only option when you
visit this page. As more vendors provide complete provider solutions, this list should grow. To
select a single provider, click on the option button next to the provider name. The Web Site
Administration Tool updates the

<membership>

 section to use the

SqlMembershipProvider

 and

<roleManager>

 section to use the

SqlRoleManager

 in your

Web.config

 in response to your selec-
tion. You can also click on the

Test

 link to the right of the provider name to check if the provider
has a valid configuration (as shown in Figure 5-4).

Selecting a Different Provider for Each Feature

You can also select individual providers for your application by clicking on the

Select a
different provider for each feature (advanced)

 link from the initial

Provider

 tab page. This
takes you to a page that lists features that use providers and the provider options under those

6293_ch05.fm Page 180 Tuesday, November 15, 2005 4:29 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

181

features. The only features listed are the

Membership Provider

 and

Role Provider

features
(see Figure 5-5). To select the provider for a particular feature, click on the option button next
to the provider name under that feature. The Web Site Administration Tool updates

Web.config

to reflect your selection. You should choose a provider for each component listed on the page.
Once again, you can click on the

Test

 link to right of the provider name to check if the provider
has a valid configuration.

Figure 5-4.

 Select a single provider for all site management data page

The Security Tab

After you have determined which membership provider you want to use, you need to configure
the security settings for your website. This entails choosing an authentication type, setting up
roles, adding users, and defining access rules. All these tasks can be accessed from the

Security

tab of the Web Site Administration Tool, shown in Figure 5-6.

6293_ch05.fm Page 181 Tuesday, November 15, 2005 4:29 PM

182 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Figure 5-5. Select a different provider for each feature page

Configuring Security with the Security Setup Wizard

The easiest way to set up security for your web application is to use the Security Setup Wizard, a step-
by-step process that guides you through security configuration. Each step of the Security Setup
Wizard can be individually accessed from other areas of the Security tab, but the wizard ensures that
you go through the configuration steps in the right order, and it skips over unnecessary sections
depending on your configuration settings. You can launch the Security Setup Wizard by clicking on
the Use the security Setup Wizard to configure security step by step link from the Security tab page.

6293_ch05.fm Page 182 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 183

Figure 5-6. Security tab of the Web Site Administration Tool

Step 1: Welcome

The Welcome introductory screen gives you a brief overview of the capabilities of the Security
Setup Wizard. It’s basically fluff that you really don’t need to read unless you’re trying to kill
some time. Click the Next button to move to Step 2.

Step 2: Select Access Method

This step allows you to define which authentication method you want ASP.NET to use when
identifying users of your application. The wizard provides you two options:

6293_ch05.fm Page 183 Friday, November 11, 2005 4:05 PM

184 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

• From the Internet (Forms Authentication): Use this option if you are building a public site
that users will access over the Internet. ASP.NET will reroute users who have not yet logged
in to a login page where they can enter their username and password in a web form.

• From a local area network (Windows Authentication): Use this option if your users will
be accessing your application from a local area network (intranet). Users will be auto-
matically identified by their Windows account information, so they won’t have to
manually enter a username and password to access your application.

■Note There are certain circumstances when users have to enter their username and password manually
when using Windows Authentication. For instance, say your application is mostly used over the corporate
intranet but is still accessible via the Internet for those rare times when you need to access it from home. If
you access the application from home, then the application tries to authenticate you using your home-based
Windows account information, which likely does not match your corporate account information. Thus,
Windows Authentication fails. This causes the browser to display a dialog box allowing you to manually enter
your corporate username and password, which it then uses to try to authenticate you.

ASP.NET 2.0 does support passport and no authentication, but they were not deemed
common enough for inclusion in Web Site Administration Tool. If you want to use passport or
no authentication, you must manually configure setting it up in Web.config as demonstrated
earlier in this chapter.

When you have determined which access method you want to use, select the option
button next to its name. Then click on the Next button in the bottom-right corner of the Secu-
rity Setup Wizard. The Web Site Administration Tool updates the mode attribute in the
<authentication> section in Web.config with the appropriate option based on your choice.

If you choose Windows Authentication, you are taken directly to Step 6 because users and
roles need to be set up in Windows, not in the web application. Also, you can change the
authentication type without using the wizard by clicking on the Select authentication type
link in the Users section of the Security tab.

■Caution The Security Setup Wizard does not set up the <forms> element in Web.config that specifies
a number of forms-related features such as the default login page or the default logged in user redirection
URL. You need to manually configure these settings. Refer to the opening section of this chapter for informa-
tion about manually configuring Forms Authentication.

Step 3: Data Store

This step simply tells you that you should configure your application providers before you start
adding users and roles to your application and that you cannot change the provider from this
page in Security Setup Wizard. You have to back out of the Security Wizard and click on the
Provider tab of the Web Site Administration Tool to make provider configuration changes. If
you’ve already configured your application providers, click on the Next button to move to Step 4.

6293_ch05.fm Page 184 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 185

Step 4: Define Roles

Defining roles is a two-step process. First you must determine whether or not you want to
enable roles. Assuming that you enabled roles, you must then define the roles that exist in your
application. The first page of Step 4 displays instructional text about the step and the Enable
roles for this Web site check box. If you plan on using roles, you need to check this box. After
you check or uncheck the box, the Web Site Administration Tool updates the enabled attribute
of the <roleManager> section in Web.config to reflect your choice. After you make your selec-
tion, click on the Next button.

If you choose to enable roles in your application, you remain in Step 4 and the Security
Setup Wizard displays an entry field allowing you to add roles to your application. To add a
new role, type the name of the role in the New Role Name text box and click the Add Role
button as shown in Figure 5-7. You’ll see the role appear in the Existing Roles table below the
entry section. When you are finished adding roles, click on the Next button to move to Step 5.

■Tip Each user can have multiple roles, so you can actually use the roles functionality to set up “privileges”
in your system. For instance, if you were creating an application that dealt with creating and submitting a form
for approval, then you could have “privileges” such as Create Form, Edit Form, Delete Form, Approve Form,
and so on.

Step 5: Add New Users

You can add users to your application by entering their user information in Step five (see
Figure 5-8). To add a new user, enter the username, password, password confirmation,
user email address, security question, and security answer in the provided text boxes. The
PasswordRecovery control uses the security question and security answer to help determine
whether the user should be sent his or her password via email. Finally, the Active User check
box lets the membership provider know whether the user is active or inactive. Active users are
granted access to the system according to their roles and whatever access rules you have
defined for those roles. Inactive users are not allowed to log in to the system.

After you enter the appropriate information in the data entry section, click on the Create
User button. A message appears informing you that the account has successfully been created.
Click on the Continue button to add another user. When you are finished adding users, click
on the Next button to go to Step 6.

6293_ch05.fm Page 185 Friday, November 11, 2005 4:05 PM

186 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Figure 5-7. Step 4 of the Security Setup Wizard—adding roles to your web application

Adding a large number of users on this form can get tedious very quickly. If you have to
enter a large number of users, you may want to automate the process by using the Membership
object or by doing a manual database import against an existing set of user information.
Another approach is to let users manually register for your application from a page that
contains a CreateUserWizard control.

■Note Unfortunately, you cannot add users to roles in the Security Setup Wizard. If you need to add users
to roles, you can go back and edit users from the Security tab.

6293_ch05.fm Page 186 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 187

Figure 5-8. Step 5 of the Security Setup Wizard—adding users to your web application

Step 6: Add New Access Rules

Access rules are another name for the <authentication> entries in Web.config that control
which users and roles are allowed access to certain folders in your web application. This step
gives you a visual interface to set up those rules assuming that your folder structure is already
built out. Figure 5-9 shows the interface for defining new access rules. You’ll probably find it
helpful to take a look at it before we continue.

To create a new access rule, select a folder from the folder tree. Then choose the role, user,
or group (All Users/Anonymous Users) to which the rule should apply. You can click on the
Search for Users link if you need help locating a user. Finally, choose whether the rule should
allow or deny the chosen entity access to the selected folder. When you’ve made all your selec-
tions, click on the Add This Rule button. The Web Site Administration Tool adds the access
rule to the <authentication> section of the Web.config file located in the folder you selected
from the folder tree.

6293_ch05.fm Page 187 Friday, November 11, 2005 4:05 PM

188 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Figure 5-9. Step 6 of the Security Setup Wizard—creating access rules

6293_ch05.fm Page 188 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 189

Step 7: Complete

When you reach this step, you have completed the Security Configuration Wizard, but you still
need to return to the Security tab to add users to specific roles. Look for the “Setting Up Roles”
subsection within the next section for a quick and easy way to set up roles for users after you’ve
added them to your application.

Adding, Editing, and Deleting Users
Although the Security Setup Wizard is helpful for setting up your web application initially, it
wasn’t designed to be used for ongoing maintenance. If you find yourself needing to add, edit,
or delete a user, use the Create user or Manage users links in the Users section of the Security
tab.

Adding a New User

Clicking on the Create user link in the Users section of the Security tab (refer to Figure 5-6)
brings up the Create User screen shown in Figure 5-10, which is slightly different from the user
screen displayed in the Security Setup Wizard. This Create User screen contains two sections:
the first is for setting up user information, and the second for associating that user with specific
roles.

To add a user, enter the appropriate user information in the Create User section.
Remember, you may need a unique email address and a security question/answer depending
on how the membership provider is set up. If you want the user to be active immediately, make
sure the Active User check box is checked. After you enter the user information, select the roles
the user should be in by checking the appropriate role names in the Roles section.

When you’re finished, click on the Create User button. The page submits, and the user is
added along with the role information. A new page displays indicating the successful addition
of the user. You can click on the Continue button to add another user or the Back button to
return to the Security tab.

Searching for Existing Users

If you need to edit or delete an existing user, click on the Manage users link in the Users section
of the Security tab (refer to Figure 5-6). This brings up the Search for Users page shown in
Figure 5-11. By default, the page lists all users, alphabetically, seven records at a time.

6293_ch05.fm Page 189 Friday, November 11, 2005 4:05 PM

190 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Figure 5-10. Create User screen

You have a couple of options for searching for users using this search page. If you only
have a few users in your application, then you can use the pagination controls at the bottom of
the list to jump through pages of records until you find the appropriate entry. The pagination
controls only display if you have more than one page worth of data. And if your application has
a fairly extensive number of users, then you’ll likely want to use the A-Z selector or the search
box to locate a user.

The A-Z selector displays all the letters of the alphabet as links. Clicking on a letter filters
the list and displays only those users whose username begins with the selected letter. The
search page still only lists seven records per page, so you may still need to use the pagination
controls to page through results if you have more than seven usernames that begin with the
same letter.

If you know any part of the username or email address of the user you are trying to locate, you
can use the search box to locate a user. In the Search by drop-down list, select either User name or
E-Mail depending on which item you know. Then enter the search term in the for text box. You can
either search for an entire username/email address or you can use wildcards (*) to widen your
search. When you click on the Find User button, the results of your search are displayed.

6293_ch05.fm Page 190 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 191

Figure 5-11. Search for Users page

Editing Users

Editing a user requires that you first find the user you want to edit using the user search tool
(refer to Figure 5-11). After you find the user, click on the Edit user link for that user to launch
the Edit User page.

6293_ch05.fm Page 191 Friday, November 11, 2005 4:05 PM

192 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

The Edit User page allows you to edit the user’s email address, description, and whether
or not the user should be active. You can also add or remove the user from any roles that you
desire. You cannot, however, alter the user’s password or change the password question/
answer. Remember to click the Save button to save any changes to the user or their roles.

Setting Up Roles

One of the first tasks you need to complete after running the Security Setup Wizard is assigning
users to roles. The easiest way to do this is through the Edit Roles link on the Search for Users
page (refer to Figure 5-11). This page allows you to quickly set user roles without navigating
away from the page. You can also assign users to roles by clicking on the Edit User link, but you
have to navigate to the page, set the user roles, save the data, return to the search page, and
repeat the process for the next user. Using the Edit Roles links is much quicker for a large
number of role assignments.

Navigate to the user search page and locate the user (or users) whose roles you want to
edit. Click on a user’s Edit Roles link. The search page refreshes and displays a listing of roles
on the right side of the screen along with check boxes to select those roles. Any roles that the
user is currently in are checked. You can check and uncheck roles for that user to add or
remove the user from roles. Each time you check or uncheck a role, the page posts back and
adds or removes the user from the role. You do not have to explicitly save each time you make
an update because the page automatically saves changes as you click on the individual items.
You can continue searching and making role assignments until you’re finished.

Deleting Users

Deleting a user requires that you first find the user you want to delete using the user search
tool (refer to Figure 5-11). After finding the user, click on the Delete user link for that user.
This displays a confirmation page requesting that you confirm the deletion of the user.
Click the Yes button to confirm the deletion and return to the user search page. Alterna-
tively, you can click the No button to cancel the deletion, and you are also returned to the
user search page.

ASP.NET 2.0 Login Controls
Microsoft has taken some fairly painstaking steps to create a variety of new controls that help
you with logins, lost passwords, and managing content based on roles. They are accessible
from the Toolbox (in the Login section) when you are editing a web form. Below you will find a
table that outlines the new controls, and gives you a brief overview of each one. Many of the
controls are templated controls (more on that in a minute), and many of them are only
designed to work with Forms Authentication. The Type and Valid Auth. Method columns
express these two factors (see Table 5-6).

6293_ch05.fm Page 192 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 193

As you may have noticed, many of the controls are templated controls. Before jumping
into the login controls, let’s take a look at how to work with templated controls.

Templated Controls
Templated controls allow you to change the visual layout of the control’s subcomponents
without changing the way the control functions. They are very similar to the skinned controls
discussed in Chapter 3, but the template for the control is defined directly in the control defi-
nition, not in an external file like a skinned control.

To really understand a templated control, you need to work with one. The Login control is
a great example, so open up a web form designer and drag a Login control onto the designer’s
surface. You should see the control displaying a layout similar to the one shown in Figure 5-12.

Table 5-6. New Login Controls in ASP.NET 2.0

Name Type Valid Auth.
Method

Description

Login Templated Forms Displays username and text box entry fields, and
optionally a check box allowing the user to auto-
matically log in the next time they visit. This
control is responsible for automatically authenti-
cating the user and setting up the Forms
Authentication ticket used to identify the user
when he or she returns.

LoginView Templated Forms/Windows Allows you to control which content to display on
the page based on user roles. Basically, the control
contains a series of panels, and each panel is asso-
ciated with a specific role. If the user is in that role,
the panel displays; if not, the panel remains
hidden. This keeps users from seeing content they
are not intended to see.

Password➥
Recovery

Templated Forms Allows users to recover lost passwords via email.
This control automatically handles the security
question and answer logic if it’s required by the
membership provider.

LoginStatus Normal Forms Provides a link for users who are not logged in to
go to the login page, and for users who are logged
in to log out.

LoginName Normal Forms/Windows Displays the username of the currently logged in
user.

CreateUser➥
Wizard

Wizard/
Templated

Forms Creates a basic entry form for adding users to your
application. This control automatically communi-
cates with your application’s membership
provider to create a new user.

ChangePassword Templated Forms Allows users to change their password. This
control automatically communicates with your
application’s membership provider to change the
currently logged in user’s password.

6293_ch05.fm Page 193 Friday, November 11, 2005 4:05 PM

194 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Figure 5-12. Login control displaying the default login template (left) and the Common Tasks
menu (right)

Notice that the login control is comprised of text boxes, labels, validation controls, a check
box, and a button. Also note that you did not have to define the layout of those subcontrols
when you first placed the login control on your web form. Templated controls generate a
layout when no template is explicitly defined. When you do not specify a template, the control
definition for a templated control is fairly concise:

<asp:Login ID="Login1" Runat="server"></asp:Login>

You can use the generated layout, if it suits your needs, or you can create a template of your
own. The basic idea behind creating a template is that all of the subcomponents in the template
have a specific ID so the Login control can locate each subcomponent and use it. We used the
same technique for the skinned page messaging control in Chapter 4. For example, the submit
button always needs to have an ID of Button. The Login control will search through the template
for a control with an ID of Button, and then add an event handler to the Click event of that
control when it finds it. In the same way, the Login control stores references to the username text
box by looking for a control named UserName, and the password text box by looking for a control
named Password. Thus, when you click the Button subcomponent, the Login control can validate
the username and password specified in the UserName and Password subcontrols.

Creating Templates
Templated controls may have one or more templates that you can edit. The Login control, for
example, has a single template named LayoutTemplate, whereas the PasswordRecovery control
has three templates named UserName, Question, and Success. The PasswordRecovery control has
a three-step process for recovering a password, hence the three templates.

When you create a template, you need to know the names of all the subcomponents that
are required to be in the template. Theoretically, the subcomponent names are buried some-
where in the MSDN documentation, but you don’t want to sift through all that each time you
need to build a template. Fortunately, you don’t have to start completely from scratch. You
have some options with the Common Tasks menu.

When you run your mouse over a templated control, you’ll see a little box with an arrow
appear to the upper right of the control. Clicking this tiny box brings up the Common Tasks
menu (refer to Figure 5-12). Each Common Tasks menu will be slightly different, but they all
revolve around making and editing content in the control. The Login control’s Common Task
menu has the following commands:

6293_ch05.fm Page 194 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 195

• Auto Format: Displays the Auto Format dialog box that allows you to select from a series
of predefined login templates. When you select a template, the HTML for the template is
placed in the <LayoutTemplate> element of the Login control.

• Convert to Template: Converts the layout generated by the control into a template.
Choosing this option takes the HTML used to generate the layout and places it in the
<LayoutTemplate> element of the Login control.

• Reset: Clears the <LayoutTemplate> and reverts back to the generated layout. This option
is displayed after you click on the Convert to Template option.

• Administer Website: Displays the Web Site Administration Tool. This is just a quick link
that lets you set up users, roles, and so on.

• Edit Templates: Places the templated control in Template Editing mode, which allows
you to change the visual appearance of the control’s templates in the designer (some
controls support multiple templates). If you choose this option without first choosing a
template from the Auto Format dialog box or choosing Convert to Template, you’ll be
presented with a blank designer (that is, you’ll be creating the template from scratch).

Selecting either the Auto Format or the Convert to Template option from the Common
Tasks menu provides you a basic template that contains all the controls with their appropriate
names. Listing 5-13 is an example of markup that appears in your control definition after you
select the Convert to Template option and edit the template. Note that all the control ID values
have been bolded to stand out, and that all layout and styling information has been removed
from the example for the sake of brevity.

Listing 5-13. Login Control Definition

<asp:Login ID="Login1" Runat="server">
 <LayoutTemplate>
 <asp:Label Runat="server" ID="UserNameLabel">User Name:</asp:Label>
 <asp:TextBox Runat="server" ID="UserName" />
 <asp:RequiredFieldValidator Runat="server" ID="UserNameRequired"
 ValidationGroup="Login1" ErrorMessage="User Name is required."
 ToolTip="User Name is required."
 ControlToValidate="UserName">*</asp:RequiredFieldValidator>
 <asp:Label Runat="server" ID="PasswordLabel">
 Password:</asp:Label>
 <asp:TextBox Runat="server" TextMode="Password" ID="Password" />
 <asp:RequiredFieldValidator Runat="server" ID="PasswordRequired"
 ValidationGroup="Login1" ErrorMessage="Password is required."
 ToolTip="Password is required."
 ControlToValidate="Password">*</asp:RequiredFieldValidator>
 <asp:CheckBox Runat="server" Text="Remember next time" ID="RememberMe" />
 <asp:Button Runat="server" ID="Button" Text="Log In"
 ValidationGroup="Login1" CommandName="Submit" />
 <asp:Literal Runat="server" ID="FailureText" EnableViewState="False" />
 </LayoutTemplate>
</asp:Login>

6293_ch05.fm Page 195 Friday, November 11, 2005 4:05 PM

196 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

After you are finished acquiring a base template from which to start, you can edit the
template using the Edit Templates option from the Common Tasks menu. This places the
templated control in Template Editing mode, as shown in Figure 5-13. When a control is in
Template Editing mode, the Common Tasks menu displays a drop-down list containing all
the templates with which you can work (also shown in Figure 5-13). As mentioned before,
the Login control only has a single template (LayoutTemplate), but if you were editing a
PasswordRecovery control, the drop-down list would contain three entries. After you are
finished editing the template, click on the End Template Editing link from the Common
Tasks menu to exit Template Editing mode.

Figure 5-13. The Login control (in Template Editing mode) after selecting the Convert to Template
option (left) and the Common Login Tasks window after Edit Templates has been selected (right)

The Login Control
Forms Authentication allows users to log in to an application by providing their username and
password on a web-based form. Therefore, every application based on Forms Authentication
requires some type of login form, username and password validation routine, and a way to
build out the authentication ticket after a user has been authenticated. This can be quite a
burden, especially if you are building a lot of smaller applications.

Enter the ASP.NET 2.0 Login control (Figure 5-12 and Figure 5-13), which tightly integrates
with both the membership provider for your application and the authentication framework for
ASP.NET. As long as you have a valid membership provider set up, you can drop a Login control
onto a web form and have a fully functional login screen with zero coding. However, it also
allows you to create your own validation routines when the need arises. It’s a very flexible
control. Table 5-7 contains a listing of the important Login control properties.

■Note Most of the login controls expose an extensive list of properties, many of which deal with changing
the appearance of the control’s generated layout. I have not included those properties in any of the property
lists that appear in this chapter. Feel free, however, to play around with those properties to see how they
affect the layouts of the login controls

6293_ch05.fm Page 196 Friday, November 11, 2005 4:05 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

197

■

Tip

You can use the visual properties of the

Login

 control to get its generated layout to closely resemble
what you want. Then you can click on the

Convert to Template

 option from the Common Tasks menu and
convert what you see into a template. From there, you can fine-tune the content. Using this technique makes

creating templates a bit easier.

Using the Login Control with its Built-in Authentication Functionality

Drop the control on the form. Make sure you have a properly configured membership
provider. It’s as simple as that. When users enter their login information, the

Login

 control
automatically uses the membership provider to validate usernames and passwords.

If the username and password is valid, the control generates the authentication ticket that
will identify the user the next time he or she visits your site. The user is then redirected to the
page specified in

DestinationPageUrl

 or the

ReturnUrl

 defined in the query string. If neither is
defined, then the page simply refreshes and the user is logged in.

If the login fails, the login control determines what to do based on the

FailureAction

 prop-
erty. If

FailureAction

 is set to refresh, then the page is refreshed and the

FailureText

 message
is displayed to the user. If

FailureAction

 is set to

RedirectToLoginPage

, then the user is redi-
rected to the default login page.

Coding Your Own Authentication Routines with the Login Control

Inevitably, there will be times when you want to code your own authentication routines. When
those times come, you can still use the

Login

 control for username and password entry

Table 5-7.

 Important

Login

 Control Properties

Property Name Description

DestinationPageUrl

This is the page where the user will be redirected upon successful login.
If there is a value for the

ReturnUrl

 in the query string (that is, a user was
redirected from a secure page back to the main login page), then the
page defined by the

ReturnUrl

 is used instead of the page defined in

DesintationPageUrl

.

FailureAction

Specifies the action that will occur if the login attempt fails. You can
only specify two actions:

Refresh

 and

RedirectToLoginPage

.

Refresh

refreshes the page and displays a message that the login has failed.

RedirectToLoginPage

 redirects the user to the default login page.

FailureText

Text that is displayed to the user when the login attempt fails.

Password

Sets or gets the password that appears in the

Password

 text box.

RememberMeSet

Sets or gets whether or not the

Remember Me

 check box is checked.

Username

Sets or gets the username that appears in the

UserName

 text box.

VisibleWhenLoggedIn

Specifies whether or not the control will be visible if the user is already
logged in.

6293_ch05.fm Page 197 Tuesday, November 15, 2005 5:44 PM

198 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

purposes. You just need to handle the Authenticate event of the control so you can inject your
own validation logic.

As an example, let’s say that you want users to be able to log in using their normal user-
name and password. You also want to be able to type in a username and a master password
that allows you to log in as anyone. The membership providers do not support the concept of
a master password, so you have to code your own validation logic. Luckily, you can use the
built-in Membership object to interact with the web application’s user information, so the vali-
dation code is still fairly simple (refer to Table 5-2 for more information regarding the
Membership object’s methods), as shown in Listing 5-14.

Listing 5-14. Creating Custom Authentication Routines with the Login Control

Imports System.Web.UI.WebControls
Imports System.Web.Security.FormsAuthentication
...

'***
Sub MyLogin_Authenticate(ByVal sender As Object, ByVal e As AuthenticateEventArgs)

 'Check to see if the master password is being used
 If MyLogin.Password = "MasterPassword" Then

 'Make sure the user exists
 If Not Membership.GetUser(MyLogin.UserName) Is Nothing Then
 SetAuthCookie(MyLogin.UserName, MyLogin.RememberMeSet)
 e.Authenticated = True
 End If

 Else

 'If there is no master password, just validate the user normally
 If Membership.ValidateUser(MyLogin.UserName, MyLogin.Password) Then
 SetAuthCookie(MyLogin.UserName, MyLogin.RememberMeSet)
 e.Authenticated = True
 End If

 End If

End Sub

The first line of Listing 5-14 checks to see if the master password was entered into the
Login control’s Password field. If so, it then uses the Membership.GetUser function to check if the
username entered in the Username field exists in the membership database. If the member
exists, then a MembershipUser object is returned. This code is not concerned with the actual
object, only whether or not it was found. If the user was found, then the SetAuthCookie func-
tion creates the authentication cookie and sends it to the user to denote that they have
successfully authenticated. Notice that the second parameter of the SetAuthCookie call is the
MyLogin.RememberMeSet value (a Boolean value), which indicates whether or not the cookie

6293_ch05.fm Page 198 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 199

should be persistent. Persistent cookies are saved between browser sessions, which allow the
user to return and be automatically logged in. The code then sets e.Authenticated to True,
which lets the Login control know that the user was successfully authenticated and that it
should redirect the user to the appropriate page.

When you handle the Authenticate event, the Login control loses its capability to auto-
matically authenticate users. Thus, if the master password is not used, then you become
responsible for checking whether the user is attempting to log in normally. This is accom-
plished via the Membership.ValidateUser method. You just pass in the username and
password, and the function returns a Boolean value indicating whether or not the username
and password are valid. If so, an authentication cookie is created in the same manner as shown
in the previous code listing, and e.Authenticated is set to True.

Although this code sample relies on the membership provider for authentication
purposes, you are not required to use it. You can create login routines that directly access a
database, XML file, or whatever data source you need to authenticate your users.

The LoginView Control
Users in a web application typically have different roles. As such, you may need a web form to
display content one way for a certain role, and another way for a different role. LoginView
provides a simple mechanism for defining what content should be displayed for which roles.
You can think of the control as containing a series of panels, and each panel has content asso-
ciated with a specific role, set of roles, or group (for example, anonymous or logged in users).
You just drop content into the panel, and the LoginView control handles the logic for checking
the role of the user and deciding which panel to display.

Working with RoleGroups, the LoggedInTemplate, and the AnonymousTemplate

Inside the LoginView control definition, you define a series of templates that dictate which
user roles see what content. If the user has not logged in, then the LoginView displays the
AnonymousTemplate. If you have not defined an AnonymousTemplate, then the LoginView does not
display anything to the user.

If the user has logged in, the LoginView runs through all its RoleGroup entries checking to
see if the user is authorized to view any of the RoleGroup templates. A RoleGroup definition
contains two pieces of information: a template containing content, and a listing of the roles
that are allowed to view that content. If the user is in any of the roles outlined by the RoleGroup,
the LoginView displays that RoleGroup template. If the user is not authorized to view any of the
RoleGroups, then the LoginControl displays the LoggedInTemplate (because the user has logged
in). If you have not specified a LoggedInTemplate, then the LoginControl will not display
anything.

Listing 5-15 shows the markup for a LoginView control and the various templates that it
supports.

Listing 5-15. LoginView Control Definition

<asp:LoginView ID="LoginView1" Runat="server">
 <RoleGroups>
 <asp:RoleGroup Roles="Executive">
 <ContentTemplate>

6293_ch05.fm Page 199 Friday, November 11, 2005 4:05 PM

200 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

 You are an executive
 </ContentTemplate>
 </asp:RoleGroup>
 <asp:RoleGroup Roles="Employee, Employee (Read Only)">
 <ContentTemplate>
 You are an employee
 </ContentTemplate>
 </asp:RoleGroup>
 </RoleGroups>
 <LoggedInTemplate>
 You are logged in, but you are not an employee or an executive.
 </LoggedInTemplate>
 <AnonymousTemplate>
 You are not logged in. Please login using the form below:

 <asp:Login ID="Login1" Runat="server"/>
 </AnonymousTemplate>
</asp:LoginView>

Here’s a rundown of how the LoginView processes all these RoleGroups and templates.
First, it determines whether or not the current user is logged in. If the user is not logged in,
LoginView displays the content from the AnonymousTemplate. In the preceding Listing 5-15, the
AnonymousTemplate displays a Login control so the user can log in.

If the user is authenticated, the LoginView begins looking at each RoleGroup to see if any of
the roles defined in the Roles parameter of the RoleGroup match any of the roles that the user is
in. In Listing 5-15, the LoginView first checks to see if the user is in the Executive role. If so, the
LoginView displays the content from the ContentTemplate associated with the RoleGroup. In this
case, it displays You are an executive.

If the user is not an Executive, then the LoginView jumps to the next RoleGroup and starts
the process over again. In this example, it checks to see if the user is in the Employee role or the
Employee (Read Only) role, and displays You are an employee if so.

■Note When you specify a list of roles, the content associated with those roles is displayed if the user is a
member of any of those roles. It’s an OR-based list, not an AND-based list.

If the LoginView runs through all the RoleGroups and does not find a match for the current
user, it then defaults to the LoggedInTemplate content, which reads You are logged in, but you
are not an employee or an executive in Listing 5-15.

One issue that may arise is when a user is assigned to multiple roles. For example, say
a user is assigned to both the Employee and the Executive roles. The LoginView uses the first
RoleGroup matches that it encounters to select the appropriate content for the user. Thus, the
order of your RoleGroups is very important. In Listing 5-15, the Executive and RoleGroup appear
before the Employee / Employee (Read Only) RoleGroup, so a user assigned to both groups would
always see You are an executive.

You can define RoleGroup roles and edit RoleGroup templates directly in the Visual Studio
IDE. Right-click on the LoginView control and select the Edit RoleGroups menu item from the

6293_ch05.fm Page 200 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 201

context menu. This displays the RoleGroup Collection Editor dialog box, which allows you to
add and remove roles from RoleGroups, and reorder RoleGroups in the LoginView control. You
can edit the template for a particular role group by right-clicking on the LoginView control and
selecting the appropriate RoleGroup from the Edit Template submenu.

Workarounds for AND-Based RoleGroups

As mentioned before, the list of roles associated with a RoleGroup is an OR-based list. So what
happens when you need to know if a user is in both the Employee and Executive roles? You
nest LoginView controls:

<asp:LoginView ID="LoginView1" Runat="server">
<RoleGroups>
 <asp:RoleGroup Roles="Executive">
 <ContentTemplate>
 <asp:LoginView ID="ExecLoginView" Runat="server">
 <RoleGroups>
 <asp:RoleGroup Roles="Employee">
 <ContentTemplate>
 You are an executive and an employee!
 </ContentTemplate>
 </asp:RoleGroup>
 </RoleGroups>
 <LoggedInTemplate>
 You are just an executive.
 </LoggedInTemplate>
 </asp:LoginView>
 </ContentTemplate>
 </asp:RoleGroup>
 <asp:RoleGroup Roles="Employee, Employee (Read Only)">
 <ContentTemplate>
 You are an employee
 </ContentTemplate>
</asp:RoleGroup>
</RoleGroups>
<! -- AnonymousTemplate / LoggedInTemplate -->
</asp:LoginView>

Here’s how the nested LoginView works when a user who is both an Employee and an
Executive visits the page. The outer LoginView notices that the user is an Executive, and uses
the content from the Executive RoleGroup template. That content contains the inner LoginView,
which only checks to see if the user is an Employee. If the user is an employee, then you know
that they are both an Executive (because of the outer LoginView) AND an Employee (because of
the inner LoginView). Although it makes for a bit more code, at least you can make the determi-
nation if you really have the need.

6293_ch05.fm Page 201 Friday, November 11, 2005 4:05 PM

202 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

Displaying Mutually Exclusive Content

Another scenario that you may need to plan for, or rather avoid overplanning for, is when you want
to display content for a role regardless of the other roles the user is in. For example, let’s say that you
have a page that needs to display a link to the Human Resources page if you are in the Employee role,
and it also needs to display a link to visit the Executive Portal page if you are in the Executive role.

Do not make the mistake of trying to use nested LoginViews for this type of scenario
because you’ll only end up with a complicated jumble of code. Just use two independent
LoginViews. One LoginView should have an Employee RoleGroup that displays the employee
link. Another LoginView should have an Executive RoleGroup that displays the executive link.
Keep them separate, and keep them simple.

The Password Recovery Control
Users forget their passwords. It’s one of those inevitable things about dealing with people
and the vast array of passwords they have to keep up with on a daily basis. ASP.NET 2.0’s
PasswordRecovery control (Figure 5-14) makes it exceptionally easy to reset or send a user their
password if you are using a membership provider. If you are not using a membership provider,
then you’ll need to build your own password-recovery entry form from scratch because the
PasswordRecovery control is not as flexible as the Login control. Table 5-8 contains a listing of
the most important properties of the PasswordRecovery control.

The Password Recovery Process

Password recovery is two or three step process, depending on how you have configured
your membership provider. The PasswordRecovery control has a total of three templates: the
UserNameTemplate, the QuestionTemplate, and the SuccessTemplate. Each template represents a
step of the process.

Table 5-8. Important PasswordRecovery Control Properties

Property Name Description

GeneralFailureText Text that will be displayed if a nonroutine error occurs. This should be a
general error message informing users that an error occurred and their
password has not been retrieved.

MailDefinition Defines the email message that will be sent to the user. This includes the
subject, body, body format (text/HTML), email content file, priority, and so
on.

QuestionFailureText Text that will be displayed if the user fails to answer the security question
correctly.

SuccessPageUrl URL of the page to which the user will be redirected when the password is
sent. If left blank, the page will refresh and the confirmation message will
be displayed directly in the PasswordRecovery control.

UserNameFailureText Text that will be displayed if the user enters a nonexistent username. This
could be a potential security risk because it could let hackers know when
they have stumbled upon a valid username.

6293_ch05.fm Page 202 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 203

The first step of the process is to acquire the username of the user who is seeking their
password. To accomplish this, the PasswordRecovery control displays a username entry field
and a submit button (see Figure 5-14, left). The user enters the username, and then clicks on
the Submit button. If the user is found, then the control moves to the second step. If not, the
user is informed of the error.

The second step of the process depends on the configuration settings for your member-
ship provider. One of the settings is whether or not to require a Question and Answer during
the password recovery process. If no Question and Answer is required, then this step is skipped
entirely and the user is just emailed the password. If it is required, then the user will see the
security question that was entered when their account was setup and a field in which to enter
the answer (Figure 5-14, center). If the user enters the correct answer, then the control moves
on to step three. If not, the user is informed of the error.

The behavior of the third and final step is dictated by the enablePasswordRetrieval
and enablePasswordReset properties of your membership provider configuration. If
enablePasswordRetrieval is set to True, then the user will be emailed their existing password.
If enablePasswordRetrieval is set to False and enablePasswordReset is set to True, then the
user’s password is cleared out and a new auto-generated password is emailed to the user. And
if both properties are set to False, a nasty exception is thrown because you need to have one or
the other enabled if you plan to use the PasswordRecovery control in your application.

Figure 5-14. PasswordRecovery control and the three steps of the password-recovery process:
Username, Question, and Success

Changing the Content of the Password Recovery Email

When a user completes the password-recovery process, an email is generated and sent to the
user. By default, it contains a rather lack-luster messaging that informs the user that the pass-
word has been emailed. If you are shooting for mediocrity, then leave the message as-is.

If, however, you want a bit more pizzazz in your message, then you need to become
familiar with the MailDefinition property of the PasswordRecovery control. Basically, the
MailDefinition property exposes the most often used properties on a MailMessage object, so
you can alter the content of your mail message to make it less generic. You should be relatively
familiar with most of the properties such a BodyFormat (text/HTML), Cc, From, Priority, and
Subject, so I won’t cover them here. You may not, however, be familiar with the BodyFileName
or EmbeddedObjects properties.

The EmbeddedObjects property is really just a bad way to say attachments. If you want to
send a file (privacy agreement, for example) along with each email that goes out, then you can
specify the files to attach using the EmbeddedObjects property editor. Basically, you just browse
for a file, give it a name, and out it goes with your PasswordRecovery email.

BodyFileName is a helpful property that represents the path to a text file that contains the
body content for your email. The PasswordRecovery control reads this file, if it is specified, and

6293_ch05.fm Page 203 Friday, November 11, 2005 4:05 PM

204 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

dumps the contents of the file into the body of the mail message before sending it off to a user.
This is especially useful when you want to create an HTML email to send out to your users and
makes it easier to maintain message content because you do not have to sift through a bunch
of code to locate it. Just use the file selector from the property window to choose the file that
contains your email body content and you will be all set to send emails.

Displaying the Username and Password in the Body Text

One issue you will run across rather quickly when you are creating your own email body text
is how to get the user’s username and password into the body of the text. Its static text, but
you need to dynamically insert the username and password. This can be done using the
<% UserName %> and <% Password %> tags in the body text, like this:

 You requested that your password information be sent to you via email.
 Following you will find your new login information:

 Username: <% UserName %>
 Password: <% Password %>

The PasswordRecovery control only parses through the email body looking for these two
tags and replaces them with the actual username and passwords you are sending out. These
are the only tags that you can use in the body text, so don’t drop a bunch of ASP.NET code in
there hoping that it will run.

Handling the SendingMail Event

The PasswordRecovery control exposes a single event named SendingMail, which fires right before
an email is sent off to a user. This event passes in the MailMessage object that will ultimately be sent
to the user, so you can programmatically manipulate the MailMessage object to suit your needs.

By the time the message reaches this event, the body content has been setup, the
<% UserName %> and <% Password %> tags have been processed, and any subproperties from the
MailDefinition property have been loaded into the message. It’s basically ready to go, so make
whatever alterations you need and then let the PasswordRecovery control send the message on
its own. Do not send the message from inside the SendingMail event because the user will get it
twice.

In the following example, you’ll see how to set the Bcc field of the mail message. This is a
descent example of when it’s appropriate to use this event to modify a mail message because
you cannot define a Bcc recipient using the MailDefinition property:

Sub PasswordRecovery1_SendingMail(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.MailMessageEventArgs)
 e.Message.Bcc = "system@passwordRecovery.com"
End Sub

Notice that the email message variable is buried inside the MailMessageEventArgs parameter.
You can access it using e.Message, as shown in the preceding code snippet.

6293_ch05.fm Page 204 Friday, November 11, 2005 4:05 PM

C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N 205

The LoginStatus Control
Many websites display a link somewhere on their site that allows users to quickly log in or log
out, depending on their current login status. The LoginStatus control is a simple control that
exposes this functionality. Table 5-9 lists the important properties of the LoginStatus control.

Here’s how the control works. Users who are not currently logged in see the login link and/
or login image. When a user clicks on that login link, the user is redirected to the default login
page. Users who have already logged in will see a logout link. This signs them off, and then redi-
rects them or refreshes the page depending on the LogoutAction setting. That’s the extent of
the LoginStatus control.

The LoginName Control
The LoginName control is, by far, the simplest control of the bunch. It’s really just a label that
can display the username of the currently logged in user. If the user is not logged in, then it is
completely invisible.

The only noteworthy property the LoginName control exposes is the FormatString property.
If you have worked with the String.Format function before, then you will quickly recognize the
syntax for using FormatString: you just place {0} wherever you want the username to appear in
the string. Thus, the FormatString You are logged in as {0} would end up reading You are
logged in as JSmith when it was displayed on a web form.

■Note The LoginName control displays the login name of the user, not the actual user’s name. So watch
out when you use this because if you try to personalize something with it, it may end up reading something
like “Thanks JSmith for visiting our website!”

Table 5-9. Important LoginStatus Control Properties

Property Name Description

LoginImageUrl URL of the image to display in the login link.

LoginText Text displayed in the login link.

LogoutAction Action that is to be taken when the logout link is clicked. The valid
options are Refresh, Redirect (to LogoutPageUrl), and
RedirectToLoginPage.

LogoutImageUrl URL of the image to display in the logout link.

LogoutPageUrl URL to where the user will be redirected when the logout button is
clicked and the LogoutAction is set to Redirect.

LogoutText Text displayed in the logout link.

6293_ch05.fm Page 205 Friday, November 11, 2005 4:05 PM

206 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

The CreateUserWizard Control
Although the Web Site Administration Tool can serve as your primary means for adding users
to a web application, you may also need to add users directly from a page inside your applica-
tion. Many websites allow users to register for new accounts, or you may want to create a
simple administrative interface so users who you don’t want to give free reign on the Web Site
Administration Tool can still do some simple admin tasks. In any case, the CreateUserWizard
control (see Figure 5-15) gives you a quick and easy way to add users to your application. Table
5-10 contains a listing of the most important properties on the CreateUserWizard control.

Figure 5-15. CreateUserWizard control and its two steps: Sign Up for Your New Account (left) and
Complete(right).

Table 5-10. Important PasswordRecovery Control Properties

Property Name Type Description

Answer Gets/sets the security answer field.

AutoGeneratePassword Determines whether or not the password will be automati-
cally generated for the user. If this is set to True, and a
password was entered in the password field of the
CreateUserWizard control, then the auto-generated pass-
word will overwrite the password field.

CancelDestination➥
PageUrl

Specifies the destination URL where users will be redi-
rected if they click on the Cancel button.

ContinueDestination➥
PageUrl

Specifies the destination URL where users will be redi-
rected if they click on the Continue button that appears in
the Complete template (see Figure 5-16, bottom, later in this
chapter).

DisplayCancelButton Specifies whether or not to display a Cancel button on the
control.

DisableCreatedUser Specifies whether or not the user created by the control
should be disabled.

Email Gets/sets the email field.

6293_ch05.fm Page 206 Friday, November 11, 2005 4:05 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

207

■

Caution

If you want the

CreateUserWizard

 control to send a notification email to the user containing
that user’s login information, then you

must

 specify a

BodyTextFile

 in the

MailDefinition

 property. If you

do not specify a

BodyTextFile

, then the

CreateUserWizard

 will

 not

 send notification emails.

Using the CreateUserWizard Control in the Designer

Most of the Login controls you have worked with thus far are templated controls, but the

CreateUserWizard

 is a special type of templated control known as a wizard. The wizard is a new
addition to ASP.NET 2.0 that allows you to define steps in a process, and then create a “page”
(in the form of a template) for each step. Navigation buttons on the wizard allow the user to
move from step to step in an orderly fashion. This means that after you learn more about
wizards (Chapter 10), you will be able to add custom steps to the

CreateUserWizard

 and order
those steps however you choose.

Another implication of the wizard is that the Common Tasks menu has a lot more options
on it and so it appears to be a bit more complicated. Most of the options are standard wizard
tasks that appear on all wizards. For now, you can disregard them. You should only pay

EmailRegularExpression

Regular expression used to validate the email address.

LoginCreatedUser

Determines whether or not the user entering the user infor-
mation will be logged in after the user is created. This is
most useful for “registrations” where the person creating
the user account will also be the person using the account.

MailDefinition

Defines the new user notification email that will be sent to
the user. This includes the subject, body, body format (text/
HTML), email content file, priority, and so on. You

must

specify an email body content file for the

BodyFileName

 in
the

MailDefinition

 if you want the

CreateUserWizard

 to
send notification emails. Refer to the

PasswordRecovery

control for information on how to customize the email and
respond to the email event because all the same concepts
apply to this control.

PasswordRegular

➥

Expression

Regular expression used to validate the password.

Question

Gets/sets the security question field.

RequireEmail

Determines whether or not an email address is required for
the new user.

UserName

Gets/sets the UserName field.

WizardSteps

Steps that the user may go through to complete the wizard.
By default, there are two steps:

CreateUserWizardStep

 and

CompleteWizardStep

. You can add additional steps, and
reorder the existing steps, using the

WizardSteps

 property
editor.

Table 5-10.

 Important

PasswordRecovery

 Control Properties (Continued)

Property Name Type Description

6293_ch05.fm Page 207 Tuesday, November 15, 2005 4:31 PM

208

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

attention to the options

Customize Create User Step

 and

Customize Complete Step

. Clicking
these options is synonymous to clicking the

Convert to Template

 option on a normal
templated control. After you click one of these options, you can click the

Edit Templates

option and change the layout of the Create User or Customize step, just as you would with a
normal templated control.

The Create User Process

As is, the

CreateUserWizard

 has two steps. The first step,

CreateUserWizardStep

, is to allow the
entry and submission of user information. Depending on membership provider configuration,
and your

CreateUserWizard

 control configuration, the entry form for the user will require
different fields. Clicking on the

Create User

 button will submit the user information, and the
membership provider will add the user to your application. At this point, the

CreatedUser

 event
(the only event this control exposes) is fired, and the notification email is sent to the user.

The second step,

CompleteWizardStep

, exists to display a confirmation message informing
the user that their account was successfully added to the application, and a Continue button so
you can redirect the user to some other location using the

ContinueDestinationPageUrl

property.

As mentioned before, you can add additional steps to the process by manipulating the

WizardSteps

 property. This may be helpful if you want the user to fill out additional information
during the registration process or if you want to force the user to fill out a questionnaire or
survey before they register.

Handling the CreatedUser Event

Just after the user has been added to the application, and just before the control sends the noti-
fication email, the

CreateUser

 event fires. This gives you the opportunity to set up routine user
information that needs to be added to the database before the new user actually starts using
your site. One scenario that may come up is that your users may need to be placed in a default
role. The following example shows what you need to do if you want all new users created by
this control to be a part of the “Customer” role:

'***
Sub CreateUserWizard1_CreatedUser(ByVal sender As Object,
 ByVal e As System.EventArgs)
 Roles.AddUserToRole(CreateUserWizard1.UserName, "Customer")
End Sub

The ChangePassword Control

Users probably will want to change their passwords at some point in time, especially if you are
auto-generating passwords that end up being 20 characters of random gibberish. Even if
you’re not auto-generating passwords, it’s still a good idea to let users change their passwords
for security reasons. The

ChangePassword

 control (see Figure 5-16) gives users the ability to
change their password from within your application, and it handles all the logic to do so auto-
matically. Table 5-11 contains a listing of the most important properties in the

PasswordRecovery

 control.

6293_ch05.fm Page 208 Tuesday, November 15, 2005 4:31 PM

C H A P T E R 5

■

 U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

209

Figure 5-16.

 The

ChangePassword

 control

Using the

ChangePassword

 control is as simple as placing it on a web form and ensuring that
you have an appropriately configured membership provider. It takes care of all the logic
required to update a user’s password.

If you want to send a confirmation email to the user regarding the password change,
create the email body and save it to a text file. Specify that text file as the

BodyTextFile

in the

MailDefinition

property in the control. When users successfully change their password, a noti-
fication email is fired off. If a

SuccessPageUrl

is

defined, users are redirected to the specified
location after the email has been sent.

If no email is sent, or the

v

is not defined, then the page refreshes and users see a confir-
mation note indicating that their password was successfully changed (refer to Figure 5-16,
bottom). If users click on the

Continue

 button on the confirmation page, they are redirected to

Table 5-11.

 Important

PasswordRecovery

 Control Properties

Property Name Type Description

Authentication

➥

FailureAction

Action that is taken when a user who has not yet logged
in attempts to change the password. The options are

RedirectToLoginPage

 and

Refresh

.

CancelDestination

➥

PageUrl

URL of the page where the user will be sent if the Cancel
button is clicked.

ContinueDestination

➥

PageUrl

URL of the page where the user will be sent if the
Continue button is clicked.

MailDefinition

Defines the change password notification email that will
be sent to the user. This includes the subject, body, body
format (text/HTML), email content file, priority, and so
on. You

must

 specify an email body content file for the

BodyFileName

 in the

MailDefinition

 if you want the

ChangePassword

 control to send notification emails. Refer
to the

PasswordRecovery

 control for information on how
to customize the email and respond to an email event
because all the same concepts apply to this control.

PasswordRegular

➥

Expression

Regular expression used to validate the password.

SuccessPageUrl

URL of the page where the control sends the user after
the password change succeeds.

6293_ch05.fm Page 209 Tuesday, November 15, 2005 4:31 PM

210 C H A P T E R 5 ■ U S E R M A N A G E M E N T T O O L S A N D L O G I N C O N T R O L S F O R F O R M S A U T H E N T I C A T I O N

the ContinueDestinationPageUrl, if it is has been specified. If it hasn’t, the page just refreshes
and the confirmation continues to be displayed.

The only event the ChangePassword control exposes is the ChangedPassword event, which is
fired after the user has successfully changed the password and before the notification email is
sent. You can use this event to manipulate the v object or to execute any operations that you
need to run after the user has changed the password.

Summary
Developing login forms and user administration sections in ASP.NET 1.x used to be a time-
consuming process, but you have seen in this chapter how the new user-management tool and
features in ASP.NET 2.0 can help reduce that timeframe significantly. You have also seen how
to effectively manipulate templated controls so you can fit them into any page layout or color
scheme, and how to use the new Membership and Roles objects to easily access common user
and role functions. Now you just need to figure out what to do with all that extra time you’ll
have when you finish your next project early.

6293_ch05.fm Page 210 Friday, November 11, 2005 4:05 PM

211

■ ■ ■

C H A P T E R 6

Managing Profiles

H

and tailored suits, custom made golf clubs, bath towels with embroidered names across the
corner: people have a fascination with personalized items. The sense of attachment is stronger
to something that you know was handcrafted just for you, and web pages are no different. Most
major sites now have some degree of personalization that makes their customers feel more
welcome. Content adjusts on an individual basis. Advertisements target specific groups of
people. Upselling, cross-selling—it all falls under the category of personalization.

Whenever I need to buy movies tickets, I surf over to

Fandango.com

 and it shows me all the
theaters around my zip code. The news site I use knows my nearest affiliate and automatically
displays local stories along with national headlines.

Amazon.com

 graciously suggests products
that it thinks I may like based on my past purchase history. These are all examples of targeted
content. I live in Dallas, so it wouldn’t do me much good to see movie listings in Atlanta or New
York, and I’m not going to be nearly as attached to the Chicago news as I am Dallas news. And
trust me, Amazon has a much better chance of selling me a technical gadget than a set of china.
You can build targeted content into your applications by storing information about your users
and using that information to output relevant content. For example, if you are building a
company website, you can display department- or branch-specific news and information to
your viewers. Or, if you know it has been a long time since a user logged in to an application,
you can display additional help information to assist them through their tasks.

Another common use of profile information includes targeted selling. This is similar to
targeted content, but the objective is to get products or services in front of the user that are
most likely to be purchased. Have you noticed when you go to a search engine and type in a
search term, that the advertisements closely parallel your search? I searched for Baseball on
Google and it showed me advertisements for baseball equipment on eBay, a digital laser base-
ball that can clock your arm speed, tickets for baseball games, and a cake decorating kit that
includes a sports pan for baking cakes in the shape of a baseball. My wife and I share a
computer and she often searches for cake-decorating supplies, so I can only assume that the
last item is linked to her search history. If you actively look for baseball, for example, you’re
probably interested in baseball. If you’re interested in baseball, you’ll probably be more likely
to buy something related to it, such as tickets or equipment.

Personalization is based on user-specific information that outlines preferences or behav-
iors. You can use the new profile functionality in ASP.NET 2.0 to quickly and easily store
information about the people who visit your website or use your application. You can then use
that profile information to adjust the content of your site according to the specific information
you have gathered about the visitors.

6293_ch06.fm Page 211 Friday, November 11, 2005 5:19 PM

212

C H A P T E R 6

■

 M A N A G I N G P R O F I L E S

This chapter covers a wide range of topics related to using profiles, including the
following:

•

Profile Basics:

 Covers the basics of profile configuration, including how to define and
work with profile properties, profile property groups, and the

ProfileManager

 object.

•

Working with Anonymous Profiles:

 Discusses the nuances of working with profiles and
anonymous users, including how to define profile properties for anonymous users,
avoid invalid profile property access, and migrate an anonymous profile to an authenti-
cated profile using the

MigrateAnonymous

 event.

•

Creating a Simple Targeted Advertisement:

 Demonstrates how to use profiles to track
user behavior and how to respond to target content based on the findings

•

The Shopping Cart Custom Property:

 Illustrates the use of custom objects as profile prop-
erties by implementing a profile-based shopping cart. This also includes an example
demonstrating how to migrate an anonymous profile to an authenticated profile.

Profile Basics

Microsoft, realizing the need for a simple mechanism to store information about the people
who visit your site, added profile support to ASP.NET 2.0. A profile consists of a set of proper-
ties that helps define the demographics, behavior, configuration options, and just about
anything else you want to store about an individual who accesses your web application. As
people use your application, you set values for the profile properties based on their actions,
their behaviors, and the information they enter into the system. You can then use that profile
information in other parts of your application to customize the site based on user-specific
profile information. Also understand that ASP.NET stores profile information between
sessions (by default to a SQL Server database), so you can continually gather profile informa-
tion over time as people continue to visit your application.

In this section, you’ll learn about the

Profile

 object, configuring profiles, defining profile
properties and groups, and authenticated versus anonymous profile properties.

The Profile Object

ASP.NET 2.0 exposes its profile support via the

Profile

 property of the

System.Web.HttpContext

object. Microsoft’s implementation of profile support makes the

Profile

 object very interesting
because the properties on the

Profile

 object change to reflect configuration settings you specify
in

Web.config

. At its core, the

Profile

 object is a

System.Web.Profile.ProfileBase

 object. Like
many features in ASP.NET, profile support relies on the provider model to abstract its implemen-
tation details from the developer. As such, the

ProfileBase

 object defines the basic set of profile
functionality the profile provider expects a profile object to expose.

■

Note

You can get a brief description of providers in Chapter 5 in the section titled “Working with the

Membership and Roles Objects.”

6293_ch06.fm Page 212 Friday, November 11, 2005 5:19 PM

C H A P T E R 6

■

 M A N A G I N G P R O F I L E S

213

You configure the names and types of properties the

Profile

 object exposes in

Web.config

.
I’ll cover the exact details of how to do this shortly, so for now understand that you define the
properties for the

Profile

 object in a configuration file and not in code. Whenever ASP.NET
runs your application, it looks at the profile property configuration in

Web.config

 and automat-
ically builds a new class named

ProfileCommon

 that derives from the

ProfileBase

 class and
contains the properties you defined in

Web.config

. This gives you a strongly typed object that
you can work with in your code. Also, although every application that uses profiles has a

ProfileCommon

 class, each application has a unique

ProfileCommon

 class that resides in the
application’s root namespace. So the

ProfileCommon

 class in one application is not the same

ProfileCommon

 class in another application.
When a user requests a page, ASP.NET uses the profile provider to load a

ProfileCommon

object for the user, and this object becomes the

Profile

 object you can access on the various
pages in your application. You can then use the information in the

Profile

 object in your page
code and set values as appropriate. When the page finishes processing, ASP.NET uses the
profile provider to save any changes you made in the

Profile

 object so you can access that
information on subsequent visits by the user. ASP.NET handles the loading and saving of
profile information entirely behind the scenes, so you never have to worry about manually
saving or loading anything.

Because the

Profile

 object depends on configuration settings to define its properties,
profile configuration is covered next.

Enabling and Disabling Profiles

ASP.NET 2.0 enables profiles by default, so your application has access to the profile function-
ality unless you expressly disable profiles. A bit of overhead is associated with profiles because
ASP.NET 2.0 loads user profile information on every request, regardless of whether you actu-
ally use the profile information on the page. As such, you should disable profiles entirely if you
are not planning on using them in your application.

For reference, all profile configuration settings reside in the

<profile>

 section of

Web.config

. Disabling profiles is a simple enough task; you just have to set the enabled
attribute to false in the

<profile>

 element as shown in Listing 6-1.

Listing 6-1.

 Disabling Profile Support

<configuration>
 <system.web>
 <profile

enabled="false"

></profile>
 </system.web>
</configuration>

When profiles are disabled, you will not have access to the

Profile

 object in your applica-
tion. Any calls to the

Profile

 object result in an error and your application will not compile.
You should only disable profiles if you do not use them anywhere in your application.

Defining Profile Properties in Web.config

You define properties for the

Profile

object by specifying them in the

<properties>

 element
of the

<profiles>

 section in

Web.config

. You can create as many properties as you like, but

6293_ch06.fm Page 213 Friday, November 11, 2005 5:19 PM

214

C H A P T E R 6

■

 M A N A G I N G P R O F I L E S

keep in mind that ASP.NET has to load all of them into the

Profile

 object on each request, so
the more properties you add, the more time it takes to load them. Listing 6-2 is an example of
how to define profile properties in

Web.config

.

Listing 6-2.

 Defining Profile Properties in

Web.config

<configuration>
 <system.web>
 <profile>
 <properties>
 <add name="CustomerName" type="String" defaultValue="Valued Customer" />
 <add name="DateOfBirth" type="System.DateTime" defaultValue="8/20/1980" />
 </properties>
 </profile>
 </system.web>
</configuration>

■

Note

If you are using the

SqlProfileProvider

 (the default provider for profiles), you can add and
remove properties from your profile without losing data from the existing properties. If you implement your
own provider, or use a third-party provider, then be aware that you may lose data unless the provider has

been specifically designed to handle changes to the profile data structure gracefully.

When you define a property, you must specify the property

name

 and

type

. Optionally,
you may define a default value using the

defaultValue

 attribute. Specifying default values is
a good idea because you may need to use a profile property value before you have a chance
to capture the data from the person who visits your website. You can also define object prop-
erty types, not just primitive types, as long as those types are serializable. You’ll see an
example of how to specify and use an object property type in the shopping cart example later
in this chapter.

Creating Profile Property Groups

Property groups allow you to organize the properties in the

Profile

 object by grouping
related properties together. Groups make it easier to locate specific properties using Intel-
liSense in the Visual Studio IDE because ASP.NET creates a class for each group of properties
and then uses that class to create a property of the

Profile

 object that contains those profile
properties. It’s extremely useful when you have a large number of profile properties that you
need to track.

For example, address information is usually made up of a street address, an apartment or
suite number, a city, a state, and a zip code. Grouping these properties together using a prop-
erty group keeps them from cluttering up the

Profile

 object. Listing 6-3 shows how to group
profile properties using the

<group>

 element.

6293_ch06.fm Page 214 Friday, November 11, 2005 5:19 PM

C H A P T E R 6

■

 M A N A G I N G P R O F I L E S

215

Listing 6-3.

 Profile Property Group Definition Example in

Web.config

<profile>
 <properties>
 <add name="CustomerName" type="String" defaultValue="Valued Customer" />
 <add name="DateOfBirth" type="System.DateTime" defaultValue="8/20/1980" />

 <group name="Address">
 <add name="Address" type="String" />
 <add name="AptOrSuite" type="String" />
 <add name="City" type="String" />
 <add name="State" type="String" />
 <add name="Zip" type="String" />
 </group>

 </properties>
</profile>

All you have to do to define a property group is surround a set of properties with the

<group>

 element and specify the group name via the

name

 attribute. After you define a group,
you access the group properties using the group name as a property of the

Profile

 object as
shown in Listing 6-4.

Listing 6-4.

 Grouped Profile Property Access

Profile.Address.Street = "5555 Main St."
Profile.Address.AptOrSuite = "Apt. 110"
Profile.Address.City = "Dallas"
Profile.Address.State = "Tx"
Profile.Address.Zip = "99999"

■

Note

Profile groups can only be one level deep. Nested groups (subgroups) are not supported.

Implementing a Profile Property Class

You do not have to declare all your profile properties in

Web.config

. You can also define profile
properties in a class that inherits from the

System.Web.Profile.ProfileBase class, as shown in
Listing 6-5

Listing 6-5. Implementing a Profile Property Class

Imports System.Web.Profile

Public Class MyProfile
 Inherits ProfileBase

6293_ch06.fm Page 215 Friday, November 11, 2005 5:19 PM

216 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

 '***
 Private _FirstName As String
 Private _LastName As String

 '***
 Public Property FirstName() As String
 Get
 Return _FirstName
 End Get
 Set(ByVal value As String)
 _FirstName = value
 End Set
 End Property

 '***
 Public Property LastName() As String
 Get
 Return _LastName
 End Get
 Set(ByVal value As String)
 _LastName = value
 End Set
 End Property

End Class

Notice that this class inherits its base functionality from the ProfileBase object in the
System.Web.Profile namespace. Other than that, there is nothing special about the class, it
simply contains two standard string properties called FirstName and LastName.

After you create your custom profile property class, you have to configure ASP.NET to use
that custom class by specifying a value for the inherits attribute of the <provider> element as
shown in Listing 6-6.

Listing 6-6. Configuring ASP.NET to Use a Custom Profile Property Class

<configuration>
 <system.web>
 <profile inherits="MyProfile">
 <properties>
 <add name="CustomerName" type="String" defaultValue="Valued Customer" />
 <add name="DateOfBirth" type="System.DateTime" defaultValue="8/20/1980" />
 </properties>
 </profile>
 </system.web>
</configuration>

6293_ch06.fm Page 216 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 217

Notice that you can specify a custom property class and still define properties in
Web.config. ASP.NET simply compiles the ProfileCommon class using your custom class instead
of ProfileBase, as shown in Figure 6-1.

Figure 6-1. ASP.NET compiles ProfileCommon using either ProfileBase or a custom class that you
specify in Web.config.

6293_ch06.fm Page 217 Friday, November 11, 2005 5:19 PM

218 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

Strongly Typed Properties
Because ASP.NET actually compiles a class containing your profile properties, the Profile
object exposes strongly typed properties. This is entirely different from what you have come to
know from the Session object, which stores session data as nonstrongly typed key-value pairs.

Listing 6-7 highlights the differences between accessing data in the Session object and the
Profile object. For this example, assume you are storing a user’s date of birth in both the
Session object and in the Profile object, and you want to use that information to display the
user’s age on your web form.

Listing 6-7. Accessing Data Differences Between the Profile and the Session Objects

'***
Private Function GetAge(ByVal DOB As Date) As Long
 Return DateDiff(DateInterval.Year, DOB, Now)
End Function

'***
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

 'Using the Profile
 Me.lblAge.Text = GetAge(Profile.DateOfBirth)

 'Using the Session: Notice that you have to cast the value to a Date Type
 Me.lblAge.Text = GetAge(DirectCast(Session("DateOfBirth"), Date))

End Sub

The GetAge function accepts a single date variable, which it then uses to calculate the
user’s age. You can see that to get the DateOfBirth value from the Session object you must use
Session("DateOfBirth"). Because the Session object is not strongly typed, the call to
Session("DateOfBirth") is only guaranteed to return an Object. You have to assume it will be a
Date. If that assumption is wrong, i.e. the session happens to be storing a non Date type value
in Session("DateOfBirth"), then an exception is thrown.

The Profile object, however, exposes a strongly-typed Date property called DateOfBirth.
This property requires no casting for use in the GetAge function and poses no exception threat
because it can only store a Date type. If you attempt to use the property inappropriately, you
receive a compiler error. You are also protected from accidentally misspelling the item that you
are trying to acquire. For instance, let’s say you make the following spelling mistakes:

Listing 6-8. Accidental Property Misspelling

'Using the Session
 Me.lblAge.Text = GetAge(DirectCast(Session("DateOoooofBirth"), Date))

'Using the Profile
 Me.lblAge.Text = GetAge(Profile.DateOoooofBirth)

6293_ch06.fm Page 218 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 219

The line of code using the Session object compiles without any problems but experiences
a logical error each time it runs because nothing is ever returned from the call. The line using
the Profile object, however, fails to compile because no such property exists for the Profile
object.

■Tip If you use the session variable to store information, consider creating a strongly typed session class
to help you manage your session variables. You can save a lot of hassle if you ever need to change a session
variable name, define a default value, or eliminate a session variable from your code entirely. Chapter 2 has
more information about strongly typed configuration classes, and you can apply the same technique to
session variables.

ProfileManager Class
The System.Web.Profiles.ProfileManager class allows you to manage all the profiles in your
application. Like the Membership and Roles objects discussed in Chapter 5, the ProfileManager
acts as the proxy object for the provider model. You won’t work with it nearly as much as the
actual Profile object itself, but it has a number of methods that are very helpful for adminis-
trative tasks. Many of the methods, however, use a few components that we have yet to discuss,
so let’s cover those components first.

ProfileInfo Class

The ProfileInfo object is a very simple class that stores basic information about a profile.
Many of the methods in the ProfileManager return a ProfileInfoCollection object, which
simply contains a set of ProfileInfo objects. Table 6-1 outlines the properties of the
ProfileInfo class.

ProfileAuthenticationOption Enum

Many of the methods in the ProfileManager also use the ProfileAuthenticationOption
enumeration to let you filter results based on whether the profile is an anonymous or

Table 6-1. ProfileInfo Properties

Property Name Type Description

IsAnonymous Boolean True if the profile is an anonymous profile. False if
the profile is an authenticated profile.

LastActivityDate Date Last date the profile was read or updated.

LastUpdatedDate Date Last date the profile was updated.

Size Integer Gets the size of the profile property data.

UserName String Identifies the user to whom the profile belongs.

6293_ch06.fm Page 219 Friday, November 11, 2005 5:19 PM

220

C H A P T E R 6

■

 M A N A G I N G P R O F I L E S

authenticated profile. The

ProfielAuthentictionOption

 enumeration contains three values:

All

,

Anonymous

, and

Authenticated

.

ProfileManager Properties and Methods

Tables 6-2 and 6-3 provide a brief overview of the important properties and methods of the

ProfileManager

 object.

Table 6-2.

ProfileManager

 Properties

Property Name Type Description

ApplicationName String

Name of the application. The role provider may
store data for multiple applications, so it needs to
know the identify of the application.

AutomaticSave

➥

Enabled
Boolean

 (read only) True if ASP.NET automatically saves changes to
the profile when the page is finished executing. If
this is false, then you must explicitly save the
profile information by calling

Profile.Save()

after you change profile information.

Enabled Boolean

 (read only) True if profiles are enabled.

Provider ProfileProvider

Returns a reference to the default

ProfileProvider

object for the application.

Providers ProfileProviderCollection

Returns a collection of the

ProfileProvider

objects available to the application.

Table 6-3.

ProfileManager

 Methods

Method Name Parameters Returns Description

DeleteInactive

➥

Profiles
authentication

Option As Profile

Authentication

Option

userInactive

➥

SinceDate

As DateTime

Integer

Deletes all profiles that have been
inactive since the

userInactive
SinceDate

. You can use the

authenticationOption

 parameter to
limit deletions to anonymous or
authenticated users. Returns an

Integer

 identifying the number of
profiles deleted.

DeleteProfile

username As String

Boolean

Deletes the profile for the specified
username. Returns

True

 if the
deletion succeeds.

DeleteProfiles profiles As
ProfileInfo

Collection

Deletes all the profiles in the profiles
parameter. Returns an

Integer

 speci-
fying the number of profiles deleted.

DeleteProfiles

usernames As

String()
Integer

Deletes all the profiles for the speci-
fied usernames. Returns an

Integer

specifying the number of profiles
deleted.

6293_ch06.fm Page 220 Tuesday, November 15, 2005 5:19 PM

C H A P T E R 6

■

 M A N A G I N G P R O F I L E S

221

Working with Anonymous Profiles

People who access your website will either be anonymous users or authenticated users, a
distinction that adds a level of complexity to profiles. Authenticated users are easily identified
because they have a unique username that identifies them each time they log in. As such,
ASP.NET can easily store and track profile information for an authenticated user. Anonymous

FindInactive
ProfilesBy
UserName

authentication
Option As Profile
Authentication
Option
usernameToMatch
As String
userInactive

➥

SinceDate

 As

DateTime

ProfileInfo
Collection

Searches for inactive profiles based on
authentication option, a username
wildcard, and date of last activity.
Returns a

ProfileInfoCollection

containing any matches.

FindProfiles
ByUserName

authentication
Option As Profile
Authentication
Option
UsernameToMatch

As

String

ProfileInfo
Collection

Searches for profiles based on the
authentication option and a user-
name wildcard. Returns a

ProfileInfoCollection

 containing any
matches.

GetAllInactive
Profiles

authentication
Option As Profile
Authentication
Option
userInactive

➥

SinceDate

 As

DateTime

ProfileInfo
Collection

Searches for inactive profiles based on
authentication option and last activity
date. Returns a

ProfileInfoCollection

containing any matches.

GetAllProfiles authentication
Option As Profile
Authentication
Option

ProfileInfo
Collection

Searches for all profiles based on
authentication option. Returns a

ProfileInfoCollection

 containing any
matches.

GetNumber
OfInactive
Profiles

authentication
Option As Profile
Authentication
Option
userInactive

➥

SinceDate

As

DateTime

Integer

Searches for

InActiveProfiles

 based
on authentication option and last
activity date. Returns an

Integer

 iden-
tifying the total number of records
located.

GetNumberOf
Profiles

authentication
Option As Profile
Authentication
Option

Integer

Searches for all profiles based on
authentication option. Returns an

Integer

 identifying the total number
of records located.

The

FindInactiveProfilesByUserName, FindProfilesByUserName, GetAllInactiveProfiles,

 and

GetAllProfiles

 methods all have overloads that allow you to request paged data.

Table 6-3.

ProfileManager

 Methods (Continued)

Method Name Parameters Returns Description

6293_ch06.fm Page 221 Tuesday, November 15, 2005 5:19 PM

222 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

users, on the other hand, do not have a unique username. This makes storing and tracking
anonymous profile information a bit more troublesome.

You do not have to do anything special to work with profile properties for an authenticated
user because ASP.NET knows the identity of the user. Anonymous users, however, require a
few special preparations. In this section, you’ll learn about anonymous identification, anony-
mous profile properties, and all the caveats associated with using anonymous profiles.

Enabling Anonymous Profile Identification
ASP.NET acquires profile information for people based on their usernames. Authenticated
users, by virtue of having been authenticated, have a valid, nonempty, unique username that
identifies them to the web application. Each time an authenticated user visits your application,
ASP.NET can easily acquire the user’s profile information via the user’s username.

Anonymous users do not have a unique username, but ASP.NET still needs a unique value
by which to store and retrieve anonymous profiles. ASP.NET circumvents this issue using
Anonymous Identification, a mechanism that assigns anonymous users a unique identifier. To
do this, Anonymous Identification generates a random unique ID, stores that unique ID in a
cookie, and then sends that cookie back to the user (or along with the URL depending on your
Anonymous Identification configuration).

■Note Anonymous Identification is not the same thing as a SessionID. Cookie-based Anonymous
Identification is persistent and continues to identify the anonymous user over multiple browser sessions.
URL-based Anonymous Identification only works as long as the URL contains the unique ID.

Each time the anonymous user requests a page from your site, the unique identifier
accompanies the request. ASP.NET then uses the unique identifier to acquire the appropriate
profile information for the anonymous user, even though they have never authenticated.
ASP.NET stores profile information as though the anonymous user was actually an authenti-
cated user, using the auto-generated ID as a username.

By default, Anonymous Identification is not enabled. To enable Anonymous Identifica-
tion, set the enabled attribute of the <anonymousIdentification> section in Web.config to true,
as shown in Listing 6-9.

Listing 6-9. Enabling Anonymous Identification

<configuration>
 ...
 <system.web>
 ...
 <anonymousIdentification enabled="true" />
 ...
 </system.web>
</configuration>

You can also configure a number of other Anonymous Identification settings if you so desire,
but you can normally just enable the feature without any additional configuration required.

6293_ch06.fm Page 222 Friday, November 11, 2005 5:19 PM

C H A P T E R 6

■

 M A N A G I N G P R O F I L E S

223

Table 6-4 outlines the various configuration options for the

<anonymousIdentification>

 element
if you happen to need it.

Table 6-4.

<anonymousIdentification>

 Section Attribute Descriptions

Attribute Name Default Value Description

enabled False

True if Anonymous Identification is enabled.

cookieless UseDeviceProfile

Anonymous Identification can store a user’s unique ID in
a cookie or as a query string value. The query string is
widely supported but often results in the unique ID being
lost during navigation. Cookies are more reliable, but
security-conscious users may disable cookie support.
The cookieless attribute has four settings that allow you
to configure how Anonymous Identification should store
the unique ID:

cookieless Value Description

UseCookies

Anonymous Identification always uses cookies. If the
browser does not support cookies or cookies have been
disabled, then the user will not be identified
appropriately.

UseUri

Anonymous Identification always stores the unique ID in
the query string and does not attempt to use cookie. This
is good if your target users normally have cookies
disabled or are using older browsers that do not support
cookies.

AutoDetect

Browsers send information identifying the type and
version of the browser, and ASP.NET maintains a reposi-
tory of browser types, versions, and the features they
support. If ASP.NET knows, based on that repository, that
the browser supports cookies, then ASP.NET probes the
browser to determine if cookies are enabled. If cookies
are enabled, then ASP.NET writes the unique ID to the
cookie. Otherwise, ASP.NET writes the unique ID to the
query string.

UseDeviceProfile

This works similarly to

AutoDetect

, but the decision to
use cookies is solely based on ASP.NET’s browser feature
repository. ASP.NET does not probe to check whether
cookies are enabled. If the browser is known to support
cookies, but the user has disabled cookies, the user will
not be identified appropriately.

6293_ch06.fm Page 223 Tuesday, November 15, 2005 5:22 PM

224

C H A P T E R 6

■

 M A N A G I N G P R O F I L E S

Table 6-4.

<anonymousIdentification>

 Section Attribute Descriptions (Continued)

Attribute Name Default Value Description

cookieName .ASPXANONYMOUS

Defines the name of the cookie that contains the user’s
unique ID. If you are running multiple applications on a
single server, and each one requires its own Anonymous
Identification cookie, then you’ll need to change the
name of this cookie for each individual application to
avoid issues with overwriting the unique ID.

cookiePath /

Defines the path in your application past which authen-
tication cookies should be sent. For example, if you
specify

/Protected/

 as the path, then cookies are only
sent to your application if the user requests something in
the

/Protected/

 folder or a subfolder of the

/Protected/

folder. Be wary of using this setting because case-
sensitivity issues may result in a browser not sending
the cookie.

cookieProtection All

Defines the protection placed on Forms Authentication
cookies. The

cookieProtection

 attribute has four
different settings that allow you to configure how to
protect the authentication cookie:

cookieProtection Value Description

None

Cookies are not validated or encrypted. This has a slight
performance benefit, but it means that malicious users
could read and/or alter cookie information. Only
consider using this option if your application requires
SSL (HTTPS), because cookies are encrypted along with
all other communications over SSL connections.

Validation

Creates a MAC by hashing the cookie data using a valida-
tion key. The resulting MAC hash is then appended to
the cookie data. When ASP.NET receives the cookie on a
subsequent request, it hashes the cookie data using the
same validation key and checks the result against the
MAC hash in the cookie. If both items match, the data in
the cookie has not been altered, and the cookie is
considered valid.

Encryption

Cookie data is encrypted using DES or Triple-DES
encryption and stored in the cookie. On subsequent
requests, ASP.NET decrypts the cookie data. Validation is
not used in this scenario, so the cookie may be suscep-
tible to some attacks. You specify the encryption
algorithm in the

<machineKey>

 element in

Machine.config or Web.config.

All

Applies both

Validation

 and

Encryption

 to the cookie.

All

 is the most secure option and is therefore both the
recommended and the default option as well.

6293_ch06.fm Page 224 Tuesday, November 15, 2005 6:10 PM

C H A P T E R 6

■

 M A N A G I N G P R O F I L E S

225

When to Use Anonymous Identification

Anonymous Identification should be used when you want to track profile information for a
user before the user is authenticated. So, if you expect users to visit different areas of your
website before logging in, you should consider using Anonymous Identification to track them
in the interim.

One of the most common scenarios in which Anonymous Identification is used is for
shopping cart applications. Most customers hate being forced to create an account before they
can shop for products, so they should remain anonymous until the checkout process. During
the checkout process, they either need to log in using an existing account or create a new one,
at which point they become authenticated users.

■

Tip

When an anonymous user logs in and becomes an authenticated user, the anonymous profile does not
automatically turn into the authenticated profile. ASP.NET acquires the profile for the authenticated user (it
may be a new or an existing profile) and, for a brief moment, the user has two profiles. ASP.NET then raises
the

MigrateAnonymous

 event, which you handle in

Global.asax

. This event allows you to port over any

profile settings from the anonymous profile to the authenticated profile.

Attribute Name Default Value Description

cookieRequireSSL False

Defines whether an SSL connection is required to send
the authentication cookie. When set to

True

, ASP.NET
informs the browser that the cookie should only be sent
over a secure connection.

cookieSliding
Expiration

False

Conventional logic dictates that cookie timeouts should
be reset on every request. Using the default 30-minute
timeout as a guide, this means that if a user first accesses
a page at 12:00 and then again at 12:10, the ticket timeout
will not occur until 12:40. Such is not the case because
ASP.NET is optimized to reduce cookie setting to lessen
network traffic and to avoid accosting users who have
cookie alerts enabled. By default, ASP.NET only resets the
timeout when more than half the timeout time has
passed. So, if a user first accesses a page at 12:00 and then
again at 12:10, that user is still subject to a timeout at
12:30. If the user accesses the page past the halfway
mark, then the timeout period is reset. For example, if the
user first accesses the page at 12:00 and then again at
12:20, the timeout is set to 12:50. You can force ASP.NET
to reset the timeout on each request by setting the

slidingExpiration

 attribute to

True

.

domain

Defines the domain for which the cookie is valid. Before
the browser requests a page, it checks to see if any
cookies match the domain and path of the request. If so,
it sends that cookie along with the request.

6293_ch06.fm Page 225 Tuesday, November 15, 2005 5:22 PM

226 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

Drawbacks of Anonymous Identification
Anonymous Identification causes a few side effects that you should be aware of before you
decide to enable it. Most of the side effects are very minor, but after you know what they are,
you can decide how greatly they will impact your application.

The main cause of these side effects is that the unique ID generated by ASP.NET can easily
be lost or dissociated from an anonymous user. The best-case scenario for the Anonymous
Identification cookie is that the anonymous user always accesses your site from the same
computer and never clears the cookie cache. If it always worked out this way, then Anonymous
Identification would be virtually flawless. Unfortunately, users are likely to visit your site from
their home computers, work computers, or their friends’ computers. Some users delete their
cookies on a regular basis. Other uses have cookies disabled entirely. Even registered users are
considered anonymous until they actually log in. And with the growing trend of providing
computer terminals at airports, hotels, cyber cafés, and libraries, you are likely to run into the
issues that face anonymous profiles.

Accuracy Issues

An anonymous user logging in to your site from multiple locations ends up with multiple
anonymous profiles, one for each location. Because each profile is tracked separately, you
really only get to look at half the information on that person. The accuracy of anonymous
profiles therefore depends on users always using the same computers and never clearing their
cookie caches. Authenticated users do not have this issue because they use the same profile
each time they log in.

Dissociated Profiles

While discussing accuracy issues, you saw that a user can have multiple active profiles. The
possibility also exists for an anonymous user to have dissociated profiles. When the identifica-
tion cookie is sent to the browser, it represents the only link between the anonymous user and
the profile stored in the database. If that cookie is lost, the association between that user and
the profile is effectively gone forever. The profile remains in the database, but it can no longer
be accessed. This results in wasted disk space.

Disk Space Usage and Performance

Anonymous Identification ultimately results in the creation of extraneous profile records. This,
in turn, wastes disks space and forces your database to search through more “junk” while
looking for relevant profile information. Disk space issues will be most noticeable when you
are hosting your site with an ISP that limits your database space, and performance issues will
be most noticeable when you are running your application on slower hardware, or if you are
trying to support a massive user base. Otherwise, the disk space and performance issues
should be negligible.

■Tip You can use the ProfileManager object discussed earlier to delete inactive profiles.

6293_ch06.fm Page 226 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 227

Defining Anonymous Profile Properties
By default, profile properties do not allow anonymous users write access. Attempting to do so
will result in an exception. If you want a property to be write-accessible to an anonymous user,
then Anonymous Identification should be enabled, and you must specifically mark that prop-
erty as being an anonymous property in Web.config.

Listing 6-10 shows how an anonymous property named PageHits and a normal property
named CustomerName would appear in Web.config.

Listing 6-10. Defining Anonymous Profile Properties

<configuration>
 ...
 <system.web>
 ...
 <anonymousIdentification enabled="true" />
 <profile>
 <properties>
 <add name="CustomerName" defaultValue="Valued Customer" type="String" />
 <add name="PageHits" type="Int64" allowAnonymous="True" />
 <add name="LastAdDate" type="DateTime" allowAnonymous="True" />
 </properties>
 </profile>
 ...
 </system.web>
</configuration>

■Note The phrase anonymous profile property may seem to indicate that the property is only used for
anonymous users, but that is not the case. Anonymous properties are used for both anonymous and authen-
ticated users. Their name simply indicates that anonymous users have write access to the property.

Avoiding Anonymous Write Exceptions with IsAnonymous
Because anonymous users only have write access to anonymous properties, you need to avoid
accidentally writing to nonanonymous properties with an anonymous user. The IsAnonymous
property of the Profile object returns a Boolean value indicating whether or not the current
user is an anonymous user, so you can use it to section off your nonanonymous profile prop-
erties in the following manner:

6293_ch06.fm Page 227 Friday, November 11, 2005 5:19 PM

228 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

If Not Profile.IsAnonymous Then

 'Set nonanonymous profile properties in this If block
 Profile.CustomerName = GetCustomerName()

End If

'Set anonymous profile properties outside of the If block
Profile.PageHits += 1

As long as you cordon off nonanonymous profile properties using Profile.IsAnonymous,
you should never run into a write exception.

The Importance of Default Property Values
Anonymous users cannot write to normal properties, but they can read from them. This is why
default values for profile properties, especially normal properties, are so important. Initially, a
profile property is populated with a default value. If the anonymous user cannot write to the
property, then that property always contains the default value. So, you should always specify a
sensible, generic default value for your normal properties.

This next example in Listing 6-11 should help to clarify. Assume that you want to output a
message that uses the CustomerName property in your profile. The message will be something to
the effect of “Dear [CustomerName], thank you for visiting our site!” CustomerName is a normal
property, so anonymous users cannot write to it. If you do not specify a default value, then the
message for an anonymous user will read “Dear , thank you for visiting our site!” This is defi-
nitely not a sentence that will win over the hearts of your customers. In fact, it will look like
your site is faking the personalization experience and failing miserably at it.

If you specify a default value for the CustomerName property, then you can easily alleviate the
grammatical mess. It should be something generic, but something that would make sense in most
contexts where CustomerName will be used. The phrase “Valued Customer” seems like a good option.

Listing 6-11. Defining Default Values

<configuration>
 ...
 <system.web>
 ...
 <anonymousIdentification enabled="true" />
 <profile>
 <properties>
 <add name="CustomerName" type="String" defaultValue="Valued Customer" />
 <add name="PageHits" type="Int64" allowAnonymous="True" />
 <add name="LastAdDate" type="DateTime" allowAnonymous="True" />
 </properties>
 </profile>
 ...
 </system.web>
</configuration>

6293_ch06.fm Page 228 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 229

Well, at least it’s better than an empty string. With the default value in place, anonymous
users see “Dear Valued Customer, thank you for visiting our site!”

Default values are also important for authenticated users, as they will run into the same
issue as anonymous users if the property has not yet been set. But they are extremely impor-
tant for anonymous users.

Creating Profile Migration Code
When dealing with both anonymous users and authenticated users, there is the possibility that
an anonymous user can log in and become an authenticated user. When this occurs, ASP.NET
raises the MigrateAnonymous event. Inside the MigrateAnonymous event, two profiles exist: one
belonging to the anonymous user and one belonging to the authenticated user. The event gives
you a chance to copy profile values from the anonymous profile to the authenticated profile so
they are not lost.

At first, you might think that the anonymous profile should just overwrite the authenti-
cated profile, but that could result in loss of data. An anonymous user does not necessarily
represent a user that has never been to your site before. An anonymous user may be someone
who has been to your site, who has an account, and who has a profile, but who has not yet
logged in. Take the shopping cart, for example. An existing user may come to your website and
begin shopping. When the user goes to check out, he is asked to log in. When he does, his anon-
ymous profile contains all the shopping cart information, and his authenticated profile
contains all the personal information. If you were to simply copy over the authenticated
profile, you would lose some fairly important information. So, you need to write profile migra-
tion code to get important data from the anonymous profile info the authenticated profile
without overwriting existing data in the authenticated profile.

When an anonymous user authenticates, the Profile_MigrateAnonymous event handler in
Global.asax is executed. You’ll need to place your profile migration code in this procedure.
For the next example in Listing 6-12, assume that your profile object has properties named
PageHits and LastAdDate.

Listing 6-12. MigrateAnonymous Event Handler Example

'***
Sub Profile_MigrateAnonymous(ByVal sender As Object,
 ByVal e As ProfileMigrateEventArgs)

 Dim AnonymousProfile As ProfileCommon = Profile.GetProfile(e.AnonymousId)

 'Add the PageHits Values Together
 Profile.PageHits += AnonymousProfile.PageHits

 'Replace LastAdDate If More Recent
 If Profile.LastAdDate < AnonymousProfile.LastAdDate Then
 Profile.LastAdDate = AnonymousProfile.LastAdDate
 End If

End Sub

6293_ch06.fm Page 229 Friday, November 11, 2005 5:19 PM

230 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

Before you can migrate data from the anonymous profile into the authenticated profile,
you need to get a reference to the anonymous profile. This is accomplished by calling
Profile.GetProfile(e.AnonymousId) and storing the resulting value in the AnonymousProfile
variable. The authenticated profile is accessible via the Profile object. Next, you have to deter-
mine the most appropriate way to migrate data.

The TotalPageHits property represents the total number of pages this user has visited on
the site. Because it represents a running total, it makes sense to add the values from the
Profile and the AnonymousProfile together. If the user visited 50 pages as an authenticated
user and then 5 pages as an anonymous user, you would definitely want the final
TotalPageHits value to equal 55.

The LastAdDate property represents the last time the user was shown an advertisement.
This profile property ensures that users are only accosted with full-page ads once every
couple of days. This property should only be migrated over from the anonymous profile if
AnonymousProfile.LastAdDate is greater than Profile.LastAdDate. This ensures that the most
recent ad date will be used so that the customer is not accidentally shown another advertise-
ment too early.

Basically, you need to analyze each profile property that has the allowAnonymous param-
eter set to True, and determine the best way that anonymous data should be merged with
authenticated data. This may require that you append, add, subtract, average, or overwrite
data, depending on what you are storing and why.

Creating a Simple Targeted Advertisement
Now that you know how to work with basic profile properties, you can create a simple targeted
advertisement. Many websites have a ton of content, but most of that content can easily be
categorized. A sports news site, for instance, may have thousands of stories, but those stories
most likely fall into a category such as baseball, football, basketball, hockey, and so on.

If someone is always reading about baseball, chances are that person is a baseball fan. If a
person is always reading about football, chances are that person is a football fan. This is impor-
tant information, especially if you are selling sports-related items. You would prefer that an
autographed basketball ended up on a basketball fan’s screen instead of a hockey fan’s screen.
This is where profile properties come into play.

If you haven’t already, go ahead and create a new web project in which to store the exam-
ples from this chapter. Or you can opt to open the sample application for this chapter,
available from the Source Code area of the Apress website (http://www.apress.com), and just
follow along.

Defining Profile Properties to Track Content Preferences
When you have categorized content, you can easily create profile properties to track which
content categories a user is visiting most often. Let’s continue with the sports site analogy, and
say that your site really focuses on four main content areas: baseball, basketball, football, and
hockey. You would then need to create four different profile properties to track page hits in
each of those categories as shown in Listing 6-13.

6293_ch06.fm Page 230 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 231

Listing 6-13. Content Tracking Properties

<properties>
 <group name="CategoryTracking">
 <add name="Baseball" type="Int32" allowAnonymous="true"/>
 <add name="Basketball" type="Int32" allowAnonymous="true"/>
 <add name="Football" type="Int32" allowAnonymous="true"/>
 <add name="Hockey" type="Int32" allowAnonymous="true"/>
 </group>
</properties>

For organizational purposes, the four profile properties used to track content preferences
have been created in a profile group named CategoryTracking. Notice that they are all anony-
mous properties, so you can still track content preferences for nonauthenticated users. After
you have defined the profile properties, you can start using them to track user behavior.

Building the Targeted Advertisement Example Page
Obviously, you cannot build out hundreds of pages worth of content for this example, so you
just have to fake it instead. You’ll be creating a page with a series of link buttons and labels.
Each link button will be named for a category: baseball, basketball, football, and hockey. Each
time a user clicks one of the link buttons, the corresponding profile property that counts page
hits in that category is incremented. The labels display the total number of hits each category
has received.

Create a new page in your web project named TargetedAdExample.aspx. You need to add
four link buttons, four labels, and an image control to the page. Place one link button and one
label together on a line, and separate each line with a break. Under the arrangement of link
buttons and labels, add the image control. Use Table 6-5 to help you set up the properties for
these controls.

Table 6-5. Properties for LinkButtons and Labels on the TargetedAdExample.aspx Page

Control Type ID Text ImageUrl

LinkButton lnkBaseball Baseball

LinkButton lnkBasketball Basketball

LinkButton lnkFootball Football

LinkButton lnkHockey Hockey

Label lblBaseball <empty>

Label lblBasketball <empty>

Label lblFootball <empty>

Label lblHockey <empty>

Image imgAd ~/ProductImages/
Baseball.jpg

6293_ch06.fm Page 231 Friday, November 11, 2005 5:19 PM

232 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

After you’ve placed all those link buttons and labels on your page, add the code in Listing
6-14 to the code-behind page.

Listing 6-14. Tracking Content Preferneces

'***
Sub lnkBaseball_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles lnkBaseball.Click
 Profile.CategoryTracking.Baseball += 1
End Sub

'***
Sub lnkBasketball_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles lnkBasketball.Click
 Profile.CategoryTracking.Basketball += 1
End Sub

'***
Sub lnkFootball_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles lnkFootball.Click
 Profile.CategoryTracking.Football += 1
End Sub

'***
Sub lnkHockey_click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles lnkHockey.Click
 Profile.CategoryTracking.Hockey += 1
End Sub

These procedures effectively simulate page visits by incrementing the appropriate profile
properties when a link button is clicked. Now you just need to implement the logic required to
display different advertisements based on these profile properties. That is taken care of in the
Page_PreRender method as shown in Listing 6-15.

Listing 6-15. Adjusting Content Based on Content Preferences

'***
Private Sub Page_PreRender(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.PreRender

 With Profile.CategoryTracking

 'Determine which image to display
 If .Baseball >= .Basketball And _
 .Baseball >= .Football And _
 .Baseball >= .Hockey Then
 imgAd.ImageUrl = "~/ProductImages/Baseball.jpg"
 ElseIf .Basketball >= .Football And _

6293_ch06.fm Page 232 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 233

 .Basketball >= .Hockey Then
 imgAd.ImageUrl = "~/ProductImages/Basketball.jpg"
 ElseIf .Football >= .Hockey Then
 imgAd.ImageUrl = "~/ProductImages/Football.jpg"
 Else
 imgAd.ImageUrl = "~/ProductImages/Hockey.jpg"
 End If

 'Use labels to display hit counts next to each link button
 Me.lblBaseball.Text = String.Format("({0})", .Baseball)
 Me.lblBasketball.Text = String.Format("({0})", .Basketball)
 Me.lblFootball.Text = String.Format("({0})", .Football)
 Me.lblHockey.Text = String.Format("({0})", .Hockey)

 End With

End Sub

The Page_PreRender method has two main sections. The first section uses the
CategoryTracking profile properties to determine which content category has the highest
hit count and displays the image associated with that category. Granted, it’s not the world’s
most elaborate algorithm, but it gets the point across.

The second section just outputs the number of hits each content category has. These
numbers are displayed next to the link buttons for each content category. This helps when you
are trying to figure out which link to click so you can see the advertisement change. Go ahead
and run the TargetedAdExample.aspx page and see how clicking on different content categories
result in a targeted advertisement at the bottom of the screen.

The Shopping Cart Custom Property
Profiles are not limited to primitive .NET data types such as integers, strings, or dates. You can
actually store entire objects in a user profile, although working with objects requires a bit more
finesse than working with native data types. One of the most common scenarios where you will
want to store an object in a profile is a shopping cart application. Storing the shopping cart in
the profile allows customers to shop, close their browser, and return to your site at a later time
with all their items still intact. In this section, you’ll implement a very basic shopping cart and
store it in a user profile property.

■Note This entire shopping cart example is located in the Chapter 6 sample application in the Source Code
area of the Apress website. You may want to use the sample application for reference as you continue through
this section.

6293_ch06.fm Page 233 Friday, November 11, 2005 5:19 PM

234 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

Creating the Shopping Cart
The shopping cart you’ll be implementing for this example is meant for demonstration
purposes only and is not meant to be a full-fledged shopping cart component. You’ll definitely
want to create a more robust shopping cart for your own applications or purchase a third-party
shopping cart that works with ASP.NET 2.0.

Creating the ShoppingCart Project

You’ll be creating the shopping cart components in a new assembly named ShoppingCart, so
you need to add a new class library to your web project. To do so, click on File ➤ Add ➤ New
Project. The Add New Project dialog box appears. Select Class Library for the template and
name the new project ShoppingCart. Click on the OK button. A new class library project named
ShoppingCart is added to your solution.

The Product Class

The Product class is designed to store information about a product after it has been added to
the cart. This example includes the product ID, product name, unit price, and quantity. If you
are developing your own shopping cart application, you may also want to include properties
to handle tax, color, size, discounts, and so on. Add a new class named Product to the
ShoppingCart project and place the code in Listing 6-16 in the new file.

Listing 6-16. ShoppingCart.Product Class

<Serializable()> Public Class Product

 '***
 Private _productId As String
 Private _productName As String
 Private _unitPrice As Decimal
 Private _quantity As Integer

 '***
 Public Sub New(ByVal ProductID As String, ByVal ProductName As String, _
 ByVal UnitPrice As Decimal, ByVal Quantity As Integer)
 _productId = ProductID
 _productName = ProductName
 _unitPrice = UnitPrice
 _quantity = Quantity
 End Sub

 '***
 Public Property ProductId() As String
 Get
 Return _productId
 End Get
 Set(ByVal value As String)

6293_ch06.fm Page 234 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 235

 _productId = value
 End Set
 End Property

 '***
 Public Property ProductName() As String
 Get
 Return _productName
 End Get
 Set(ByVal value As String)
 _productName = value
 End Set
 End Property

 '***
 Public Property UnitPrice() As Decimal
 Get
 Return _unitPrice
 End Get
 Set(ByVal value As Decimal)
 _unitPrice = value
 End Set
 End Property

 '***
 Public Property Quantity() As Integer
 Get
 Return _quantity
 End Get
 Set(ByVal value As Integer)
 _quantity = value
 End Set
 End Property

 '***
 Public ReadOnly Property TotalPrice() As Decimal
 Get
 Return _unitPrice * _quantity
 End Get
 End Property

End Class

The most notable part of this class is actually on the first line. It is marked with the
<Serializable()> attribute, which lets serialization formatters know that it’s safe to serialize
the object. Any custom objects that you store directly or indirectly in a profile property must
be marked with this attribute because they are serialized before being saved. Product objects

6293_ch06.fm Page 235 Friday, November 11, 2005 5:19 PM

236 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

are indirectly stored in the profile because the Cart object stores a list of products. Thus, seri-
alizing the Cart object results in the serialization of all its associated Product objects.

The rest of the code for the class is fairly routine and mostly devoted to defining class
properties. The constructor accepts four parameters, named for the four properties in the
class, and initializes the class properties using those parameter values. GetTotal returns the
total price as calculated by Quantity * UnitPrice, which is helpful for displaying item totals or
calculating shopping cart totals.

The Cart Class

The Cart class is responsible for remembering which items a user has added to the cart and for
calculating the total price for all those items. In a full-fledged cart, the cart would also be
responsible for calculating tax, shipping charges, and customer discounts. Listing 6-17
provides the code for the Cart class.

Listing 6-17. ShoppingCart.Cart Class

<Serializable()> Public Class Cart
 Inherits CollectionBase

 '***
 Function AddProduct(ByVal value As Product) As Integer
 If value.Quantity = 0 Then Return -1
 For Each P As Product In Me.List
 If P.ProductId = value.ProductId Then
 P.Quantity += value.Quantity
 Exit Function
 End If
 Next
 MyBase.List.Add(value)
 End Function

 '***
 Function AddProduct(ByVal ProductID As String, ByVal PRoductName As String, _
 ByVal UnitPrice As Decimal, _
 ByVal Quantity As Integer) As Integer
 AddProduct(New Product(ProductID, PRoductName, UnitPrice, Quantity))
 End Function

 '***
 Default Public Property Products(ByVal index As Integer) As Product
 Get
 Return DirectCast(MyBase.List.Item(index), Product)
 End Get
 Set(ByVal value As Product)
 MyBase.List.Item(index) = value
 End Set
 End Property

6293_ch06.fm Page 236 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 237

 '***
 Public Function GetTotal() As Decimal
 Dim total As Decimal = 0
 For Each p As Product In MyBase.List
 total += p.TotalPrice()
 Next
 Return total
 End Function

End Class

At its heart, the Cart class is an ArrayList that inherits the majority of its functionality
from the abstract CollectionBase class. Notice, once again, that this class is marked with the
<Serializable()> attribute because it is serialized when the profile is saved.

There are three methods in the Cart class: AddProduct, Products, and GetTotal. As
mentioned before, this cart is meant for demonstration purposes only. A full-fledged cart
would require a number of other methods to allow customers to remove items from the cart,
update quantities, and so on. AddProduct is an overloaded method that allows Product objects
to be added to the cart by either passing in a Product object or by specifying the ProductID,
ProductName, UnitPrice, and Quantity of the product that is to be added. If the product being
added already exists in the cart, the AddProduct method updates the quantity of the existing
item instead of adding a new item. The Products property exposes the list of products that have
been added to the cart. And the last function, GetTotal, iterates through each product in the
product list and calculates the total price for all the items in the shopping cart.

Defining the ShoppingCart Property in Web.Config
Defining a custom profile property is not much different from defining a primitive one. The
only real differences are that you have to specify the fully qualified type name of the property
(that is, the namespace and class name, as in ShoppingCart.Cart), and you cannot specify a
default value. Not being able to specify a default value means that your custom property is
initialized to Nothing, so you must take caution not to access properties, methods, or functions
on a custom property unless you are certain it has been instantiated.

Listing 6-18 is the code to add the ShoppingCart property to the Profile object. Of course,
you need to reference the ShoppingCart assembly from your web application before adding the
new property.

Listing 6-18. Defining the ShoppingCart Profile Property

<profile>
 <properties>
 <add name="ShoppingCart" serializeAs="Binary"
 type="ShoppingCart.Cart" allowAnonymous="true" />
 </properties>
</profile>

That’s all there is to making a custom profile property. Just create the necessary classes,
make sure they are marked as Serializable, and specify the fully qualified data type in the

6293_ch06.fm Page 237 Friday, November 11, 2005 5:19 PM

238 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

property definition in Web.config. The serializeAs attribute simply tells ASP.NET to serialize
the property in binary form. You can also opt to serialize properties as XML or as a string, but
binary tends to be faster. With the configuration in place, you can now use the ShoppingCart
property in your application.

Building a Product Display Component to Add Products
to the Cart
A shopping cart needs some mechanism for users to see and add products to the cart. This can
be done in a number of different ways, but for this example, you’ll be building a user control
named ProductDisplayer.ascx that displays the picture, title, and price of a product. It also
encapsulates all the controls and logic required to add a product to the shopping cart, so you
just need to drag the user control onto a web form and set some product parameters, and the
user control does the rest. Figure 6-2 shows how the ProductDisplayer will appear when it is
output to the page.

Figure 6-2. The ProductDisplayer.ascx file encapsulates all the logic for displaying an item on a
web form and adding a product to the shopping cart. In this image, two such controls are
displaying Apress books.

Graphical Layout and Controls

In your web project, add a new web user control item named ProductDisplayer, and make sure
it’s using a code-behind file. Then replace the content of the ProductDisplayer.aspx file with
the code in Listing 6-19.

Listing 6-19. ProductDisplayControl Layout

<%@ Control Language="VB" AutoEventWireup="false"
 CompileWith="ProductDisplayer.ascx.vb"
 ClassName="ProductDisplayer_ascx" EnableViewState="false" %>

<div style="text-align:center;width:200px;height:250px;border:1pxsolid black;
 padding:5px;">
 <asp:image Runat="Server" ID="imgProduct"></asp:image>

 <asp:Label Runat="Server" ID="lblProductName" Font-Bold="True"/>

6293_ch06.fm Page 238 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 239

 <asp:Label Runat="Server" ID="lblPrice"></asp:Label>

 Qnty <asp:TextBox Runat="Server" ID="txtQuantity" Width="27px"
 Height="22px">1</asp:TextBox>
 <asp:Button Runat="Server" ID="btnAdd" Text="Add" OnClick="btnAdd_Click"/>
</div>

This content defines the graphical layout of the ProductDisplayer and the controls that are
available for use in the code-behind file. You can see that there is an image control to hold the
product image, labels to hold the product name and product price, a text box to enter the total
quantity to add to the cart, and a button to actually add the item to the cart.

Display and Product Adding Logic

The code-behind file for ProductDisplayer is responsible for a couple of things. First, it exposes
properties that allow the page to tell the control how to display and which product to add to the
cart if the Add Product button is clicked. It’s also responsible for adding the correct quantity of
the specified object to the ShoppingCart property. The code is shown in Listing 6-20.

Listing 6-20. ProductDisplayControl Code Behind

Partial Class ProductDisplayer
 Inherits System.Web.UI.UserControl

 '***
 Private _ProductId As String
 Public Property ProductID() As String
 Get
 Return _ProductId
 End Get
 Set(ByVal value As String)
 _ProductId = value
 End Set
 End Property

 '***
 Public Property ProductName() As String
 Get
 EnsureChildControls()
 Return Me.lblProductName.Text
 End Get
 Set(ByVal value As String)
 EnsureChildControls()
 Me.lblProductName.Text = value
 End Set
 End Property

 '***
 Public Property UnitPrice() As Decimal

6293_ch06.fm Page 239 Friday, November 11, 2005 5:19 PM

240 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

 Get
 EnsureChildControls()
 Return CDec(Me.lblPrice.Text)
 End Get
 Set(ByVal value As Decimal)
 EnsureChildControls()
 Me.lblPrice.Text = FormatCurrency(value, 2)
 End Set
 End Property

 '***
 Public Property ImageUrl() As String
 Get
 EnsureChildControls()
 Return Me.imgProduct.ImageUrl
 End Get
 Set(ByVal value As String)
 EnsureChildControls()
 Me.imgProduct.ImageUrl = value
 End Set
 End Property

 '***
 Private ReadOnly Property Quantity() As Integer
 Get
 EnsureChildControls()
 If IsNumeric(Me.txtQuantity.Text) Then _
 Return CInt(Me.txtQuantity.Text)
 Return 0
 End Get
 End Property

 '***
 Sub btnAdd_Click(ByVal sender As Object, ByVal e As System.EventArgs)

 'Ensure shopping cart object exists before adding products to it
 If Profile.ShoppingCart Is Nothing Then _
 Profile.ShoppingCart = New ShoppingCart.Cart

 Profile.ShoppingCart.AddProduct(ProductID, ProductName, _
 UnitPrice, Quantity)
 End Sub

 '***
 Private Sub Page_PreRender(ByVal sender As Object, _

6293_ch06.fm Page 240 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 241

 ByVal e As System.EventArgs) Handles Me.PreRender

 'Return Quantity to Original State
 Me.txtQuantity.Text = "1"
 End Sub

End Class

First, let’s discuss the two different types of properties this code-behind file exposes. The
ProductID property is a standard property that uses a private class variable to store its value—
nothing special, you’ve seen it before.

The ProductName, UnitPrice, ImageUrl, and Quantity properties, however, use control
properties to store their values. Controls that make up a user control are not accessible
from the page on which a user control is placed. So, assuming you had a page with a
ProductDisplayer named MyProduct, you cannot make the following call:

MyProduct.lblProductName.Text = "Some Product"

The lblProductName control is not accessible from the MyProduct user control, so the
previous statement won’t even compile. But, the public property ProductName is accessible
from MyProduct, so you can make the following call:

MyProduct.ProductName = "Some Product"

This executes the set portion of the ProductName property, which in turn saves the value
“Some Product” to the lblProductName.Text property. So the MyProduct property is a good
workaround for setting up the lblProductName.Text property.

One issue you may encounter when using controls to store property values is that the
controls may not be instantiated yet, which can lead to null reference exceptions. To avoid this,
make sure to call EnsureChildControls before you attempt to access a control in the user
control. EnsureChildControls forces the user control to instantiate its child controls if it has not
already done so.

Now it’s on to the btnAdd_Click procedure, which contains all the logic to add a product
to the cart. This procedure first checks to see if the ShoppingCart property of the Profile object
is set to Nothing. Remember that custom objects are initially set to Nothing because they do not
have a default value. If the ShoppingCart property is Nothing, the procedure creates a new Cart
object and stores it in the ShoppingCart property. Finally, the procedure adds the item to the
cart by calling AddProduct and passing in the values it has been set up with for ProductID,
ProductName, UnitPrice, and Quantity.

Building the Shopping Cart Demo Page
Now that you have your reusable product display component, you can create a miniature
shopping cart application to test out the ShoppingCart profile property. This application is
actually going to display products, allow you to add products to your cart, and display your cart
contents all from the same page.

Create a new web form in your web project and name it ShoppingCartExample.aspx. Make
sure it uses a code-behind file. After you have done that, you are ready to display products on
your page.

6293_ch06.fm Page 241 Friday, November 11, 2005 5:19 PM

242 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

Displaying Products with the Product User Control

Open the ShoppingCartExample.aspx page and create a new table on the page that has
four cells. Then, locate the ProductDisplayer.aspx file in the Solution Explorer. Drag a
ProductDisplayer into each cell of your newly created table cells. They will all look a bit
rough around the edges, even after you enter property values, but realize that when they are
displayed to the user, they will look fine. Figure 6-3 shows how the ProductDisplayer appears
at design time inside the IDE.

Figure 6-3. ProductDisplayer controls as seen at design time in the Visual Studio IDE

Now you need to set each ProductDisplayer control’s ProductID, ImageUrl, ProductName, and
UnitPrice properties, because these properties tell the ProductDisplayer control what image and
text to display, and what product to add to the cart. Right-click on the top-left control and select
Properties from the context menu. Visual Studio’s Properties window should now be visible,
and it should display a list of properties similar to those shown in Figure 6-4.

6293_ch06.fm Page 242 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 243

Figure 6-4. The public properties you defined in the ProductDisplayer code-behind are displayed
in the Properties window when you select a ProductDisplayer control.

Use Table 6-6 as a reference for entering properties values for the four ProductDisplayer
controls. These values are just for demonstration purposes, so feel free to make up your values
if you so desire. The images referred to in this table are located in the sample application in the
Source Code area of the Apress website.

As you enter property values, they are saved in the ProductDisplayer tag, as shown in
Listing 6-21.

Listing 6-21. ProductDisplayControl Definition on a Web Form

<uc1:ProductDisplayer ID="ProductA" Runat="Server"
 ImageUrl="~/ProductImages/Office2003Programming.gif"
 ProductID="Office2003"
 ProductName="Office 2003 Programming"
 UnitPrice="39.99"/>

Table 6-6. Property Values for ProductDisplayer Controls on the ShoppingCartExample.aspx
Page

ID ImageUrl ProductID ProductName UnitPrice

ProductA ~/ProductImages/
Office2003.gif

Office2003 Office 2003
Programming

39.99

ProductB ~/ProductImages/
SharePoint.gif

SharePoint Advanced
SharePoint

59.99

ProductC ~/ProductImages/
SQLServer.gif

SQL2005 Pro SQL Server
2005

49.99

ProductD ~/ProductImages/
MSMQ.gif

MSMQ Pro MSMQ 49.99

6293_ch06.fm Page 243 Friday, November 11, 2005 5:19 PM

244 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

When you finish, run the page. If you entered valid images URLs, you should see four
product images, along with their product names, prices, quantity entry fields, and Add buttons
(similar to Figure 6-5). You can click on the different Add buttons to add products to your cart,
but you’ll quickly realize that it’s not much fun because you can’t see the contents of your
shopping cart.

Figure 6-5. ProductDisplayer controls as seen in the browser

Displaying the Contents of the Shopping Cart

Now that you can add products to your shopping cart, you need a way to see a listing of the
cart’s content. You can do this fairly easily by binding a GridView control to the ShoppingCart
property. Most of the real work is in setting up the appropriate bindings on the GridView
columns.

You’ll be adding a GridView control to your web form named gridShoppingCart. The defi-
nition for this control is shown in Listing 6-22. It does not contain any formatting elements
because it really clutters up the page in print. If you need to review the formatting elements,
feel free to look at the sample application in the Source Code area of the Apress website.

Listing 6-22. Creating the Layout for the Shopping Cart Display

<asp:GridView ID="gridShoppingCart" Runat="server" AutoGenerateColumns="False"
 EnableViewState="False" ShowFooter="True" >

 <EmptyDataTemplate>

6293_ch06.fm Page 244 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 245

 There are no items in your shopping cart. Please add some!
 </EmptyDataTemplate>

 <Columns>

 <asp:TemplateField HeaderText="Product Name">
 <ItemTemplate>
 <%#Container.DataItem.ProductName%>
 </ItemTemplate>
 <FooterTemplate>
 Total
 </FooterTemplate>
 </asp:TemplateField>

 <asp:BoundField HeaderText="Product ID" DataField="ProductID" />
 <asp:BoundField HeaderText="Unit Price" DataField="UnitPrice" />
 <asp:BoundField HeaderText="Quantity" DataField="Quantity" />

 <asp:TemplateField HeaderText="Total">
 <ItemTemplate>
 <%#FormatCurrency(Container.DataItem.TotalPrice, 2)%>
 </ItemTemplate>
 <FooterTemplate>
 <%=FormatCurrency(Profile.ShoppingCart.GetTotal(), 2)%>
 </FooterTemplate>
 </asp:TemplateField>

 </Columns>

</asp:GridView>

One of the new features of the GridView control is the EmptyDataTemplate. This template
allows you to specify content that should be displayed when the GridView control binds to an
empty data source. In the preceding code, EmptyDataTemplate just informs the user that there
are no items in the shopping cart and that the user should add some.

You should also note that the first and last columns in this GridView are TemplateField
columns. Both of these columns require footers, so it was necessary to use a TemplateField
column (which supports footers) instead of a BoundField column (which does not). The first
column’s footer just outputs bolded text that reads Total. The last column’s footer outputs the
total dollar amount of products in the shopping cart. The rest of the columns just output their
bound property values. Figure 6-6 shows an approximation of what the GridView looks like
after you add in some formatting.

6293_ch06.fm Page 245 Friday, November 11, 2005 5:19 PM

246 C H A P T E R 6 ■ M A N A G I N G P R O F I L E S

Figure 6-6. This shows the formatted version of the gridShippingCart control after it has been
data bound to the ShoppingCart property.

After you define GridView, you need to bind the grid to your shopping cart data. You
accomplish this in the Page_PreRender event handler as shown in Listing 6-23.

Listing 6-23. Binding Cart Data to the Grid

'***
Private Sub Page_PreRender(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreRender
 Me.gridShoppingCart.DataSource = Profile.ShoppingCart
 Me.gridShoppingCart.DataBind()
End Sub

Now you can revisit the ShoppingCartExample.aspx page and watch as products are added
to your cart and quantities are edged upward. Now, of course, you need a way to clear items
from the cart.

Clearing the Shopping Cart

In theory, you could support removing individual items from the shopping cart. But, this is
just a demonstration application and clearing the entire shopping cart is a much simpler
task. To do so, add a link button to the ShoppingCartExample.aspx page, right under the
gridShoppingCart control:

<asp:LinkButton ID="linkClearShoppingCart" Runat="server"
 OnClick="linkClearShoppingCart_Click">Clear Shopping Cart</asp:LinkButton>

Then add the code in Listing 6-24 to the code-behind file.

Listing 6-24. Clearing the Shopping Cart

'***
Sub linkClearShoppingCart_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles linkClearShoppingCart.Click

 If Not Profile.ShoppingCart Is Nothing Then Profile.ShoppingCart.Clear()

End Sub

6293_ch06.fm Page 246 Friday, November 11, 2005 5:19 PM

C H A P T E R 6 ■ M A N A G I N G P R O F I L E S 247

When you click on the Clear Shopping Cart link button, all the products in the shopping
cart are removed, and you can start adding products anew.

Profile Migration with the Shopping Cart
Remember that the ShoppingCart profile property is an anonymous property. That means
users can add items to their shopping cart before they log in, and they may have items in their
anonymous shopping cart and in their authenticated shopping cart when they do. Thus, you
may need to do some profile migration.

In the example in Listing 6-25, you will be merging the contents of both carts together,
which makes for a good demonstration. In reality, however, you would probably want to divert
users to a page to inform them that their old shopping cart has items in it. You could then allow
them to discard the old items, retain them, or choose which old items to retain and which ones
to discard. But I will leave that up to you.

Listing 6-25. Migrating Cart Data to the Authenticated Profile

'***
Sub Profile_MigrateAnonymous(ByVal sender As Object,
 ByVal e As ProfileMigrateEventArgs)

 Dim AnonymousProfile As ProfileCommon = Profile.GetProfile(e.AnonymousId)

 If AnonymousProfile.ShoppingCart Is Nothing Then Exit Sub
 If Profile.ShoppingCart Is Nothing Then _
 Profile.ShoppingCart = New ShoppingCart.Cart()

 For Each p As ShoppingCart.Product In AnonymousProfile.ShoppingCart
 Profile.ShoppingCart.AddProduct(p)
 Next

End Sub

The first thing this migration code does is acquire a reference to the anonymous profile.
Then it checks to see if the anonymous profile even has a valid shopping cart. If not, it exits the
procedure because no products need to be added to the authenticated profile. If there is an
anonymous shopping cart, then the procedure knows that it must transfer items from the
anonymous shopping cart into the authenticated shopping cart. Thus, it checks to make sure
an authenticated cart exists before trying to make that transfer. If not, it will create one. Then
the procedure iterates through each item in the anonymous cart and adds it to the authenti-
cated cart, effectively merging them.

You can test out this profile migration code by adding a login control on the
ShoppingCartExample.aspx page and creating a registered user for the website. Log in,
add some items to your cart, and then log out. Then add some items to your cart as an anony-
mous user and log back in. You’ll notice that the items you selected as an anonymous user are
merged with the items you selected as an authenticated user.

6293_ch06.fm Page 247 Friday, November 11, 2005 5:19 PM

248

C H A P T E R 6

■

 M A N A G I N G P R O F I L E S

Summary

This chapter has exposed you to a number of profile topics such as properties, profile groups,
Anonymous Identification, and even profile migration. You were able to implement a targeted
advertisement using profiles and even store an entire shopping cart in a custom property. You
should have a solid enough foundation with profiles at this point to feel comfortable imple-
menting some fairly advanced personalization tasks.

6293_ch06.fm Page 248 Tuesday, November 15, 2005 5:23 PM

249

■ ■ ■

C H A P T E R 7

Building Portals Using the Web
Parts Framework

P

ortals have become an increasingly popular method for consolidating information from a
variety of sources and for allowing people to customize the content and layout of websites and
web applications. Public websites such as MSN and Yahoo! use portals to display links to and
summaries of world news, technology, politics, investing, weather, traffic, shopping, and
entertainment. When a particular article or category looks interesting, visitors can click on a
link to drill into the actual content. The portal acts as a gateway, or starting point, for navi-
gating the site. Both MSN and Yahoo! also allow you to customize the portal to your own
personal liking. Never want to see political news? Just remove that section from the page. Want
to see the technology section appear before the sports section? Just move it up. Need your daily
comics? Add them to the page. The website remembers the content and layout changes you
made when you return for a truly customized experience.

Corporate portals are also gaining popularity because they can help organize business
information. Employees can go to the corporate portal to access information about customers,
products, inventory, accounts receivable, sales pipeline, shipping, payroll, benefits, job open-
ings, and company policies. Add the ability for employees to customize the portal for their
particular role and tasks, and you can see the power of the technology. This is assuming, of
course, that you have the time and money to build it. Building a portal is normally a costly
endeavor because of the shear complexity of the project, which keeps many businesses from
embracing the technology. Each page has to remember which users want what content in
which location. There needs to be an editor to allow users to add, remove, relocate, and set
custom properties for content on a page. And don’t forget that the database must be designed
and implemented to store all this information on a user-by-user basis. It seems like a fairly
daunting task until you realize that ASP.NET 2.0 has an entire framework that takes care of all
the hard stuff.

One of the most exciting additions to ASP.NET 2.0 is the Web Parts Framework, which
allows you to build highly customizable portal applications without having to worry about all
the little details that normally go into a portal. In this chapter, you’ll explore how to use Web
Parts in detail. The first two sections of the chapter contain a lot of theory and reference mate-
rial, and the last two sections contain more detailed code examples. Feel free to jump around
to find what you need:

6293_ch07.fm Page 249 Monday, November 14, 2005 9:25 AM

250

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

•

Web Parts Framework Concepts:

 Presents a high-level overview of Web Parts concepts
including display modes, page scope, authorization, and how users interact with Web
Parts on a page.

•

Web Part Interfaces, Classes, and Controls:

 Describes the various components in the Web
Part framework and how you can use them to complete various tasks.

•

Building Web Parts:

Demonstrates how to build Web Parts as user controls or as custom
controls and covers personalizable Web Part properties.

•

Advanced Web Part Topics:

 Explains how to create custom Web Part context-menu
items, set up Web Part connections that allow Web Parts to communicate with one
another, and export Web Part configuration files to ease the setup process for Web Parts
with complicated configuration settings.

We’ll get started by taking a look at some of the concepts surrounding the Web Parts
framework.

Web Parts Framework Concepts

Microsoft created Windows SharePoint Services for Windows Server 2003 to act as a collabora-
tion, document management, and portal framework for IIS. Included in the portal framework
was the concept of a Web Part, a standalone component developed in ASP.NET that is capable
of running from any page in the portal. Web Parts could be combined to create highly custom-
ized portal pages and allowed for a great deal of visual flexibility and personalization features.
Because each Web Part is a standalone component, the page architecture was designed in such
a way that Web Parts could be moved from one section of a page to another or reordered using
a drag-and-drop interface. You could also add new Web Parts to a page or remove existing
ones, and even set Web Part properties as desired. SharePoint Services maintained changes on
a user-by-user basis, allowing for a truly personalized experience. For users, it was an awesome
technology.

Developers, however, quickly found that creating and deploying Web Parts in SharePoint
was a painstaking task. I remember having to read for a week before even figuring out where to
begin, and the book I read admitted that a successful deployment was a very difficult and
error-prone process. SharePoint was also tightly integrated with Active Directory, making it
great for intranet applications but not for public-facing sites. And you were pretty much stuck
with the look and feel of a SharePoint portal because the page template support was awkward
at best. Something definitely needed to change.

Microsoft went back to the drawing board and revamped their portal framework. The
result of that endeavor is the Web Parts Framework in ASP.NET 2.0, which was spectacularly
implemented this time around. Building Web Parts is as simple as creating a user control or a
custom server control. Deploying a Web Part is as easy as dropping the Web Part in a folder and
adding the control definition to a Web Part catalog. All the drag-and-drop functionality for
moving and reordering Web Parts is automatically added for you simply by dropping a

WebPartManager

 control on your page. Because the portal framework is part of ASP.NET, it
supports multiple authentication types and gives you complete control over page templates
using Master Pages (see Chapter 3).

6293_ch07.fm Page 250 Monday, November 14, 2005 9:25 AM

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

251

■

Note

The

WebPartManager

 is covered in detail when Web Parts controls are discussed later in this
chapter. Every page that uses Web Parts is required to have one (and only one)

WebPartManager

 control to

coordinate interactions between Web Parts and to manage all the Web Parts settings on the page.

Understand, however, that the Web Parts technologies in ASP.NET 2.0 and SharePoint
have not yet merged. They are distinct and very different items. Rumor has it that Microsoft
plans to use ASP.NET 2.0 Web Parts in the next release of SharePoint, but for the time being,
SharePoint developers have to work in both worlds.

Using the Web Parts Framework in ASP.NET 2.0 is mostly a matter of adding the appro-
priate controls to the page. Once in place, they handle the majority of the grunt work. You still
have to do a little bit of coding, but in the grand scale of building a portal, it’s fairly minor. So,
let’s begin by taking a look at some of the concepts you need to know about when working with
Web Parts.

Web Parts in Concept

Any control in ASP.NET can be a Web Part, so nailing down the definition of a Web Part is
pretty difficult. Most Web Parts either implement the

IWebPart

 interface or derive from the

WebPart

 control in the

System.Web.UI.WebCotrols.WebParts

 namespace. Controls that do not
meet either of these criteria can still participate in the Web Parts Framework because ASP.NET
automatically wraps with the

GenericWebPart

 class at runtime, giving the control all the basic
functionality of a normal Web Part.

Web Parts normally allow individual users to create personalized settings that dictate their
appearance and behavior, allowing users to tailor the Web Part functionality to their particular
need. How useful would a weather Web Part be if it only told you the forecast for one city? It
would be great it if happened to be the city in which you lived, but it would be pretty useless if
it wasn’t. Allowing users to personalize a weather display Web Part to show a forecast relevant
to their home city is critical for its use. The same holds true for many Web Parts. People can
also personalize their experience by dynamically adding, removing, and repositioning Web
Parts on the page. You’ll be glad to know that the Web Parts Framework automatically handles
the storage and retrieval of personalized settings using the provider model, which makes your
life easier by abstracting you from the implementation details.

Onscreen, a Web Part consists of a title bar, border, menu, and the Web Part content.
When you create a Web Part control, you only need to worry about the content because the
Web Part Framework automatically generates the title bar, border, and the menu. The menu
allows the user to access a list of actions (called

verbs

). By default, each Web Part has a basic set
of verbs allowing users to minimize, restore, close, edit, delete, and set up connections for the
Web Part. Verbs are display-mode sensitive, so not all verbs appear at all times. You can also
create custom verbs for a Web Part if you want the user to have access to additional features in
your Web Part via the menu.

Figure 7-1 is an example of a simple Web Part that allows users to search the Apress Web
site. The control itself is only composed of an image, a text box, and a button. Take a good look
at it to get an idea of the basic Web Part layout.

6293_ch07.fm Page 251 Monday, November 14, 2005 4:45 PM

252

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Figure 7-1.

 Basic Web Part showing the title bar, border, menu, and content

■

Note

In the same manner that you have classes and instances, you have Web Parts and Web Part
instances. What you, as the developer, create is the actual Web Part itself. Users are interacting with Web Part

instances when they add, reposition, edit, or delete Web Parts.

Web Part Connections

As you work through this chapter, you’ll see a number of references to Web Part connections.
Web Part connections allow Web Parts to communicate important information with one
another. You may find this useful when you want one Web Part to change in response to an
action on another Web Part. For example, let’s say you have a Web Part that allows you to select
an employee from a list and a Web Part that displays an employee’s photo. You can create a
connection between the two and pass the selected employee information from the selector
Web Part into the photo Web Part so the photo display changes in response to the currently
selected employee.

By default, a Web Part is a standalone component that does not support connections. If
you plan on connecting two Web Parts, then you have to create a custom message interface
that defines the data passed along the connection, a Provider Web Part that supplies that data,
and a Consumer Web Part that uses the data to accomplish some task. And that only allows the
Web Parts to support connections; it does not actually create a connection.

A Web Part connection defines the relationship between a Provider Web Part and a
Consumer Web Part on a page. In essence, a Web Part connection tells the Web Part Frame-
work to acquire the custom message object from the Provider Web Part and send it to the
Consumer Web Part where it can be used to accomplish some task. For a connection to exist
between two Web Parts, both of the Web Parts must be present and active on the same page
(they may be hidden but cannot be closed). Also understand that a Provider Web Part can
participate in many connections, but a Consumer Web Part can only participate in one. This
ensures that data is not sent to the Consumer twice, which could result in an accidental
overwrite.

■

Note

Creating custom message interfaces, creating Provider and Consumer Web Parts, and setting up
static and dynamic Web Part connections are all covered in the “Advanced Web Part Topics” later in this

chapter.

6293_ch07.fm Page 252 Monday, November 14, 2005 9:38 AM

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

253

Portal Page Display Modes

Although the Web Parts Framework allows people to add, remove, reposition, reorder, and edit
Web Parts on a portal page, the majority of people’s time will be spent looking at the page
content, not manipulating it. As such, a page does not always need to load the components
required to drag and drop Web Parts from one place to another, to add new Web Parts from a
catalog, or to edit custom properties on a Web Part.

Display modes are simply a way of telling the Web Part Framework what type of function-
ality the user needs for a particular task. There are five different display modes, each of which
exposes a different set of functionality:

•

BrowseDisplayMode

: This mode is designed for browsing a portal page and looking at the
page content. In this mode, users may minimize, restore, and close Web Parts.

•

DesignDisplayMode

: This mode allows users to move and reorder Web Parts using a drag-
and-drop interface and to delete Web Parts. In this mode, Web Part zones are outlined
and have title bars to define where Web Parts may be dropped. Also, if you have config-
ured a Web Part to hide its title bar, the title bar is displayed in this mode to give you
access to its menu. You can only switch to this mode if you have defined at least one

WebPartZone

 control on the page. A

WebPartZone

 is a container (like a

Panel

) that defines
a section of the page that displays Web Parts.

•

EditDisplayMode

: This mode has all the functionality found in

DesignDisplayMode

 and
also enables the Edit verb (menu item) on each Web Part’s menu. Users may click on the
Edit item from the menu to display any

EditorZone

 controls on the page. Editor zones
contain controls that allow the user to edit properties Web Parts at runtime. You can
only switch to this mode if you have defined at least one

EditorZone

 control on the page.

•

CatalogDisplayMode

: This mode has all the functionality found in

DesignDisplayMode

and also displays any Catalog Zones on the page.

Catalog Zones

 contain controls that
allow the user to add Web Parts to the page. You can only switch to this mode if you have
defined at least one

CatalogZone

 control on the page.

•

ConnectionDisplayMode

: This mode has all the functionality found in

DesignDisplayMode

and allows users to set up dynamic connections between Web Parts. Because you can
add Web Parts dynamically at runtime, you also need a way to dynamically create
connections for those added Web Parts. As such, the

ConnectionDisplayMode

 exists to let
users define those dynamic connections. You can only switch to this mode if you have at
least one

ConnectionsZone

 on the page.

You can change the page display mode by setting the

DisplayMode

 property of the

WebPartManager

 control. You’ll learn a bit more about the

WebPartManager

 control later, but
for the time being, know that every page that uses the Web Parts Framework must have one of
these controls. Assuming you have a

WebPartManager

 control named

WebPartManager1

 on the
page, you can set the various display modes as shown in Listing 7-1.

6293_ch07.fm Page 253 Monday, November 14, 2005 9:25 AM

254

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Listing 7-1.

 Changing Display Modes

'Change to Browse Mode
WebPartManager1.DisplayMode = WebPartManager.BrowseDisplayMode

'Change to Design Mode
WebPartManager1.DisplayMode = WebPartManager.DesignDisplayMode

'Change to Edit Mode
WebPartManager1.DisplayMode = WebPartManager.EditDisplayMode

'Change to Catalog Mode
WebPartManager1.DisplayMode = WebPartManager.CatalogDisplayMode

'Change to Connection Mode
WebPartManager1.DisplayMode = WebPartManager.ConnectDisplayMode

■

Caution

Only authenticated users can access design, edit, catalog, and connection display mode. So
make sure your users have logged in before allowing them access to these features. Attempting to change to

one of these modes with an unauthenticated user results in an

ArgumentException

 being thrown at runtime.

Display mode changes normally come in response to a user action, so you should provide
links, buttons, menu options, or some other means of allowing the user to switch between
display modes. Just include one of the aforementioned lines of code in the event handler of the
control. With that out of the way, let’s take a look at zones.

Defining Portal Regions with Zones

Zones are special containers designed to hold specific types of portal controls and to define
regions of the page that should be displayed in certain display modes. You use zones to define
the page layout and location where certain portal elements should appear. Four different types
of zones are used in the Web Parts Framework:

•

WebPartZone

: These zones define the regions where Web Parts may appear on the page,
and there can be more than one

WebPartZone

 on a page. People can add new Web Parts
to a

WebPartZone

, reorder Web Parts within the zone, or drag and drop Web Parts from
one zone to another. Web Part zones are always present, but they are not necessarily
“visible” in the

BrowseDisplayMode

, and they may appear to be normal content. Other
display modes outline the

WebPartZone

 and give it a title bar so the region can be easily
identified on the page.

•

CatalogZone:

The Catalog Zone exists to give users a way to browse through available
Web Parts that may be added to the page, for example, a catalog of Web parts from
which users can pick and choose. The Catalog Zone becomes visible when the page
enters

CatalogDisplayMode

 and can only contain Catalog Part controls. ASP.NET 2.0 has

6293_ch07.fm Page 254 Monday, November 14, 2005 9:25 AM

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

255

two Catalog Parts: the

DeclarativeCatalogPart

 and the

PageCatalogPart

. The

DeclarativeCatalogPart

 allows you to specify a set of Web Parts that the user may
dynamically add to a Web Part page. The

PageCatalogPart

 allows users to redisplay
Web Parts that exist on the page but are closed. We’ll discuss these in more detail later
on in this chapter. You cannot switch into

CatalogDisplayMode

 if you do not have a

CatalogZone

.

•

EditorZone

: The Editor Zone exists to give users a way to edit the appearance, behavior,
layout, and custom properties of a Web Part. Editor zones become visible when the page
is in

EditDisplayMode

 and the user has selected a Web Part to edit. When the user first
enters edit mode, the

EditorZone

 will not be visible because no Web Part is selected. This
zone can only hold Editor Parts, of which there are four types: the

AppearanceEditorPart

,

BehaviorEditorPart

,

LayoutEditorPart

, and

PropertyGridEditorPart

 controls. These
editor parts are covered in detail later in this chapter. You must have an

EditorZone

defined to switch to the

EditDisplayMode

.

•

ConnectionsZone

: The Connection Zone exists to give users a way to set up a dynamic
connection between a Consumer Web Part that consumes data and the Provider Web
Part. The Connection Zone becomes visible when the page is in

ConnectionDisplayMode

and the user has chosen to modify a Web Part that supports connections. Not all Web
Parts support connections, so you may not need to include a Connection Zone in your
portal page. This zone automatically creates the controls needed to modify connections
for a Web Part, so there are no “Connection Zone parts” with which to work.

Most portal page layouts include multiple Web Part zones because people enjoy having a
couple positioning options when adding Web Parts to a page. Technically, you can have
multiple Catalog, Editor, and Connection Zones as well. More than likely, however, you’ll want
to restrict these types of zones to a single instance so users can see their editing, catalog, and
connection functionality in a single location instead of having it strewn all over the page.

User and Shared Scope

Authenticated users can edit a Web Parts page in user scope, assuming customization of the
Web Parts on that page has not been explicitly disabled by an administrator. Changes made in
user scope apply specifically to that user and do not affect the experience of other users.
Changes are persisted using the personalization features of the Web Parts Framework and are
only retrieved and redisplayed when that particular user accesses the page. Other users do not
see those changes because changes made in the user scope are not shared between users. As
such, this is the default mode in which the Web Parts Framework operates.

Administrative users can edit a Web Part page in either user scope (their personal scope)
or in shared scope. Alterations made in shared scope are visible to all users. Add a Web Part to
the page in shared scope, and everyone will see that new Web Part the next time they view the
page. Remove a Web Part, and it disappears for everyone. Change properties and the proper-
ties change for everyone. The idea behind the shared scope is to give administrators a simple
interface for defining the default content and layout of a portal page. We’ll explore how to edit
the content of a Web Part page a bit later. For now, let’s take a look at the shared scope
behavior.

6293_ch07.fm Page 255 Monday, November 14, 2005 9:25 AM

256

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Behavior of Shared Scope Items

Although shared scope items affect everyone, that does not necessarily mean that everyone is
stuck with those shared scope items. Portal technology is all about personalization, and user
scope changes actually take precedence over shared scope items. So you can override the
default settings on a Web Part page by editing the page in user scope.

Here is an example of how this situation works. An administrator enters shared scope and
adds a new Web Part. As such, that Web Part is now visible to all users who access the page.
Roger logs in and visits the portal page. He notices the new Web Part that has been added to the
page. After using it for a while, he determines that he does not like the new Web Part and wants
to remove it. He switches to design mode, closes the Web Part, and then returns to browse
mode. The Web Part does not appear. Even though shared scope is saying to add the item to
the page, his user scope is saying hide the item, and his user scope wins out over the shared
scope. Individual properties on Web Parts work the same way. User scope settings are applied
over the shared scope setting. Even if an administrator goes back and changes a setting, the
user scope setting still overrides it.

At first glance, it may seem that this gives the individual user more power than the admin-
istrator, but this is not the case. Administrators can set properties on shared Web Parts that
make it impossible to hide the Web Part, move the Web Part to another zone, or edit the Web
Part. In that case, the user cannot set user scope settings; therefore, the shared scope item has
no user scope settings with which to contend. You’ll see how to set these types of properties on
a Web Control when we discuss the

EditorZone

 and Editor Parts in greater detail later on in this
chapter.

■

Tip

Setting a shared scope item to uneditable simply disables user editingfor that item from that point on.
Any edits they have already made are still applied. The easiest way to ensure nobody has personal settings
on the item is to delete it entirely, and then add it back to the page. This gets rid of any user scope settings

that may have existed on the previous item.

Default Content and Immutable Web Parts

Before people make user changes to a page, that page only displays items that were defined in
shared scope. Thus, shared scope defines the default content and layout when people first visit
a portal page. By default, users are allowed to make user scope changes to shared Web Parts, so
default content is helpful for new users because it gives them a starting point from which to
make those changes.

Another use of shared scope is to create immutable Web Parts. You can set behavioral
properties on a Web Part in shared scope to deny people the ability to close, connect, edit,
hide, minimize, or move that Web Part. This is a useful tactic to ensure a specific Web Part
always appears on your users’ screens. For example, if you have a Web Part that disseminates
important company news and you don’t want users to be able to remove it from the screen,
you can alter its behavioral properties to make it immutable.

6293_ch07.fm Page 256 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 257

■Note No behavioral properties can stop a user from reordering Web Parts in a particular zone. If you
always want a specific Web Part to appear in a specific location within a zone, you must programmatically
check and reposition the Web Part.

Shared Scope Authorization

By default, nobody can enter shared scope to make changes. Any attempt by a user to switch
into shared mode without authorization results in an InvalidOperationException being
thrown. You must explicitly define which users and roles have access to enter into shared
scope by adding them to the Web Part authorization section in Web.config. The syntax for
setting up share scope authorization is analogous to that of creating ASP.NET authorization
settings as shown in Listing 7-2.

Listing 7-2. Authorizing Users and Roles to Enter Shared Scope

<configuration>
 <system.web>
 <webParts>
 <personalization>
 <authorization>
 <deny users="Richard, Anna" verbs="enterSharedScope"/>
 <allow roles="admin" verbs="enterSharedScope"/>
 </authorization>
 </personalization>
 </webParts>
 </system.web>
</configuration>

As you can see, the <authorization> section is within the <personalization> element,
which itself is inside the <webParts> element. You can allow or deny user access to shared
scope by creating <allow> or <deny> entries for the enterSharedScope verb. In this particular
example, Richard and Anna are denied access to the shared scope while all users who are part
of the admin role are allowed access. Remember, order matters when defining authorization
items. Even if Richard and Anna are administrators, they will be denied access because the
deny rule based on username appears before the allow rule based on role.

Checking Authorization and Toggling Scope

Switching from personal to shared scope requires toggling the scope from the page’s
WebPartManager control. It’s also a good idea to check whether or not the current user is
authorized to enter shared scope, because attempting the switch without proper authorization
results in an exception. You can use the code in Listing 7-3 to check user authorization and
toggle the scope.

6293_ch07.fm Page 257 Monday, November 14, 2005 9:25 AM

258 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Listing 7-3. Checking Authorization and Toggling Scope

If WebPartManager1.Personalization.CanEnterSharedScope Then
 WebPartManager1.Personalization.ToggleScope()
End If

Notice that the ToggleScope() method does not take any parameters. The method simply
switches from one scope to the other and does not allow you to specify the scope you want
to enter. You can, however, determine the current scope of the page using the
PersonalizationScope enumerator as shown in Listing 7-4.

Listing 7-4. Determining Mode

Select Case WebPartManager1.Personalization.Scope

 Case PersonalizationScope.Shared
 'Shared scope code

 Case PersonalizationScope.User
 'Personal scope mode

End Select

The Personalization.Scope property on the page’s WebPartManager control stores an
enumeration defining the page scope. You’ll see this code used later on to set the text on the
button used to toggle between page scopes. You can also use it to run scope-specific code.
Personalization.Scope is a read-only property, so you can only use it to check the page scope,
not change it.

Closing vs. Deleting a Web Part
Deleting a Web Part removes it from the page permanently and destroys all its personal-

ization settings. After you delete a Web Part instance, it will not appear in the PageCatalogPart.
You’ll have to create a new instance of the Web Part and reconfigure its settings if you want to
add it back to the page.You should be aware of the distinction between closing and deleting a
Web Part, and you should make the distinction known to the people who’ll be using your Web
Part application. Closing a Web Part removes it from the page visually. Behind the scenes,
however, the Web Part is still associated with the page and retains all its personalized settings.
You can think of closing a Web Part as hiding it or making it invisible. After closing a Web Part,
you can make it visible via the PageCatalogPart, which maintains a listing of all the closed Web
Parts on a page. When retrieved, the item retains all the settings it had before it was closed.

Hiding vs. Closing a Web Part
You can also hide Web Parts, which makes them invisible in browse display mode. When you
switch into design, catalog, edit, or connection mode, hidden Web Parts reappear so you can
edit them accordingly. The main difference between hiding and closing a Web Part is that a
hidden Web Part is still an active participant in the Web Part Framework. You’ll find this

6293_ch07.fm Page 258 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 259

helpful when you need a Web Part to participate in a connection, but you do not want it visible
on the page. Closed Web Parts cannot participate in a connection, but hidden Web Parts can.

Web Part Interfaces, Classes, and Controls
You will encounter a variety of interfaces, classes, and controls as you work with Web Parts in
ASP.NET 2.0. Creating a Web Part page requires an understanding of the various Web Part
controls, where they fit on the page, and how they interact with one another. Building an actual
Web Part requires knowledge of the interfaces and controls that house the core Web Part func-
tionality. In this section, you’ll learn all about the various components that make up the Web
Parts. Figure 7-2 shows a graphical overview of the classes we are about to discuss.

Figure 7-2. The relationship between various Web Part components

IWebPart Interface
Any ASP.NET control can participate in the Web Parts Framework because ASP.NET automat-
ically wraps non-Web Part controls with Web Part functionality at runtime using the aptly
named GenericWebPart class. The GenericWebPart class provides the bare minimum Web Part
functionality required for the control to participate in the framework, but all the Web Part
properties in the GenericWebPart are set to nondescript values. This makes it pretty confusing
when users look at the Web Part catalog because all your Web Parts are named “Untitled” and
have a similarly useless description.

You can avoid this confusion by implementing the IWebPart interface on user controls and
server controls that you plan to use in the Web Parts Framework. The IWebPart interface
exposes a set of properties that help define the most important properties on a Web Part, and
it gives the GenericWebPart class a way to pass property values back and forth between the Web

6293_ch07.fm Page 259 Monday, November 14, 2005 9:25 AM

260

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Part Framework and the control. In other words, changes made to an

IWebPart

 property within
the control propagate up to the Web Parts Framework, and changes made in the Web Parts
Framework propagate back down to the control. Figure 7-3 diagrams how the

GenericWebPart

class wraps standard controls (top) and those that implement the

IWebPart

 interface (bottom).

Figure 7-3.

 The

GenericWebPart

 control and the

IWebPart

 Interface

Table 7-1 outlines the properties in the

IWebPart

 Interface. You may find it useful to refer
to Figure 7-1, which shows a basic Web Part as it appears in the browser.

Table 7-1.

IWebPart

 Interface Properties

Property Type Description

CatalogIconImageUrl String

Specifies which image, if any, the Web Part catalog should
display next to the Web Part in the catalog. If this is an empty
string, then no icon will appear in the catalog.

Description String

Brief description of the Web Part. Whenever someone hovers
the mouse over a Web Part title on the page or in the Web Part
catalog, the description is displayed as a tooltip to provide an
idea of what the Web Part is and how it can be used.

Subtitle

(Read Only) String

When a Web Part displays in the browser, the title bar displays
the

Title

 of the Web Part and the

Subtitle

 if it exists. The

SubTitle

 allows you to specify additional title information in
the title bar. For example, you may have a Weather Web Part
whose title is “Weather” with a subtitle that read “Dallas” to
denote which city’s weather the Web Part is displaying.

6293_ch07.fm Page 260 Monday, November 14, 2005 4:46 PM

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

261

These properties give the Web Parts Framework a way of communicating the point and
purpose of your web control to the user, so you’ll definitely need them if you want your Web
Parts to be user friendly.

Later in this chapter, you’ll learn about the

BehaviorEditorPart

, which allows users to edit
Web Part properties exposed by the

IWebPart

 interface. For now, however, know that you must
implement the

IWebPart

 interface using properties. Listing 7-5 is an example of a static prop-
erty that cannot be changed.

Listing 7-5.

 UnchangeableProperty Implementation

'***
Public Property Title() As String _
 Implements System.Web.UI.WebControls.WebParts.IWebPart.Title
 Get
 Return "Web Part Title"
 End Get
 Set(ByVal value As String)
 'Do nothing
 End Set
End Property

No matter what you do, the

Title

 property shown in Listing 7-5 will always return the
same value. Attempting to set the property will not affect anything because the

Set

 portion of
the property simply disregards incoming values. Naturally, this affects the

BehaviorEditorPart

control’s capability to make changes to a Web Part. If your end goal is to have the Web Part
disregard changes to a property, then by all means use an unchangeable property. If you want
the changes made by the

BehaviorEditorPart

 control to save, then you need to use standard
properties for the

IWebPart

 implementation as shown in Listing 7-6.

Title String

Name of the Web Part as it should appear in the title bar and
in the Web Part catalog.

TitleIconImageUrl String

Specifies which image, if any, should be displayed in the title
bar of the Web Part on the page. If this is an empty string,
then no icon will appear in the title bar.

TitleUrl String

Specifies which URL, if any, users should be redirected to when
they click on the title of the Web Part in the title bar. If this is an
empty string, then the title will not link to another page.

Table 7-1.

IWebPart

 Interface Properties (Continued)

Property Type Description

6293_ch07.fm Page 261 Monday, November 14, 2005 9:43 AM

262 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Listing 7-6. Field-Backed Property Implementation

'***
Private _Title as String = "Web Part Title"

'***
Public Property Title() As String _
 Implements System.Web.UI.WebControls.WebParts.IWebPart.Title
 Get
 Return _Title
 End Get
 Set(ByVal value As String)
 _Title = value
 End Set
End Property

In Listing 7-6, the private _Title field backs the Title property. Whenever the Title prop-
erty changes, the property stores the new value in the _Title field where it can later be
retrieved when the Title property is read. You can specify a default value for the property by
specifying a default value for the field that backs it. In this example, the Title property has a
default value of “Web Part Title”.

Later in the chapter, I’ll show you a simple way of creating user controls that inherit their
IWebPart implementation from a base class.

Part Class
As you read through this chapter, you’ll see information about WebPart, EditorPart, and
CatalogPart controls. All the parts in the Web Part Framework inherit a common set of visual
properties from the Part class. This allows the Web Parts Framework to render parts in a
consistent manner. Table 7-2 is an overview of those common properties.

Table 7-2. Part Class Properties Common to All Parts in the Web Part Framework

Property Name Type Enum Values Description

ChromeState PartChromeState Minmized Normal Determines whether the page
renders the entire part (Normal) or just the
part’s title bar (Minimized).

ChromeType PartChromeType BorderOnly
Default
None
TitleAndBorder
TitleOnly

Determines whether the page renders a
title and border around the part. A value of
Default means the part inherits settings
from its zone.

Description String Brief explanation of the control and what it
does. The Web Parts Framework displays
this information to the user when
applicable.

Title String Displayed in the part’s title bar.

6293_ch07.fm Page 262 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 263

WebPart Class
You can use the WebPart class as a base for building custom Web Part controls that can be pack-
aged into an assembly. This is extremely useful if you need to create a set of reusable Web Parts
to use over a series of projects or if you want to build a commercial Web Part.

If you have experience building custom server controls, then you’ll feel right at home
building custom Web Parts because the WebPart ultimately derives from a WebControl. For
those who are interested, the WebPart class’s inheritance chain looks something like this:
WebPart ➤ Part ➤ Panel ➤ WebControl. As such, it has the same rendering architecture as any
other custom server control and requires that you adhere to many of the same design princi-
ples. Later in this chapter, you’ll see how to build a simple custom Web Part that derives from
the WebPart class; however, a full discourse on custom control development is far beyond the
scope of this text.

The WebPart class provides an implementation for the IWebPart interface, along with a host
of additional properties used in the Web Parts Framework. Table 7-3 provides a rundown of
some of the more important WebPart class properties.

Table 7-3. Important WebPart Members

Property Name Type Enum Values Description

AllowClose Boolean True if users may close the Web Part.

AllowConnect Boolean True if users may create dynamic connections for
the Web Part.

AllowEdit Boolean True if users may edit the Web Part.

AllowHide Boolean True if users may hide the Web Part.

AllowMinimize Boolean True if users may minimize the Web Part.

AllowZoneChange Boolean True if users may move the Web Part from one
zone to another.

AuthorizationFilter String Provides a location where you can define and
store an authorization string for use in a custom
authorization scenario. There is no default
behavior associated with this property. You
may find it useful to use this property in conjunc-
tion with custom authorization code in the
AuthorizeWebPart event of the WebPartManager.
For example, you could specify a comma-
delimited list of roles in the AuthorizationFilter
property, and then have custom code in the
AuthorizeWebPart event check to make sure the
user is in one of those roles before authorizing the
display of the Web Part.

CatalogIconImageUrl String Specifies which image, if any, the Web Part catalog
should display next to the Web Part in the catalog.
This property is part of the IWebPart interface.

ConnectErrorMessage String Error message displayed to the user if the Web
Part experiences a connection error with another
Web Part.

6293_ch07.fm Page 263 Monday, November 14, 2005 9:25 AM

264 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Direction Content➥
Direction

LeftToRight
NotSet
RightToLeft

Specifies the text orientation for languages
requiring left-to-right support. The default value is
NotSet.

DisplayTitle String Read-only property that returns a string
containing the actual value displayed in the title
bar. The value is a concatenation of the Title and
the Subtitle properties. If the actual Title prop-
erty is an empty string, then DisplayTitle returns
“Untitled”; if multiple Web Parts have the same
title, then DisplayTitle adds a numeric index to
the title to distinguish the Web Parts.

ExportMode WebPart➥
ExportMode

All
None
NonSensitive➥
Data

Determines whether all, none, or only the proper-
ties that have been marked as nonsensitive may
be exported from a web control. The default value
is None.

HasSharedData Boolean Read-only property that returns true if the Web
Part has shared (all-user) personalization data.

HasUserData Boolean Read-only property that returns true if the Web Part
has personal (user-specific) personalization data.

Height Unit Desired height of the Web Part. Web Part height is
determined by the Web Part content, so your Web
Part content must take this desired height into
account for it to have any meaning. Although it
seems like this would control the height of the
Web Part container, it does not.

HelpMode WebPartHelp➥
Mode

Modal
Modeless
Navigate

Determines how the help page specified in the
HelpUrl property displays. Modal displays a modal
web page dialog box (popup). Modeless displays a
nonmodal popup window. Navigate uses the
current window to display the help, that is, it takes
the user away from page. The default value is
Modal.

HelpUrl String URL where help for the Web Part may be found.
The Help verb in the Web Part menu is enabled
when the HelpUrl property has a value.

Hidden Boolean True if the Web Part should be hidden.

ImportErrorMessage String Error message displayed to the user if the Web
Part experiences an error while trying to import
settings.

IsClosed Boolean Read-only property that returns true if the Web
Part is closed.

IsShared Boolean Read only property that returns true if the Web
Part is a shared, that is, visible to all users.

IsStandalone Boolean Read-only property that returns true if the Web Part
is not shared, that is, visible only to a single user.

Table 7-3. Important WebPart Members (Continued)

Property Name Type Enum Values Description

6293_ch07.fm Page 264 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 265

It’s definitely a lot to take in, but these properties make it simple to modify the behavior
and appearance of Web Parts programmatically. Custom Web Parts that inherit the WebPart
class have direct access to all these properties by virtue of inheritance. You can also access all
the WebPart class properties from inside a user control that does not inherit the WebPart class,
but you have to do it indirectly through the GenericWebPart wrapper class.

GenericWebPart Wrapper Class
User controls inherit their base functionality from the UserControl class and, therefore, cannot
inherit Web Part functionality from the WebPart class. This is problematic because the Web

IsStatic Boolean Read-only property that returns true if the Web
Part is defined directly in the page markup. False
if the Web Part was added to the page program-
matically or dynamically via the declarative page
Catalog Part.

SubTitle String Displays additional text on the title bar of a Web
Part when displayed on the page. The Web Part
catalog does not display subtitles. This property is
part of the IWebPart interface.

TitleIconImageUrl String Specifies which image, if any, should be displayed
in the title bar of the Web Part on the page. This
property is part of the IWebPart interface.

TitleUrl String Specifies which URL, if any, users should be redi-
rected to when they click on the title of the Web
Part in the title bar. This property is part of the
IWebPart interface.

Verbs WebPartVerb➥
Collection

Read-only collection of custom verbs associated
with the web control.

WebBrowsableObject Object Read-only property that returns a reference to the
WebPart instance. EditorPart controls use this
property to load the Web Part into the editor.

WebPartManager WebPart➥
Manager

Read-only property that gets a reference to the
WebPartManager for the current page.

Width Unit Desired width of the Web Part. Web Part width is
determined by the Web Part content, so your Web
Part content must take this desired width into
account for it to have any meaning. Although it
seems this would control the width of the Web
Part container, it does not.

Zone WebPartZone➥
Base

Read-only property providing a reference to the
zone that houses the Web Part.

ZoneIndex Integer Read-only property identifying the order position
of the Web Part in the zone.

Table 7-3. Important WebPart Members (Continued)

Property Name Type Enum Values Description

6293_ch07.fm Page 265 Monday, November 14, 2005 9:25 AM

266 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Parts Framework needs the information exposed by the WebPart class to manage a Web Part.
Enter the GenericWebPart class, which allows controls that do not inherit Web Part function-
ality from the WebPart class to participate in the Web Parts Framework by “wrapping” the
control with the necessary functionality.

In essence, the GenericWebPart acts as a stand-in for the user control because it is the
GenericWebPart that has all the Web Parts functionality. Whenever the Web Part Framework
appears to be interacting with the user control, it is in fact interacting with the GenericWebPart
that is there on behalf of the user control. Of course, the GenericWebPart relies on the user
control it represents for nongeneric implementation details. For example, when the time
comes to render the Web Part content (that is, the content below the title and inside the border
of the Web Part), the GenericWebPart passes execution off to the user control so it can render
itself. Whatever the user control renders is what appears as the Web Part content. Also, the user
control handles any event arising from user interaction with the Web Part. Figure 7-4 outlines
the structure of implementing a custom Web Part vs. a Web Part based on a user control.

Figure 7-4. Web Part implemenation using the WebPart and GenericWebPart classes

The WebPartManager class exposes a shared method named GetCurrentWebPartManager,
which returns a reference to the WebPartManager control on the current page. You can then
acquire a reference to the GenericWebPart object, which represents the user control via the
GetGenericWebPart function of the WebPartManager control. This allows you to access and
manipulate Web Part functionality in a user control even though the user control does not
inherit from the WebPart class. This will be explored in more detail when you learn how to build
Web Parts, but Listing 7-7 gives a quick look at how to get the reference in your user control.

6293_ch07.fm Page 266 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 267

Listing 7-7. Acquiring a Reference to a User Control’s GenericWebPart

Public Class MyUserControl
 Inherits UserControl

 '***
 Private WebPartData As GenericWebPart

 '***
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 WebPartData = _
 WebPartManager.GetCurrentWebPartManager(Page).GetGenericWebPart(Me)

 'You can then access Web Part data
 Dim Title As String = WebPartData.Title
 Dim Description As String = WebPartData.Description
 Dim AllowMinimize As Boolean = WebPartData.AllowMinimize
 'etc...

 End Sub

End Class

In Listing 7-7, WebPartManager.GetCurrentWebPartManager(Page) acquires a reference to
the WebPartManager for the page. Notice that you pass the current instance of the user control
into GetGenericWeb via the Me reference. The WebPartManager searches through all the
GenericWebPart objects on the page looking for the one that represents the user control.
The return reference is then stored in the WebPartData field for future reference.

■Note You can also use GenericWebPart to represent server controls. User controls were specifically
discussed in this section because developers are more likely to use the GenericWebPart in conjunction with
user controls.

WebPartManager Control
Web Part pages must load content based on personalized settings and have an assortment of
controls that need to interact with others based on the page mode, scope, and connections to
other Web Parts. The WebPartManager control acts as the master coordinator for all the Web
Parts and Web Part functionality on a Web Part page.

Every page that uses Web Parts must have one (and only one) WebPartManager control, and
it must appear before any Web Part controls on the page. Inside the WebPartManager definition
you can set up static connections between Web Parts and define personalization settings for
the page as shown in Listing 7-8 and 7-9.

6293_ch07.fm Page 267 Monday, November 14, 2005 9:25 AM

268 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Listing 7-8. Defining a WebPartManager

<!-- Definition without personalization or connection settings -->
<asp:WebPartManager ID="WebPartManager1" runat="server" />

Listing 7-9. Defining a WebPartManager with Providers and Static Connections

<!-- Definition with personalization and connection settings -->
 <Personalization Enabled="True" <asp:WebPartManager ID="WebPartManager1"
 runat="server">
 InitialScope="User"
 ProviderName="MyPersonalizationProvider" />
 <StaticConnections>
 <asp:WebPartConnection ID="StaticConnection1”
 ConsumerID="ConsumerControl1_ID"
 ProviderID="ProviderControl1_ID"
 ConsumerConnectionPointID="PointA"
 ProviderConnectionPointID="PointA" />

 <asp:WebPartConnection ID="StaticConnection2"
 ConsumerID="ConsumerControl2_ID"
 ProviderID="ProviderControl2_ID"
 ConsumerConnectionPointID="PointB"
 ProviderConnectionPointID="PointB" />
 </StaticConnections>
</asp:WebPartManager>

In the preceding example, you can see how to set personalization settings and define static
connections in the WebPartManager control definition. On the personalization side, you can
enable or disable personalization by setting the Enabled property, defining the initial scope of
the page by setting the InitialScope property, and specifying a personalization provider in the
ProviderName property. If you want to use the default personalization provider, then leave off
the ProviderName property. Also, the InitialScope property is smart enough to check whether
the user can enter shared scope before it attempts to enter it, so you can set this without fear of
getting exceptions. If users can enter shared scope, then they will start in shared scope, if not,
they will stay in personal scope. We’ll discuss Web Part connection in greater detail later on in
this chapter, but for now, just know that static Web Part connections are defined in the
WebPartManager control.

The WebPartManager control does not have a UI, so you won’t “see” it on the page, but you
can use it in code. As the coordinator for Web Part interactions on the page, it maintains all
pagewide information, such as the current display mode, scope, a list of all Web Part zones on
the page, and a list of all the Web Parts in those zones. You’ve already seen how to use the
WebPartManager to change scope and display mode, but it also allows you to manipulate Web
Parts programmatically. Anything you can do in design, edit, catalog, or connection display
mode can also be accomplished using methods on the WebPartManager.

6293_ch07.fm Page 268 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 269

■Note Changes made in code are applied to the current page scope. Thus, if the page is in personal scope,
the change is applied specifically to that user. If the page is in shared scope, the change is applied to all users.

Table 7-4 provides a brief list of the important, properties, methods, and events of the
WebPartManager control. For a more exhaustive listing check out the MSDN website.

Table 7-4. Important WebPartManager Properties

Property Type Description

CloseProvider➥
Warning

String When someone attempts to close a Web Part that is
acting as a connection provider for another Web Part, the
CloseProviderWarning informs the user of the possible
effects and requests confirmation. You can change that
warning via this property.

DeleteWarning String When someone attempts to delete a Web Part, the
DeleteWarning displays and requests a confirmation. You
can change the default deletion warning via this
property.

DisplayMode WebPartDisplayMode Determines the current page display mode. You can set
this property equal to one of five static WebPartDisplay➥
Mode objects defined in the WebPartManager class:
BrowseDisplayMode, CatalogDisplayMode, Connect➥
DisplayMode, DesignDisplayMode, and EditDisplayMode.
For more information about display modes, see “Portal
Page Display Modes” earlier in this chapter.

DynamicConnections WebPartConnection➥
Collection

Users can define dynamic connections between Web
Parts on a page. This collection contains a listing of all
those dynamic connections.

ExportSensitive➥
DataWarning

String Some Web Parts may have properties that contain sensi-
tive data and are marked as such in the Personalizable
property attribute (discussed later in the “Defining Web
Part Properties” section). When someone attempts to
export settings on a Web Part marked as having sensitive
data, the ExportSensitiveDataWarning message displays
informing the user of the potential security risk. You can
change the default warning via this property.

Personalization WebPart➥
Personalization

Used to interact with the personalization provider for the
Web Part Framework.

SelectedWebPart When a user selects a verb from the Web Part menu, it
“selects” that Web Part. This property provides an object
reference to the currently selected Web Part. It returns
Nothing when a Web Part has not been selected. This is a
read-only property.

StaticConnections WebPartConnection➥
Collection

Developers can define static connections between Web
Parts on a page. This collection contains a listing of all
those static connections.

6293_ch07.fm Page 269 Monday, November 14, 2005 9:25 AM

270

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Most of the methods for the

WebPartManager

 control mimic the functionality found in the
UI for the various display modes, so they should be somewhat familiar (see Table 7-5).

WebParts WebPartCollection

Collection of all the Web Parts on the page regardless of
the Web Part zone in which they reside. This

only

includes Web Parts and not Catalog or Editor Parts.

Zones WebPartZoneCollection

Collection of all the Web Part zones on the page. This

only

 includes Web Part zones and not Catalog, Editor, or
Connection Zones

Table 7-4.

 Important

WebPartManager

 Properties (Continued)

Property Type Description

Table 7-5.

 Important

WebPartManager

 Methods

Method Parameters Returns Description

AddWebPart WebPart As WebPart
zone As

WebPartZoneBase
zoneIndex As Integer

WebPart

Adds a Web Part to a Web Part zone
at the given zone index. Zone
indices are zero-based, so you’ll
need to use an index of 0 to make
the Web Part the first item in the
zone. The

WebPart

 added is returned
as the result of the function.

CloseWebPart

webPart As WebPart

Closes the specified Web Part.

ConnectWebParts

provider As WebPart

providerConnection

➥

Point as Provider

➥

ConnectionPoint

consumer As WebPart

consumer

➥

ConnectionPoint

➥

As Consumer

➥

ConnectionPoint

[transformer as
WebPartTransformer]

WebPartConnection

Connections are used to transmit
data from one Web Part to another.
This method creates a

WebPart

➥

Connection

 object representing the
connection between the Provider
Web Part and Consumer Web Part.
The

transformer

 parameter, (shown
in [] brackets because it appears on
an overloaded version of this
method) is a custom object that
translates data from the provider
into a format the consumer can
read.

CreateWebPart control As Control GenericWebPart

Wraps the given control in a

GenericWebPart

 and returns it as the
result of the function. Wrapping
controls in a

GenericWebPart

 allows
any user controls or server control to
participate in the Web Parts Frame-
work. After you create a

Generic

➥

WebPart

, you need to add it to a zone
before users may view it.

DeleteWebPart webPart as WebPart

Deletes the specified Web Part.

DisconnectWebPart

webPart

 as

WebPart

Disconnects a Web Part from its
connection provider.

6293_ch07.fm Page 270 Monday, November 14, 2005 4:47 PM

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

271

■

Note

When you “import” a Web Part, you are really only importing a Web Part’s configuration. You can only
successfully import Web Part configurations for Web Part controls that exist in your application. If you find a Web
Part in another application, export its configuration to a file and then import that configuration into your application,

the import will fail because your application does not have access to the Web Part the configuration references.

All the

WebPartManager

 events are represented by pairs. Events that end in

ing

 fire right
before an action occurs, which allows you to alter the action before it’s actually executed.
Events that end in

ed

 fire after an action has been performed. All the events have a

sender

DisconnectWebParts connection

 As

WebPartConnection

Disconnects all Web Parts who use
the given connection.

ExportWebPart webPart

 As

WebPart

writer as XmlWriter

Populates

XmlWriter

 with property
names and values from the given
Web Part. You can use the

ImportWebPart

 method with this
XML definition to initialize a

WebPart

 with the appropriate
settings.

ImportWebPart reader as XmlReader

➥

ByRef errorMessage

 As

String

WebPart

Reads the property names and
values from

XmlReader

 and initial-
izes a

WebPart

 with the appropriate
configuration settings. Notice that
the

errorMessage

 parameter is a

ByRef

 parameter, meaning that the
variable value may change inside
the function. You should pass an
empty string variable into the
method and check to see if it’s still
blank when the method exits. If the
variable contains a message, then
an error occurred. If not, the
method succeeded.

GetGenericWebPart

control as

Control GenericWebPart

This retrieves the

GenericWebPart

wrapper for a user control or server
control that is already participating
in the Web Parts Framework. You
normally use this inside of a control
definition to get a reference to that
control’s corresponding

GenericWebPart.

MoveWebPart webPart

 As

WebPart

zone

 As

WebPart

➥

ZoneBase

zoneIndex

 As

Integer

Moves the given Web Part to the
specified Web Part zone at the given
zone index.

Table 7-5.

 Important

WebPartManager

 Methods (Continued)

Method Parameters Returns Description

6293_ch07.fm Page 271 Tuesday, November 15, 2005 5:36 PM

272 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

parameter, which is always the WebPartMangaer for the page, and e, which contains important
information regarding the event. Table 7-6 contains a listing of WebPartManager events.

Most of the events allow you to modify the action by setting properties in the event
handler arguments parameter (e). For example, you can cancel a Web Part deletion by setting
e.Cancel = True in the WebPartDeleting event. Or you can force a Web Part to be added to the
top of a zone by setting e.ZoneIndex = 0 in the WebPartAdding or WebPartMoving events. Also
understand that you can set up event handlers for these events from within your Web Part
control. This means that individual Web Parts can respond to these events directly in their
code. You’ll see examples of this later on in this chapter.

ProxyWebPartManager Control
The ProxyWebPartManager allows you to define static connections from a content page when
the WebPartManager control is located on the Master Page (see Chapter 3). If you plan on having
Web Parts on multiple pages in your website, then you make your life a lot easier by imple-
menting most of your Web Part functionality in a Master Page. Any page that needs to use Web
Parts can inherit that Master Page’s features. To do so, you need to place your WebPartManager
control in the Master Page. This presents a problem for static connections.

Static connections are defined in the WebPartManager control, but most static connections
are needed on a page-by-page basis and should not be defined in the Master Page. To get

Table 7-6. Important WebPartManager Events

Event Description

ConnectionsActivating,
ConnectionsActivated

Fires before and after all the connections on the page have been acti-
vated. When the connections are activated, Provider Web Parts send
data to Consumer Web Parts via the connections.

DisplayModeChanging,
DisplayModeChanged

Fires before and after the display mode changes.

SelectedWebPartChanging,
SelectedWebPartChanged

Fires before and after the selected Web Part changes.

WebPartAdding,
WebPartAdded

Fires before and after a user adds a Web Part to the page.

WebPartClosing,
WebPartClosed

Fires before and after a user closes a Web Part.

WebPartDeleting,
WebPartDeleted

Fires before and after a user deletes a Web Part.

WebPartMoving,
WebPartMoved

Fires before and after a user moves a Web Part.

WebPartConnecting,
WebPartConnected

Fires before and after a user establishes a connection between two
Web Parts.

WebPartDisconnecting,
WebPartDisconnected

Fires before and after a user removes the connection between two
Web Parts.

6293_ch07.fm Page 272 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 273

around this issue, you can place a ProxyWebPartManager on the actual content page itself and
define static connections in the ProxyWebPartManager. Listing 7-10 is an example of what this
looks like on the content page.

Listing 7-10. Defining Static Connections Using the ProxyWebPartManager

<asp:Content ContentPlaceHolderID="ContentPlaceHolder1" runat="server">
 <asp:ProxyWebPartManager ID="ProxyWebPartManager1" runat="server">
 <StaticConnections>
 <asp:WebPartConnection ID="StaticConnection1"
 ConsumerID="ConsumerControl1_ID"
 ProviderID="ProviderControl1_ID" />
 <asp:WebPartConnection ID="StaticConnection2"
 ConsumerID="ConsumerControl2_ID"
 ProviderID="ProviderControl2_ID" />
 </StaticConnections>
 </asp:ProxyWebPartManager>
</asp:Content>

All the static connections defined in the ProxyWebPartManager control appear as though
they were defined in the WebPartManager control itself, and calling StaticConnections on the
WebPartManager returns the connections defined in the ProxyWebPartManager.

Web Part Zones
All Web Part zone controls act as containers for their respective type of Web Parts and auto-
matically hide or become visible depending on the current display mode. In the IDE, zones
look like and act like any other container control, allowing you to drag and drop in items from
the toolbox and work with them right on the screen.

Zones inherit a basic set of functionality from the WebZone base class, so all the zone controls
share a common set of text and style properties that govern their appearance when displayed in
the browser. Table 7-7 provides an overview of those properties and their purpose.

Table 7-7. WebZone Properties

Property Name Type Description

EmptyZoneText String Text to display when the zone is displayed but
has no content. The WebPartZone will not display
the EmptyZoneText while the page is in browse
display mode.

EmptyZoneTextStyle Style Style applied to the EmptyZoneText.

ErrorStyle Style Style applied to error messages shown in the
zone.

FooterStyle TitleStyle Style applied to the zone footer (although no
zone seem to have footers).

6293_ch07.fm Page 273 Monday, November 14, 2005 9:25 AM

274 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

You will be looking at zone controls over the next few sections, so remember that these
properties also apply to those controls.

WebPartZone Control and Static Web Parts
You use the WebPartZone to create a region on the page to display and manage Web Parts. In
browse mode, the region is invisible and the title bar is hidden. When you switch into catalog,
design, edit, or connection mode, you’ll see a bounding region around the WebPartZone along
with a title bar displaying the HeaderText, assuming of course that you have not explicitly
disabled the border and title bar for the zone. Figure 7-5 shows a WebPartZone in design mode
with three Web Parts.

HeaderStyle TitleStyle Style applied to the zone header. This is synon-
omous with the title bar of a Web Part.

HeaderText String Text displayed in the zone header. This is
synonomous with the Title property of the
Web Part.

Padding Integer Amount of padding between Web Parts in the
zone.

PartChromeStyle Style Style applied to the border and background of
the parts in the zone.

PartChromeType PartChromeType Specifies whether the parts in the zone will have
a border, title, or both.

PartStyle TableStyle Style applied to the content of the parts in the
zone.

PartTitleStyle TitleStyle Style applied to the title of parts in the zone.

VerbButtonType ButtonType Specifies whether the actions buttons (verbs) in
the zone will be links, buttons, or images. The
VerbButtonType property is not available on the
WebPartZone because the WebPartZone does not
have any verbs.

VerbStyle Style Style applied to the verbs in a zone.

Table 7-7. WebZone Properties (Continued)

Property Name Type Description

6293_ch07.fm Page 274 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 275

Figure 7-5. WebPartZone with Three Web Parts

The WebPartZone has a lot of properties that help define the visual appearance and
behavior of the Web Parts in the zone. Table 7-8 is a quick reference for those properties.

Table 7-8. Important WebPartZone Properties

Property Name Type Description

AllowLayoutChange Boolean True if the user may reorder Web Part within the zone.

CloseVerb WebPartVerb Reference to the verb that closes the Web Part.

ConnectVerb WebPartVerb Reference to the verb that allows users to set up connections
for the Web Part.

DeleteVerb WebPartVerb Reference to the verb that deletes the Web Part.

DragHighlightColor Color Color of the drag position indicator bar displayed when a user
drags a Web Part from one location to another. The default
color is blue.

EditVerb WebPartVerb Reference to the verb that allows the user to edit the Web Part.

ExportVerb WebPartVerb Reference to the verb that allows the user to export the Web Part.

HelpVerb WebPartVerb Reference to the verb that displays help for the Web Part.

LayoutOrientation Orientation Specifies whether the Web Part in the zone should appear on
top of one another (Vertical) or side by side
(Horizontal). The default is Vertical.

MenuCheckImageStyle Style Style applied to the check mark image used on the verb that
has been selected (checked).

6293_ch07.fm Page 275 Monday, November 14, 2005 9:25 AM

276 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

All the Verbs and Style properties are defined as child <elements> in the control definition. Notice in Listing 7-11
that DragHighlightColor is defined as an attribute whereas HeaderStyle is defined as an <element>

MenuCheckImageUrl String URL of the image used as the check mark image on a verb that
has been selected (checked).

MenuLabelHoverStyle Style Style applied to the drop-down menu label in the title bar
when the mouse hovers over the text.

MenuLabelStyle Style Style applied to the label containing the MenuLabelText and
drop-down arrow for the verb menu.

MenuLabelText String Text that appears in the title bar of a web control next to the
drop-down arrow for the verb menu. The default value is an
empty string meaning that nothing is shown next to the drop-
down arrow (refer to Figure 7-1).

MenuPopupImageUrl String URL of the image to use as the drop-down image for the verb
menu. By default, the MenuPopupImageUrl points to a small
drop-down arrow.

MenuPopupStyle WebPartMenuStyle Style applied to the popup menu containing the list of verbs
for a Web Part.

MenuVerbHoverStyle Style Style applied to a verb in the popup menu when the mouse is
hovering over that verb.

MenuVerbStyle Style Style applied to a verb in the popup menu.

MinimizeVerb WebPartVerb Reference to the verb that minimizes the web control.

RestoreVerb WebPartVerb Reference to the verb that restores a minimized web control.

SelectedPart➥
ChromeStyle

Style Style applied to the border of the selected Web Part.

ShowTitleIcons Boolean True if the zone should display the Web Part’s title icon.

TitleBarVerb➥
ButtonType

ButtonType Determines the type of button (Link, Button, or Image) to
display on the title bar when the WebPartVerbRenderMode is set
to TitleBar.

TitleBarVerbStyle Style Style applied to the title bar verb buttons when the
WebPartVerbRenderMode is set to TitleBar.

WebParts WebPartCollection List of the Web Part in the zone.

WebPartVerb➥
RenderMode

WebPartVerb➥
RenderMode

Specifies whether the verbs for the Web Part should appear in a
menu (Menu) or as buttons in the title bar (TitleBar). The
default value is Menu. Also know that the MenuXXX properties are
applied when this value is set to Menu, and the TitleXXX proper-
ties are applied when this value is set to TitleBar.

ZoneTemplate ITemplate A template containing the static Web Part that should appear
in the zone. Dropping controls into the zone from the IDE
populates the ZoneTemplate in the page markup.

Table 7-8. Important WebPartZone Properties (Continued)

Property Name Type Description

6293_ch07.fm Page 276 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 277

To create a new Web Part zone, just drag the WebPartZone control from the toolbox to the
location where you want it to appear on the web form. You’ll see the zone appear in the IDE,
and the following control definition will be added to the page markup:

<asp:WebPartZone ID="WebPartZone1" runat="server"></asp:WebPartZone>

Of course, you’ll probably want to set the HeaderText attribute to give the zone an appro-
priate title, define some visual styles, and possibly specify a few static Web Part controls to
display in the zone. Listing 7-11 is a more detailed example of the WebPartZone control definition.

Listing 7-11. WebPartZone Control Definition

<asp:WebPartZone SkinID="" Runat="server" DragHighlightColor="0, 0, 255">
 <HeaderStyle CssClass="WebPartZoneHeader" />
 <PartTitleStyle CssClass="WebPartTitle" />
 <PartStyle CssClass="WebPartContent" CellSpacing="5" />
 <PartChromeStyle BorderWidth="1px" BackColor="#CCCCCC" />
 <MenuPopupStyle BackColor="#FFFFFF" BorderColor="#000000"
 BorderStyle="Solid" BorderWidth="1px"
 ShadowColor="#AAAAAA" GridLines="Horizontal"
 Font-Names="Tahoma" Font-Size="9pt" />
 <MenuLabelStyle ForeColor="White" />
 <MenuVerbStyle ForeColor="Black" />
 <MenuVerbHoverStyle ForeColor="Red" />
 <ZoneTemplate>
 <cc1:MyWebPartA runat=server id=StaticWebPart1 />
 <cc1:MyWebPartB runat=server id=StaticWebPart2 />
 </ZoneTemplate>
</asp:WebPartZone>

Because Web Parts have many visual aspects, you end up having to set a fairly large
number of stylistic properties for the Web Part zones. If you have multiple zones over multiple
pages, then you should use control skins to make your task a bit easier and more maintainable.
Control skins allow you to apply a set of properties to controls across the entire application by
defining the control properties in a .skin file. Check out Chapter 3 for more information on how
to implement control skins.

■Note You can check out the skin files for the example application in the App_Themes\Bravo\ folder of
the web application in the Source Code area of the Apress website (http://www.apress.com).

Also notice the controls in the <ZoneTemplate> element of the control definition. These are
called static Web Parts because they are defined directly in the page markup. Static Web Parts
act similarly to shared scope Web Parts in that they appear for all users but allow individual
users to create personalized settings. The biggest difference is that static Web Parts cannot be
removed from the page dynamically, that is, administrators cannot enter shared scope and
delete the Web Part. You have to manually remove the item from the page markup to delete it.

6293_ch07.fm Page 277 Monday, November 14, 2005 9:25 AM

278 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

CatalogZone Control and Related Catalog Parts
You use the CatalogZone to create a region on the page to display Catalog Parts, which in turn
allows the user to add or restore Web Parts on the page. Figure 7-6 shows an example Catalog➥

Zone that contains three Catalog Parts. Although the CatalogZone holds multiple CatalogPart
controls, it only displays one of those controls at a time. You can select which CatalogPart to
display by clicking on one of the links located at the top of the CatalogZone.

Figure 7-6 shows a Web Part Catalog control that displays 11 Web Parts (the 11 items with
check boxes next to them). Notice that the number (11) appears next to the Web Part Catalog
item in the list identifying the total number of Web Parts in the catalog. Also remember that the
CatalogZone only appears when the page is in catalog display mode, so your page must provide
some means of switching modes before users can see the CatalogZone.

Figure 7-6. CatalogZone drop-down box and the Add button

Like the WebPartZone, there are a few control-specific properties you need to know about
when working with a CatalogZone. Table 7-9 gives a quick listing of those properties.

Table 7-9. Important CatalogZone Properties

Property Name Type Description

AddVerb WebPartVerb Read-only reference to the verb that adds the selected
Catalog Parts to the page. This verb appears at the
bottom of the page.

CatalogParts CatalogPartCollection List of the Catalog Parts in the zone.

6293_ch07.fm Page 278 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 279

To create a new Catalog Zone, just drag the CatalogZone control from the toolbox to the
location where you want it to appear on the web form. You’ll see the zone appear in the IDE,
and the following control definition will be added to the page markup:

<asp:CatalogZone ID="CatalogZone1" runat="server"></asp:CatalogZone>

Once again, you’ll likely want to add stylistic properties to the CatalogZone control defini-
tion, and you may want to define those properties in a .skin file. You also need to include

CloseVerb WebPartVerb Read-only reference to the verb that closes the
CatalogZone and switches the page back into browse
display mode. This verb appears at the bottom of the
page.

EditUIStyle Style Style applied to the form elements (text boxes, check
boxes, and so on) on the Catalog Parts in the zone.

HeaderCloseVerb WebPartVerb Read-only reference to the verb in the header that
closes the CatalogZone and switches the page back to
browse display mode.

HeaderVerbStyle Style Style applied to any verbs that appear in the header,
such as the HeaderCloseVerb.

InstructionText String Brief description of how to use the catalog to add Web
Parts to the page. This text may contain HTML
markup.

Instruction➥
TextStyle

Style Style applied to the InstructionText.

LabelStyle Style Style applied to labels that appear throughout the
Catalog Parts in the zone.

PartLinkStyle Style Style applied to the links in the Catalog Part list for the
unselected Catalog Parts.

SelectedCatalog➥
PartID

String ID of the selected Catalog Part.

SelectedPartLink➥
Style

Style Style applied to the text in the Catalog Part list for the
selected (visible) Catalog Part.

ShowCatalogIcons Boolean True if the catalog should display the catalog icon next
to available Web Part.

VerbButtonType ButtonType Determines the type of button (Link, Button, or Image)
used to display verbs in the zone. This style is applied
to the Add and Close verbs at the bottom of the
control.

VerbStyle Style Style applied to verbs in the zone.

ZoneTemplate ITemplate A template containing the Catalog Parts to display in
the zone. Dropping controls into the zone from the
IDE populates the ZoneTemplate in the page markup.

Table 7-9. Important CatalogZone Properties (Continued)

Property Name Type Description

6293_ch07.fm Page 279 Monday, November 14, 2005 9:25 AM

280 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Catalog Part items in the <ZoneTemplate> element so your Catalog Zone will have tools to help
the user add Web Parts to the page. Listing 7-12 is a more detailed example of a CatalogZone
control definition.

Listing 7-12. CatalogZone Control Definition

<asp:CatalogZone runat="server" ID="CatalogZone1" CssClass="CatalogZone"
 VerbButtonType="Button" Width="100%" >
 <HeaderStyle CssClass="WebPartZoneHeader" />
 <PartTitleStyle CssClass="WebPartTitle" />
 <PartStyle CssClass="WebPartContent" CellSpacing=5 />
 <PartChromeStyle BorderWidth="1px" BackColor="#CCCCCC"></PartChromeStyle>
 <ZoneTemplate>
 <asp:DeclarativeCatalogPart ID="DeclarativeCatalogPart1"
 runat="server" Title="Web Part Catalog"
 WebPartsListUserControlPath="~/WebParts/WebPartCatalog.ascx" />
 <asp:PageCatalogPart ID="PageCatalogPart1" runat="server"
 Title="Inactive Web Parts on this Page" />
 <asp:ImportCatalogPart ID="ImportCatalogPart1" runat="server"
 Title="Import Web Parts" />
 </ZoneTemplate>
</asp:CatalogZone>

As shown in the ZoneTemplate declarations, three different Catalog Parts ship with
ASP.NET 2.0. Of course, you can make your own Catalog Parts by creating a class that derives
from the CatalogPart class, but that is beyond the scope of this book. Next, we’ll take a look at
DeclarativeCatalogPart, PageCatalogPart, and ImportCatalogPart.

DeclarativeCatalogPart

DeclarativeCatalogPart allows users to add new Web Parts to the page by selecting them from
a list of available web controls. As such, you need to identify which controls you want to be
available to the user. You can accomplish this task in one of two ways.

Your first option is to define the available Web Part list directly in the Declarative➥

CatalogPart definition by means of the <WebPartsTemplate>. Any controls appearing in the
<WebPartsTemplate> are made available to the user as shown in Listing 7-13.

Listing 7-13. DeclarativeCatalogPart Definition with Web Part List

<asp:CatalogZone runat="server" Width="100%" >
 <ZoneTemplate>
 <asp:DeclarativeCatalogPart ID="DeclarativeCatalogPart1" runat="server"
 Title="Web Part Catalog"
 Description="Add new Web Part to the page">
 <WebPartsTemplate>
 <cc1:MyFirstWebPart runat="server" id="MyFirstWebPart1" />
 <cc1:MySecondWebPart runat="server" id="MySecondWebPart1" />
 <cc1:MyThirdWebPart runat="server" id="MyThirdWebPart1" />

6293_ch07.fm Page 280 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 281

 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
</asp:CatalogZone>

Your second option is to place the Web Part list in a user control, then point the
WebPartsListUserControlPath at that user control as shown in Listing 7-14 and 7-15.

Listing 7-14. Catalog Parts Defined in a UserControl (~/WebParts/WebPartCatalog.ascx)

<%@ Register Src="C1.ascx" TagName="MyFirstWebPart" TagPrefix="CC1" %>
<%@ Register Src="C2.ascx" TagName="MySecondWebPart" TagPrefix="CC1" %>
<%@ Register Src="C3.ascx" TagName="MyThirdWebPart" TagPrefix="CC1" %>

<cc1:MyFirstWebPart runat="server" id="MyFirstWebPart1" />
<cc1:MySecondWebPart runat="server" id="MySecondWebPart1" />
<cc1:MyThirdWebPart runat="server" id="MyThirdWebPart1" />

Listing 7-15. DeclarativeCatalogPart that Employs the UserControl for its Catalog Listing

<!-- Control Definition -->
<asp:CatalogZone runat="server" Width="100%" >
 <ZoneTemplate>
 <asp:DeclarativeCatalogPart ID="DeclarativeCatalogPart1" runat="server"
 Title="Web Part Catalog"
 Description="Add new Web Part to the page"
 WebPartsListUserControlPath="~/WebParts/WebPartCatalog.ascx" />
 </ZoneTemplate>
</asp:CatalogZone>

Placing your Web Part list in a user control means that you can maintain that list in a single
location if you have multiple pages that share a common set of Web Parts. You can also use
a hybrid approach and have a default set of Web Parts defined in a user control and have
page-specific items defined directly in the markup. Refer to Figure 7-6 for an example of
a DeclarativeCatalogPart as it appears on screen.

To use DeclarativeCatalogPart, users simply choose which Web Parts they want to add to
the page, select which WebPartZone to place the Web Parts in from the zone drop-down located
at the bottom of the CatalogZone, and click on the Add button. The page refreshes, and the
selected Web Parts then appear in the chosen zone.

PageCatalogPart

When users close a Web Part, the Web Part is no longer active but it’s still associated with
the page and retains all of its personalized settings. The PageCatalogPart lists all the
closed items on the page, thus giving users a way to add them back to the page. Because the
PageCatalogPart automatically generates its list of Web Parts based on the inactive Web Parts
in the page, there is not much setup required to use this control (see Listing 7-16).

6293_ch07.fm Page 281 Monday, November 14, 2005 9:25 AM

282 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Listing 7-16. PageCatalogPart Control Definition

<asp:CatalogZone ID="CatalogZone1" runat="server" HeaderText="Web Part Catalog">
 <ZoneTemplate>
 <asp:PageCatalogPart ID="PageCatalogPart1" runat="server"
 Title="Hidden Web Parts" />
 </ZoneTemplate>
</asp:CatalogZone>

In the browser, the PageCatalogPart is both visually and behaviorally identical to the
DeclarativeCatalogPart. Users select which Web Parts they want to add to the page from the
list of available Web Parts, choose a zone to place them in, and then click on the Add button.
The page refreshes, and the selected Web Parts then appear in the chosen zone. After the Web
Part has been added back to the page, it no longer appears in PageCatalogPart because it has
been reactivated.

ImportCatalogPart

ImportCatalogPart allows users to add Web Parts to the page by uploading and importing a
Web Part definition file. This gives administrators a convenient way to create Web Part setup
files that can configure complex Web Parts. Instead of having to go through a complicated
configuration process, users can just import the definition file. It also gives users a way to copy
a Web Part from one page to another within the same application, although it does require
exporting the definition file from the original page to the user’s machine and then reuploading
the definition on the target page.

■Note When you “import” a Web Part you are really only importing a Web Part’s configuration. You can
only successfully import Web Part configurations for Web Part controls that exist in your application. If you find
a Web Part in another application, export its configuration to a file and then import that configuration into your
application, the import will fail because your application does not have access to the Web Part the configura-
tion references.

Like the PageCatalogPart, you can’t do much in the way of configuration for the
ImportCatalogPart, so the control definition is fairly straightforward (see Listing 7-17). Figure
7-7 shows an example of the control as it appears after the user has uploaded a definition file.

Listing 7-17. ImportCatalogPart Defintion

<asp:CatalogZone ID="CatalogZone1" runat="server" HeaderText="Web Part Catalog">
 <ZoneTemplate>
 <asp:ImportCatalogPart ID="ImportCatalogPart1" runat="server"
 Title="Import Web Parts"
 Description="Import a Web Part from a Web Part Definition File"
 UploadButtonText="Upload" />
 </ZoneTemplate>
</asp:CatalogZone>

6293_ch07.fm Page 282 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 283

Figure 7-7. ImportCatalogPart

Initially, the ImportCatalogPart displays a file upload input, an Upload button, and some
informative text describing how to use the import features of the control. Users can browse for
a Web Part file and then upload it using the Upload button. After uploading the file, the control
displays the name of the uploaded Web Part along with a check box. To add the item to the
page, the user selects the check box next to the Web Part name, chooses a zone to place it in,
and then clicks on the Add button. The page refreshes, and the selected Web Part then appears
in the chosen zone.

EditorZone Control and Related Editor Parts
You use the EditorZone to create a region on the page to display Editor Parts. Editor Parts allow
users to edit different sets properties on a Web Part. ASP.NET ships with fours standard Editor
Parts: the AppearanceEditorPart, BehaviorEditorPart, LayoutEditorPart, and the
PropertyGridEditorParty. Each of these Editor Parts is responsible for displaying a different
set of properties for a single Web Part. The EditorZone only appears when the page is in
EditDisplayMode and the user has selected a Web Part to edit by clicking the Web Part’s
Edit verb from its menu.

Unlike the CatalogZone, the EditorZone displays all the Editor Parts at the same time. This
allows you to edit all the properties for a Web Part without having to switch back and forth
between Editor Parts using a series of links. The EditorZone properties closely resemble those
of the CatalogZone, with the most notable difference being the verb references. Table 7-10
provides a breakdown of those properties.

6293_ch07.fm Page 283 Monday, November 14, 2005 9:25 AM

284 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

To create a new Editor Zone, drag the EditorZone control from the toolbox to the location
where you want it to appear on the web form. You’ll see the zone appear in the IDE, and the
following control definition is added to the page markup:

<asp:EditorZone ID="EditorZone1" runat="server"></asp:EditorZone>

Although the EditorZone supports all the stylistic properties found in the other zones,
you may not want to use them. Each Editor Part is surrounded by a <FieldSet> HTML tag that
looks good without much styling. You will, however, need to include Editor Part items in the

Table 7-10. Important EditorZone Properties

Property Name Type Description

ApplyVerb WebPartVerb Read-only reference to the verb that applies changes to
the Web Part without deselecting it. This allows users to
save their changes and continue ediing properties.

CancelVerb WebPartVerb Read-only reference to the verb that cancels editing on
the current Web Part. Clicking on the cancel verb de-
selects the current Web Part and leaves the page in edit
display mode. Thus, the EditorZone disappears until the
user selects another Web Part to edit.

EditorParts EditorPartCollection List of the Editor Parts in the zone.

EditUIStyle Style Style applied to the form elements (text boxes, check
boxes, and so on) on the Editor Parts in the zone.

HeaderCloseVerb WebPartVerb Read-only reference to the verb in the header that closes
the EditorZone. Like the CancelVerb, clicking this verb
deselects the current Web Part and leaves the page in edit
display mode.

HeaderVerbStyle Style Style applied to any verbs that appear in the header, i.e.
the HeaderCloseVerb.

InstructionText String Brief description of how to use the Editor Parts to modify
Web Part properties. This text may contain HTML
markup.

Instruction➥
TextStyle

Style Style applied to the InstructionText.

LabelStyle Style Style applied to labels that appear throughout the Editor
Parts in the zone.

OKVerb WebPartVerb Read-only reference to the verb that applies changes to
the Web Part and deselects it. Users can click on the OK
verb to save their changes and end editing on the
selected Web Part.

VerbButtonType ButtonType Determines the type of button (Link, Button, or Image) used
to display verbs in the zone. This style is applied to the
Apply, Cancel, and OK verbs at the bottom of the control.

VerbStyle Style Style applied to verbs in the zone.

ZoneTemplate ITemplate A template containing the Editor Parts to display in the
zone. Dropping controls into the zone from the IDE
populates the ZoneTemplate in the page markup.

6293_ch07.fm Page 284 Monday, November 14, 2005 9:25 AM

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

285

<ZoneTemplate>

 element so your Editor Zone will have tools to help the user edit Web Parts on
the page. Listing 7-18 is a more detailed example of an

EditorZone

 control definition.

Listing 7-18.

EditorZone

 Control Definition

<asp:EditorZone runat="server" SkinID="" CssClass="EditorZone"
 HeaderText="Editor Zone" Width="100%" >
 <HeaderStyle CssClass="WebPartZoneHeader" />
 <ZoneTemplate>
 <asp:AppearanceEditorPart ID="AppearanceEditor1" runat=server />
 <asp:BehaviorEditorPart ID="BehaviorEditorPart1" runat=server />
 <asp:LayoutEditorPart ID="LayoutEditorPart1" runat=server />
 <asp:PropertyGridEditorPart ID="PropGridEditor1" runat="server" />
 </ZoneTemplate>
</asp:EditorZone>

As shown in the

ZoneTemplate

 declarations, there are four different Editor Parts that ship
with ASP.NET 2.0. Once again, you can create your own Editor Parts by creating a class that
derives from the

EditorPart

 class, but that is also beyond the scope of this book. Next, we’ll
take a look at all the Editor Parts.

AppearanceEditorPart

The

AppearanceEditorPart

 allows users to set the appearance properties of the Web Part.
Specifically, they can set the title text, title and border display options (Chrome Type), language
orientation (Direction), height, width, and whether or not the Web Part should be hidden.

No configuration is required to use the

AppearanceEditorPart

. Just drag it from the toolbox
into the

EditorZone

 where you want it to appear, and the following control definition is added
to the

<ZoneTemplate>

 of the

EditorZone

 definition:

<asp:AppearanceEditorPart ID="AppearanceEditor1" runat=server />

By default, the

Title

 property of this Editor Part is

"Appearance"

. You can set a different

Title

 value in the control definition if you wish. Figure 7-8 shows an example of the

AppearanceEditorPart

 as it appears in edit display mode in the browser.

Figure 7-8.

AppearanceEditorPart

6293_ch07.fm Page 285 Monday, November 14, 2005 4:49 PM

286 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

BehaviorEditorPart

The BehaviorEditorPart allows users to set behavioral properties of the Web Part. Administra-
tors will find this part very useful for setting up shared scope Web Parts because it allows
them to define how users interact with the Web Part. Normal users will probably not find the
BehaviorEditorPart very useful, and some may just find it confusing, so you may only want to
display it to administrators. Table 7-11 is a quick rundown of the behavior properties exposed
by the BehaviorEditorPart:.

The BehaviorEditorPart is smart enough to keep you from locking yourself out of the Web
Part. Permission properties are only applied to shared scope items for normal users. If you can
enter shared scope, you can edit a shared scope Web Part even if the Allow Edit option has
been unchecked.

No configuration is required to use BehaviorEditorPart. Just drag it from the toolbox into
the EditorZone where you want it to appear, and the following control definition is added to the
<ZoneTemplate> of the EditorZone definition:

<asp:BehaviorEditorPart ID=" BehaviorEditorPart1" runat=server />

Table 7-11. Editable Properties in the BehaviorEditorPart

Item Name Description

Allow Close Checked if the user may close the Web Part.

Allow Connect Checked if the user may set up dynamic connections using the Web Part.

Allow Edit Checked if the user may edit the Web Part.

Allow Hide Checked if the user may hide the Web Part.

Allow Minimize Checked if the user may minimize the Web Part.

Allow Zone Change Checked if the user may move the Web Part from one zone to another.

Authorization Filter Ad-hoc string that can be used in custom authorization scenarios.

Catalog Icon Image
Link

URL of the image to use as the catalog icon.

Description Description of the Web Part.

Export Mode Determines whether or not users can export all the Web Part data, none
of the Web Part data, or nonsensitive portions of the Web Part.

Help Link URL of the help file for the Web Part.

Help Mode Determines whether help is displayed in a modal popup window, a
nonmodal popup window, or if the user is redirected to the help using
the current browser window.

Import Error Message Text displayed if an error occurs importing the Web Part to another page.
This requires the Web Part to be exported first.

Title Icon Image
Link

URL of the image to use as the Web Part title bar icon.

Title Link URL where users are taken when the click on the Web Part title.

6293_ch07.fm Page 286 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 287

By default, the Title property of this Editor Part is "Behavior". You can set a different
Title value in the control definition if you wish. Figure 7-9 shows an example of the
BehaviorEditorPart as it appears in edit display mode in the browser.

Figure 7-9. BehaviorEditorPart

LayoutEditorPart

The LayoutEditorPart allows users to set layout properties of the Web Part, such as whether
the Web Part should be minimized, which zone it should be in, and which position it should
appear at in that zone. Internet Explorer users will probably be baffled by this Editor Part
because Internet Explorer allows you to drag and drop Web Parts to reorder them within a zone
or move them from one zone to another. Other browsers, however, may not support drag-and-
drop functionality, so they need to use the LayoutEditorPart to help facilitate moving a Web
Part from place to place.

No configuration is required to use the LayoutEditorPart. Just drag it from the toolbox into
the EditorZone where you want it to appear and the following control definition is added to the
<ZoneTemplate> of the EditorZone definition:

<asp:LayoutEditorPart ID="LayoutEditor1" runat=server />

6293_ch07.fm Page 287 Monday, November 14, 2005 9:25 AM

288 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

By default, the Title property of this Editor Part is “Layout”. You can set a different
Title value in the control definition if you wish. Figure 7-10 shows an example of the
LayoutEditorPart as it appears in edit display mode in the browser.

Figure 7-10. LayoutEditorPart

PropertyGridEditorPart

Web Parts can expose personalizable properties specific to that particular Web Part. For
example, if you create a Web Part to display weather information to a user, then you would
likely need a custom zip code property so the Web Part would know which city’s weather to
display. Which brings up the question, how does the user configure a custom Web Part prop-
erty? The answer is a PropertyGridEditorPart.

Each custom property in a Web Part is marked with the <Personalizable> attribute iden-
tifying it as such. There are also additional attributes that give the property a friendly name and
description. The PropertyGridEditorPart uses reflection to locate a custom property by
searching for these attribute values. When it finds a custom property, it displays an appropriate
entry field for the property based on its type. Boolean properties have check boxes, string prop-
erties have text boxes, and enumerations have a drop-down list containing possible values. It
also displays the friendly name of the property above the entry field and displays the descrip-
tion if you hover over the name long enough. Users can then enter values for the properties,
and PropertyGridEditorPart syncs the changes back to the Web Part when the user clicks the
OK or Apply buttons at the bottom of the Editor Part. If there are no custom properties for the
Web Part being edited, then the PropertyGridEditorPart does not display.

Like the other Editor Parts, there is no configuration required to use the PropertyGrid➥

EditorPart. Just drag it from the toolbox into the EditorZone where you want it to appear and
the following control definition is added to the <ZoneTemplate> of the EditorZone definition:

<asp:PropertyGridEditorPart ID="PropertyGridEditor1" runat=server />

By default, the Title property of this Editor Part is "Property Grid". You should set a
different Title value in the control definition because the default value is fairly nondescript.
Figure 7-11 shows an example of the PropertyGridEditorPart as it appears in edit display
mode in the browser.

ConnectionsZone Control
You use the ConnectionsZone to create a region on the page to display connection information
and to allow users to create connections between Provider Web Parts and Consumer Web
Parts. The ConnectionsZone only appears when the page is in ConnectionDisplayMode and the

6293_ch07.fm Page 288 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 289

user has selected a Web Part to connect by clicking on the Web Part’s Connect verb from its
verb menu.

Figure 7-11. PropertyGridEditorPart

One of the first things you’ll notice about the ConnectionZone is that there are no
“Connection Parts” to drop in it. The zone automatically displays the appropriate controls
for setting up Web Part connection so you do not need to add any parts for this zone to func-
tion. Also notice that there are two ways to set up connections in the ConnectionZone: from a
Provider to a Consumer or from a Consumer to a Provider. This determination is based on
whether you click on a Provider Web Part’s Connect verb or a Consumer Web Part’s Connect
verb. If you edit a Provider’s connections then the ConnectionZone displays the connections
for the Provider (if it has any) and allows you to connect the Provider to any number of
consumers. If you edit a Consumer’s connections, then the ConnectionZone displays the
connection for the Consumer (if it has one) and lets you set up a single connection to a
Provider. You can only set up one connection if you edit the Consumer because it only allows
one connection.

There are a lot of properties for the ConnectionZone because it allows you to customize many
of the controls it automatically displays. A total of eight different screens could display as you
work with a ConnectionZone. You’ll see three of those screens here. Why only three? It goes back
to the fact that you can set up connections either from a Provider to a Consumer or from a
Consumer to a Provider. Both ways have four screens each, but they are virtually identical aside
from a couple of textual differences and the fact that a Provider allows you to create multiple
connections and a Consumer only allows you to create one. So that leaves you with four screens:
the No Active Connections Screen, the Manage Existing Connections Screen, the Add Connec-
tion Screen, and the Edit Connection Screen. And the Add and Edit connection screens are also
similar aside from a few textual differences. So, let’s take a look at those three screens:

■Note On the screenshots that follow, you’ll see numeric references to various pieces of text. These
numbers correspond to the Reference column in Table 7-12 and help you identify which ConnectionZone
properties change which text values on what screens. All the screenshots shown display the screens you see
when you click on a Provider Web Part’s Connect verb.

6293_ch07.fm Page 289 Monday, November 14, 2005 9:25 AM

290 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

No Active Connections Screen

This screen displays when there are no existing connections to manage (see Figure 7-12). It
displays a link allowing you to create a new connection and displays a title and instructional
text for establishing a connection.

Figure 7-12. No existing connections screen of the ConnectionZone

Manage Existing Connections Screen

This screen displays when the Web Part has existing connections and allows you to disconnect or
edit those connections (see Figure 7-13). The Provider version of the screen allows you to set up
multiple connections using the link at the top of the page. It also displays a list of existing connec-
tions. The Consumer version only displays a single connection and does not allow you to add
additional connections. You can also set up a title and instructional text on the screen as well.

Figure 7-13. Manage existing connecitons screen of the ConnectionZone

6293_ch07.fm Page 290 Monday, November 14, 2005 9:25 AM

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

291

Add Connection Screen

This screen displays when you click on the link to set up a new connection (see Figure 7-14). It
provides you with a drop-down list showing all the Consumers (or Providers) to which a
connection may be established. Creating a new connection is as easy as selecting an item from
the drop-down list and clicking on the

Connect

 button.

Figure 7-14.

 Add connection screen (similar to the edit connection screen)

ConnectionZone Properties

Table 7-12 is a listing of the more important properties on the

ConnectionsZone

 control. Many
of the properties have numeric references back to locations on the images shown above so you
can see exactly where they appear on the various screens. Most of the properties without refer-
ences are the Consumer-screen versions and exist in the same location as the Provider-screen
variants. For example, the

ConnectToProviderTitle

 and

ConnectToConsumerTitle

 properties
are synonymous with one another on their respective screens.

Table 7-12.

 Important

ConnectionsZone

 Properties

Reference Property Name Type Description

1

CancelVerb WebPartVerb

Read-only reference to the verb that cancels the creation of
a new connection.

2

CloseVerb WebPartVerb

Read-only reference to the verb that closes the

Connections

➥

Zone

. The page is left in connection display mode after clicking
the Close verb.

Configure

➥

ConnectionTitle
String

Title displayed when configuring an existing connection.

3

ConfigureVerb WebPartVerb

Read-only reference to the verb that allows users to
configure an existing connection.

4

ConnectTo

➥

Consumer

➥

InstructionText

String

Instructional text displayed when setting up a connection
from a provider to a consumer.

5

ConnectTo

➥

ConsumerText
String

Text for the link users click on to create a new connection
from a provider to a consumer.

6293_ch07.fm Page 291 Monday, November 14, 2005 4:51 PM

292

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

6

ConnectTo

➥

ConsumerTitle
String

Title displayed when setting up a new connection from a
provider to a consumer.

ConnectTo

➥

Provider

➥

InstructionText

String

Instructional text displayed when setting up a connection
from a consumer to a provider.

ConnectTo

➥

ProviderText
String

Text for the link users click on to create a new connection
from a consumer to a provider.

ConnectTo

➥

ProviderTitle

String

Title displayed when setting up a new connection from a
consumer to a provider.

7

ConnectVerb

 WebPartVerb

Read-only reference to the verb that completes the adding
of a new connection by saving and activating it.

8

Consumers

➥

InstructionText

Instructional text displayed above existing connections for a
provider.

9

ConsumersTitle String

Title displayed for the existing consumers for a provider.

10

DisconnectVerb WebPartVerb

Read-only reference to the verb that disconnects a
connection.

11

HeaderCloseVerb WebPartVerb

Read-only reference to the verb in the header that closes the

CatalogZone

 and switches the page back to browse display
mode.

HeaderVerbStyle Style

Style applied to any verbs that appear in the header, such as
the

HeaderCloseVerb

.

Existing

➥

Connection

➥

ErrorMessage

String

Error text displayed if the user attempts to create a connec-
tion between two Web Parts that are already connected.

GetFromText String

Label text appearing next to the data provider name. Corre-
sponds to the

SendToText

 property for the Consumer
screens (reference label 17 in the images).

GetText String

Label text appearing next to the type of data the consumer
receives. Corresponds to the

SendText

 property (reference
label 16 in the images).

12

InstructionText String

Brief description of how to use the catalog to add Web Parts
to the page. This text may contain HTML markup.

Instruction

➥

TextStyle
Style

Style applied to the

InstructionText

 and

NoExistingConnectionInstrucitonText

.

13

InstructionTitle String

Title text that appears over the

InstructionText

.

LabelStyle Style

Style applied to labels that appear throughout the Catalog
Parts in the zone.

NewConnection

➥

ErrorMessage
String

Error message displayed when an error occurs creating a
new connection.

Table 7-12.

 Important

ConnectionsZone

 Properties (Continued)

Reference Property Name Type Description

6293_ch07.fm Page 292 Monday, November 14, 2005 4:51 PM

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

293

To create a new Connection zone, drag the

ConnectionsZone

control from the toolbox to
the location where you want it to appear on the web form. You will see the zone appear in the
IDE, and following control definition will be added to the page markup:

<asp:ConnectionsZone ID="ConnectionsZone1" runat="server"></asp:EditorZone>

There are no Connection Zone parts for the

ConnectionZone

 control. All the connection
screens are managed internally by the control itself, hence the reason for the high number of
title and instructional properties. You’ll learn about connections in a bit more detail later on in
this chapter.

Building an Example Web Part

You’ve already taken a conceptual look at Web Parts and seen a couple of useful Web Part code
snippets, but now its time to actually build a functioning Web Part. The question is what to
build? Web Part content is limited only by your imagination. You can create consolidated
reports, take surveys, show graphs or charts, display inspirational quotes, exhibit images,
create advertisements, list important news or information, or do any one of a thousand other
things you can think of specific to your application or business need.

To keep things simple, let’s look at how to implement a Date/Time Display Web Part,
which displays the server’s current date and time in the browser. Users are allowed to set
personalized properties on the Web Part to dictate whether to show the time and date, just the
time, or just the date. They can also format the date using a format string and choose whether
to view time in standard or 24-hour format. Users can also specify the labels that appear before
the time and date as well. Although it seems fairly trivial, this example showcases the various
aspects of building a Web Part. Figure 7-15 shows the Date/Time Display Web Part as it
appears in the browser.

14

NoExisting

➥

Connection

➥

InstructionText

Instructional text displayed when there are no existing
connections.

15

NoExisting

➥

ConnectionTitle
String

Title displayed when there are no existing connections.

Providers

➥

InstructionText
String

Instructional text display above existing connections for a
consumer.

ProvidersTitle String

Title displayed for the existing providers for a consumer.

16

SendText String

Label text appearing next to the type of data the provider is
sending.

17

SendToText String

Label text appearing next to the data consumer name.

VerbButtonType ButtonType

Determines the type of button (Link, Button, or Image) used
to display verbs in the zone. This style is applied to the
Cancel, Close, Configure, Connect, and Disconnect verbs at
the bottom of the control.

VerbStyle Style

Style applied to verbs in the zone.

Table 7-12.

 Important

ConnectionsZone

 Properties (Continued)

Reference Property Name Type Description

6293_ch07.fm Page 293 Monday, November 14, 2005 4:51 PM

294 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Figure 7-15. Date/Time Display Web Part as seen in the browser

As mentioned before, you can create Web Parts in two ways. If you are building an appli-
cation-specific Web Part, you should opt for the simplicity of Web Part based on a user control.
If you need to build a Web Part for use in multiple applications, you should opt for a custom
Web Part. You’ll see the Date/Time Display implemented as both, but first you need to learn a
little bit about personalizable Web Part properties.

Defining Web Part Properties
Web Parts can expose personalizable properties that allow users to tailor the Web Part to their
particular needs. For example, if you build a Web Part that allows users to search the Internet,
you may want that Web Part to have a personalizable property allowing the user to specify
which search engine to use. Or if you build a stock price display Web Part, then you’ll need to
create a personalizable property allowing individual users to enter the stock symbols they want
to display.

Creating a personalizable property is, for the most part, just like creating any other prop-
erty. The only difference is that you need to tack on a couple of property attributes that identify
the property as personalizable and allow you to specify the name and description of the prop-
erty when displayed in the PropertyGridEditorPart. Remember, the PropertyGridEditorPart
allows users to edit personalizable properties. You can see the attributes for defining a person-
alizable property in Listing 7-19.

Listing 7-19. Personalizable Property Example

'***
 Private _ShowDate As Boolean = True

'***
<Personalizable(PersonalizationScope.User, False), _
 WebBrowsable(), _
 WebDisplayName("Show the Date"), _
 WebDescription("Determines whether or not to display the current date")> _
Public Property ShowDate() As Boolean
 Get
 Return _ShowDate
 End Get
 Set(ByVal value As Boolean)
 _ShowDate = value
 End Set
 End Property

6293_ch07.fm Page 294 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 295

Notice that this is a standard property aside from the property attributes. Table 7-13
provides a quick rundown of each attribute and what it does.

You can use these attributes to define personalizable properties for UserControl-based
Web Parts and custom Web Parts alike. Now that you know how to define personalizable prop-
erties, let’s take a look at the UserControl based Web Part implementation.

Implementing a UserControl Based Web Part
Implementing the IWebPart interface is by no means a difficult task, but that still doesn’t

mean you want to continually implement it for each Web Part you make. Simple as it may be,
repetition tends to make things real old, real quick. So, as part of this example in building
UserControl-based Web Parts, you’ll also learn how to create a base class that implements the
IWebPart interface. You can then use the base class to quickly build UserControl-based Web
Parts without having to continually reimplement the IWebPart interface. We’ll start by looking
at the WebPartUserControl base class and then move on to the actual UserControl implementa-
tion.Any user control can participate in the Web Parts Framework by means of the
GenericWebPart, but only user controls that implement the IWebPart interface can do so grace-
fully. As such, you should make it a priority to implement the IWebPart interface in your
UserControl so it can seamlessly participate in the Web Parts Framework.

WebPartUserControl Base Class

Listing 7-20 is the entire code listing for the WebPartUserControl base class. For the most part,
the class consists of simple property implementations for the IWebPart interface, but pay
careful attention to MustOverride functions and the default values for the class fields:

Table 7-13. Personalizable Property Attributes

Attribute Description

Personalizable Marks the property for inclusion in the personalization framework. As such,
changes to the property are automatically saved and retrieved on a user-
by-user basis. This attribute also allows you to mark the property as having a
specific scope (Shared or User) and whether the data should be considered
sensitive or nonsensitive. Marking the property as sensitive lets the Web Parts
Framework know that it should restrict the export of that setting or display a
sensitive data-export message to the user. The determination to display a
message or restrict export is based on the ExportMode property of the Web Part
containing the sensitive data.

WebBrowsable Marks the property so it will be picked up and displayed by the PropertyGrid➥
EditorPart. If you’ve marked an item as being a shared scope item in the
Personalizable attribute, then the PropertyGridEditorPart only displays the
property when the page is in shared scope mode.

WebDisplayName Allows the PropertyGridEditorPart to display a user-friendly name for the
property.

WebDescription Allows the PropertyGridEditorPart to display a description of the property
when the user hovers the mouse over the property name.

6293_ch07.fm Page 295 Monday, November 14, 2005 9:25 AM

296 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Listing 7-20. WebPartUserControl Base Class

Imports System.Web.UI.WebControls.WebParts

Public MustInherit Class WebPartUserControl
 Inherits UserControl
 Implements IWebPart

 '***
 Public MustOverride Function DefaultCatalogIconImageUrl() As String
 Public MustOverride Function DefaultDescription() As String
 Public MustOverride Function DefaultSubTitle() As String
 Public MustOverride Function DefaultTitle() As String
 Public MustOverride Function DefaultTitleIconImageUrl() As String
 Public MustOverride Function DefaultTitleUrl() As String

 '***
 Private _WebPartData As GenericWebPart
 Private _CatalogIconImageUrl As String = DefaultCatalogIconImageUrl()
 Private _Description As String = DefaultDescription()
 Private _SubTitle As String = DefaultSubTitle()
 Private _Title As String = DefaultTitle()
 Private _TitleIconImageUrl As String = DefaultTitleIconImageUrl()
 Private _TitleUrl As String = DefaultTitleUrl()

 '***
 Public ReadOnly Property WebPartData() As GenericWebPart
 Get
 Try
 If _WebPartData Is Nothing Then
 _WebPartData = WebPartManager.GetCurrentWebPartManager(_
 Page).GetGenericWebPart(Me)
 End If
 Return _WebPartData
 Catch
 Return Nothing
 End Try
 End Get
 End Property

 '***
 Public Property CatalogIconImageUrl() As String _
 Implements IWebPart.CatalogIconImageUrl
 Get
 Return _CatalogIconImageUrl
 End Get
 Set(ByVal value As String)
 _CatalogIconImageUrl = value

6293_ch07.fm Page 296 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 297

 End Set
 End Property

 '***
 Public Property Description() As String Implements IWebPart.Description
 Get
 Return _Description
 End Get
 Set(ByVal value As String)
 _Description = value
 End Set
 End Property

 '***
 Public ReadOnly Property Subtitle() As String Implements IWebPart.Subtitle
 Get
 Return _SubTitle
 End Get
 End Property

 '***
 Public Property Title() As String Implements IWebPart.Title
 Get
 Return _Title
 End Get
 Set(ByVal value As String)
 _Title = value
 End Set
 End Property

 '***
 Public Property TitleIconImageUrl() As String _
 Implements IWebPart.TitleIconImageUrl
 Get
 Return _TitleIconImageUrl
 End Get
 Set(ByVal value As String)
 _TitleIconImageUrl = value
 End Set
 End Property

 '***
 Public Property TitleUrl() As String Implements IWebPart.TitleUrl
 Get
 Return _TitleUrl
 End Get
 Set(ByVal value As String)

6293_ch07.fm Page 297 Monday, November 14, 2005 9:25 AM

298 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

 _TitleUrl = value
 End Set
 End Property

End Class

First off, notice that the WebPartUserControl class inherits its base functionality from the
UserControl class and implements all the properties in the IWebPart interface. This means that
the class has all the functionality of a UserControl plus the capability to interact with the Web
Parts Framework, at least to the extent provided by the IWebPart properties. Having this base
class is helpful when it’s time to make a new UserControl-based Web Part because you just
inherit all the necessary functionality from the WebPartUserControl class. You don’t have to
worry about implementing all the properties for the IWebPart interface all over again.

Also notice that the WebPartUserControl is a MustInherit class containing a series of
 MustOverride functions, each of which retrieves a default value for one of the IWebPart proper-
ties. The WebPartUserControl class uses these functions to assign default values to the property
fields, thus giving each IWebPart property a default value. You have to set default values for the
user control when it instantiates because the Web Part Framework sets the IWebPart properties
on the control right after it instantiates. It comes down to a timing issue. If you set default
values after the Web Part Framework sets the IWebPart properties, then your properties will
always have default values because any changes made to the properties by the Web Part
Framework would be overridden by the default values.

When you use the WebPartUserControl as a base for making a new Web Part, the Visual
Studio IDE automatically stubs out the MustOverride members for you in the new Web Part. All
you have to do is run though and return an appropriate default value from each one of the
functions, and you’ll have a working IWebPart interface implementation, complete with
default values specific to your Web Part. This is a whole lot easier than having to continually set
up the same properties and fields in a Web Part.

Finally, the WebPartUserControl also gives you access to the GenericWebPart object that
represents the UserControl in the Web Part Framework by means of WebPartData property. This
property gives you access to a variety of other Web Part properties outside of the IWebPart
interface, such as the desired Width and Height, HelpUrl, Zone, ZoneIndex, and so on. To acquire
a reference to the GenericWebPart, the WebPartData property uses WebPartManager.Get➥

CurrentWebPartManager(Page) to locate the WebPartManager control for the page. Then the
property calls GetGenericWebPart(Me), passing in a reference to the current UserControl. The
WebPartManager looks through all the GenericWebParts on the page until it finds the one repre-
senting the current UserControl and returns the GenericWebPart as a result of the function or
nothing if no match was found.

Other than that, the rest of the class is just a series of simple property implementations.

DateTimeWebPart.ascx (UserControl Markup)

Because the Date/Time Display Web Part is extremely simple, it does not require many
controls to implement. Listing 7-21 is the entire markup for the DateDisplayWebPart.ascx file.

6293_ch07.fm Page 298 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 299

Listing 7-21. DateTimeWebPart.ascx Markup

<%@ Control Language="VB" CodeFile="DateTimeWebPart.ascx.vb"
 Inherits="DateTimeWebPart" AutoEventWireup="false"%>
<asp:Label runat=server ID=lblDate />
<asp:Label runat=server ID=lblTime />

As you can see, the DateDisplayWebPart UserControl contains two label controls. One label
displays the date whereas the other displays the time. That’s the extent of the markup; now
let’s take a look at the code-behind file for the UserControl. Figure 7-15 earlier in the chapter
shows the Date/Time Display Web Part as it appears in the browser.

DateTimeWebPart.ascx.vb (UserControl Code-Behind File)

There is a bit more substance to the code behind because it must provide default values for the
IWebPart interface, contains a number of personalizable properties for configuring the date
and time display settings and has rendering logic that makes use of those settings. As you look
through the listing, remember that all the Overrides functions appearing in the "MustOverride
Functions from WebPartUserControl" region were automatically stubbed out by the IDE,
making it extremely easy to set default values for the IWebPart properties.

Listing 7-22. DateTimeWebPart Class (DateTimeWebPart.ascx.vb)

Partial Class DateTimeWebPart
 Inherits WebPartUserControl

 '***
 Public Enum TimeFormatEnum
 StandardTime
 TwentyFourHour
 End Enum

 '***
 'These define the default settings for the properties in the class
 Private _ShowDate As Boolean = True
 Private _ShowTime As Boolean = True
 Private _DateFormat As String = "M/dd/yyyy"
 Private _TimeFormat As TimeFormatEnum = TimeFormatEnum.StandardTime
 Private _DatePrefix As String = "Date: "
 Private _TimePrefix As String = "Time: "

#Region "Mustoverride Functions from WebPartUserControl"

 '***
 Public Overrides Function DefaultCatalogIconImageUrl() As String
 Return "~/images/ClockIcon.gif"
 End Function

6293_ch07.fm Page 299 Monday, November 14, 2005 9:25 AM

300 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

 '***
 Public Overrides Function DefaultDescription() As String
 Return "Example Web Part that displays the date and time"
 End Function

 '***
 Public Overrides Function DefaultSubTitle() As String
 Return String.Empty
 End Function

 '***
 Public Overrides Function DefaultTitle() As String
 Return "Date and Time (UserControl)"
 End Function

 '***
 Public Overrides Function DefaultTitleIconImageUrl() As String
 Return "~/images/ClockIcon.gif"
 End Function

 '***
 Public Overrides Function DefaultTitleUrl() As String
 Return String.Empty
 End Function

#End Region

#Region "Personalizable Properties"

 '***
 <Personalizable(PersonalizationScope.User, False), _
 WebBrowsable(), WebDisplayName("Show the Date"), _
 WebDescription("Determines whether or not to display the current date")> _
 Public Property ShowDate() As Boolean
 Get
 Return _ShowDate
 End Get
 Set(ByVal value As Boolean)
 _ShowDate = value
 End Set
 End Property

 '***
 <Personalizable(PersonalizationScope.User, False), _
 WebBrowsable(), WebDisplayName("Show the Time"), _
 WebDescription("Determines whether or not to display the current time")> _

6293_ch07.fm Page 300 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 301

 Public Property ShowTime() As Boolean
 Get
 Return _ShowTime
 End Get
 Set(ByVal value As Boolean)
 _ShowTime = value
 End Set
 End Property

 '***
 <Personalizable(PersonalizationScope.User, False), _
 WebBrowsable(), WebDisplayName("Date Format String"), _
 WebDescription("Formatting string used to display the current date")> _
 Public Property DateFormat() As String
 Get
 Return _DateFormat
 End Get
 Set(ByVal value As String)
 Try
 Format(Now, value)
 Catch ex As Exception
 Exit Property
 End Try
 _DateFormat = value
 End Set
 End Property

 '***
 <Personalizable(PersonalizationScope.User, False), _
 WebBrowsable(), WebDisplayName("Time Format"), _
 WebDescription("Determines whether to display normal or 24-hour format")> _
 Public Property TimeFormat() As TimeFormatEnum
 Get
 Return _TimeFormat
 End Get
 Set(ByVal value As TimeFormatEnum)
 _TimeFormat = value
 End Set
 End Property

 '***
 <Personalizable(PersonalizationScope.User, False), _
 WebBrowsable(), WebDisplayName("Date Prefix"), _
 WebDescription("Prefix that appears before the date display")> _
 Public Property DatePrefix() As String
 Get
 Return _DatePrefix

6293_ch07.fm Page 301 Monday, November 14, 2005 9:25 AM

302 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

 End Get
 Set(ByVal value As String)
 _DatePrefix = value
 End Set
 End Property

 '***
 <Personalizable(PersonalizationScope.User, False), _
 WebBrowsable(), WebDisplayName("Time Prefix"), _
 WebDescription("Prefix that appears before the time display")> _
 Public Property TimePrefix() As String
 Get
 Return _TimePrefix
 End Get
 Set(ByVal value As String)
 _TimePrefix = value
 End Set
 End Property

#End Region

 '***
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If WebPartData.HelpUrl = String.Empty Then _
 WebPartData.HelpUrl = "~/Help/DateDisplayWebPart.htm"

 End Sub

 '***
 Protected Sub Page_PreRender(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreRender

 If ShowDate Then
 Me.lblDate.Text = DatePrefix & Format(Now, DateFormat)
 Else
 Me.lblDate.Visible = False
 End If

 If ShowTime Then
 Select Case TimeFormat
 Case TimeFormatEnum.TwentyFourHour
 Me.lblTime.Text = TimePrefix & Format(Now, "HH:mm")
 Case TimeFormatEnum.StandardTime
 Me.lblTime.Text = TimePrefix & Format(Now, "hh:mm tt")
 End Select

6293_ch07.fm Page 302 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 303

 If ShowDate Then lblTime.Text = "
" & lblTime.Text
 Else
 Me.lblTime.Visible = False
 End If

 End Sub

End Class

The DateDisplayWebPart class inherits its base functionality from the MustInherit Web➥

PartUserControl class, which means it inherits the IWebPart interface implementation. It also
means that the DateDisplayWebPart class must override all the default property functions
defined as MustOverride in the WebPartUserControl class. You can see that each overridden
function only takes three lines of code, and two of them are automatically stubbed out for you.
You just have to write the return <value> portion in the middle.

There are also six personalizable properties in the class, all of which allow the user to set
display settings for the Web Part. Table 7-14 provides a listing of each personalizable property
and its purpose.

Each property also has a corresponding field used to store the property value, and that
field has a default value. There are a couple of different property data types in this Web Part so
you can see how the PropertyGridEditorPart handles them accordingly.

The Page_Load event handler demonstrates how you can set a default value for a Web Part
property not exposed by the IWebPart interface. All you need to do is check to see whether the
value is empty and, if so, assign it a default property. If the property is not empty, then you can
assume it has been set and therefore needs no default value. If you just set a value without
checking to see whether or not a value already exists, it’s tantamount to defining a static value
for the property. Then again, if you want to make the property value static, then set the prop-
erty and disregard the initial check.

Finally, the Page_PreRender event handler uses the personalized properties to make
display decisions for the Web Part. If the user has configured the Web Part to view the date,

Table 7-14. Personalizable DateDisplayWebPart Properties

Property Name Type Enum Values Description

ShowDate Boolean True if the user wants to see the
date displayed.

ShowTime Boolean True if the user wants to see the
time displayed.

DateFormat String Date format string that dictates the
date format.

TimeFormat TimeFormatEnum StandardTime
TwentyFourHour

Determines whether time displays
in a standard or 24-hour format.

DatePrefix String Prefix appearing before the date.

TimePrefix String Prefix appearing before the time.

6293_ch07.fm Page 303 Monday, November 14, 2005 9:25 AM

304

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

then the date is output using the appropriate prefix and format. If the user chooses to view the
time, then the time is output with the appropriate prefix and format. It also checks to make
sure that the items are spaced out on separate lines.

Deploying and Using DateTimeWebPart

After you build the

DateTimeWebPart

, you need to add it to a

WebPartZone

 or the

Declarative

➥

CatalogPart

 so people can access and use it. Remember, if you add a Web Part directly to a

WebPartZone

, then it becomes a static Web Part, which you cannot delete from the web-based
interface. Either way, you need to register the

UserControl

 at the top of the page. Assuming that
the catalog and the user control are in the same directory:

<%@ Register Src="DateTimeWebPart.ascx" TagPrefix="

WebParts

"
 TagName="

DateTimeWebPart

" %>

Then you can declare an instance of the

DateTimeWebPart

 just like any other user control
using the

TagPrefix

 and

TagName

 defined in the control registration as shown in Listing 7-23.

Listing 7-23.

DateTimeWebPart

 Control Defined in a

DeclarativeCatalogPart

<asp:CatalogZone runat="server" Width="100%" >
 <ZoneTemplate>
 <asp:DeclarativeCatalogPart ID="DeclarativeCatalogPart1" runat="server"
 Title="Web Part Catalog"
 Description="Add new Web Part to the page">
 <WebPartsTemplate>

 <WebParts:DateTimeWebPart ID="MyDateTimeWebPart1" runat="server" />

 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
</asp:CatalogZone>

After placing the

DateTimeWebPart

 in the catalog, users can add it to the page to see
the current date and time. They can also alter the

DateTimeWebPart

 control’s appearance
by setting personalizable properties using the

PropertyGridEditor

. Figure 7-16 shows the

DateTimeWebPart

 control in the catalog, on the page, and how the

PropertyGridEditor

 looks
when displaying the personalizable properties from the control.

Implementing a Custom Web Part

Consequently, the crux of building a custom Web Part is to internalize the UI and output
it from a procedure within your Web Part class. You can accomplish this in one of two ways.
One way is to override the

Render

 method of the Web Part and manually construct the HTML
for your Web Part using the provided

HtmlTextWriter

 object. Listing 7-24 is a simplistic
example of how this may look.You implement a custom Web Part by inheriting from and
extending the functionality contained in the

WebPart

 base class. Any controls deriving from the

WebPart

 class are capable of directly participating in the Web Parts Framework without an
intermediary

GenericWebPart

 wrapper. Custom Web Parts also follow a custom server control

6293_ch07.fm Page 304 Monday, November 14, 2005 9:40 AM

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

305

rendering model, meaning that the control has self-contained logic for rending its UI. In other
words, you have to programmatically add all the child controls and HTML layout required to
work with and display the control without using an external markup file (for example, the

.ascx

file for a user control). Self-contained rendering logic allows the control to be packed and
deployed in an assembly without the need for any additional files.

Figure 7-16.

 Date and Time Web Part in the catalog, its custom properties as seen in the

PropertyGridEditor

 and on the page

6293_ch07.fm Page 305 Monday, November 14, 2005 5:09 PM

306 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Listing 7-24. Overriding the Render Method to Output a Custom Web Part UI

'***
Protected Overrides Sub Render(ByVal writer As System.Web.UI.HtmlTextWriter)
 MyBase.Render(writer)

 'Fully Object Oriented Approach
 writer.AddAttribute("id", "Div1")
 writer.AddAttribute("class", "MyDivClass")
 writer.AddStyleAttribute("border", "1px solid black")
 writer.AddStyleAttribute("font-weight", "bold")
 writer.RenderBeginTag(HtmlTextWriterTag.Div) 'Renders attributes in tag
 writer.Write("This appears in the 1st div")
 writer.RenderEndTag() 'Closes off the DIV tag started earlier
 writer.WriteBreak()

 'Object Oriented/Text Approach
 writer.WriteBeginTag("div ")
 writer.WriteAttribute("id", "Div2")
 writer.WriteAttribute("class", "MyDivClass")
 writer.WriteAttribute("style", "border: 1px solid black")
 writer.Write(">")
 writer.Write("This appears in the 2nd div")
 writer.WriteEndTag("div")

 'Text-Based Approach
 writer.Write("
<div id=Div3 class=MyDivClass style=" & _
 "'border: 1px solid black'>This appears in the 3rd div</div>")

End Sub

Outputting content using the HtmlTextWriter is a good idea when you have very little and/
or simple content requirements. It’s also very fast, so if performance is a concern, this is the
way to go as well. As complexity and content size grow, this approach becomes more and more
unwieldy and difficult to maintain.

Your second option is to override the CreateChildControls method. In the Create➥

ChildControls method, you instantiate and configure child controls, add them to the controls
collection of the Web Part, and then use those controls as you respond to page events (such as
Load, PreRender, and so on). When the Web Part renders, it automatically renders all its child
controls, so you don’t have to worry about manually constructing the HTML for everything.
Plus you have the added benefit of being able to leverage events and functionality from existing
controls such as combo boxes, data grids, validators, and so on.

■Tip To respond to events for child controls, you have to declare a class-level field for the control using the
WithEvents keyword. You must then set up event handlers in the WebPart class to respond to events from
that control.

6293_ch07.fm Page 306 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 307

Truth be told, the Date/Time Display Web Part is simple enough to implement by over-
riding the Render method and using the HtmlTextWriter. In this example, however, it’s
implemented by overriding the CreateChildControls method so you can see how to use this
technique.

DateTimeWebPart2.vb

Listing 7-25 contains all the code for the DateTimeWebPart2 Web Part. You’ll find that the code
for the “Personalizable Properties” region is not displayed because personalizable proper-
ties have identical implementations in both UserControl-based and custom Web Part classes.

Listing 7-25. DateTimeWebPart2 Class

Namespace CustomWebParts

 Public Class DateTimeWebPart2
 Inherits WebPart

 '***
 'If you wanted to respond to events for a control, you would need to define
 'that control using the "WithEvents" keyword in the section below and
 'create event handlers for those events in the Web Part class
 '***
 Private lblDate As Label 'Holds reference to lblDate child control
 Private lblTime As Label 'Holds reference to lblTime child control

 #Region "Personalizable Properties"
 'All of the personalizable properties, their fields, and their attributes
 'are identical to those listed in the UserControl implementation
 #End Region

 '***
 Sub New()
 'All Web Part Properties are inherited from the WebParts class
 'so you can set up default property values in the constructor
 CatalogIconImageUrl = "~/images/ClockIcon.gif"
 Description = "Example Web Part that displays the date and time"
 Title = "Date and Time (Web Part)"
 TitleIconImageUrl = "~/images/ClockIcon.gif"
 HelpUrl = "~/Help/DateDisplayWebPart.htm"
 End Sub

 '***
 Protected Overrides Sub CreateChildControls()

 'Create new child label controls and maintain a reference to them
 lblDate = New Label
 lblTime = New Label

6293_ch07.fm Page 307 Monday, November 14, 2005 9:25 AM

308 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

 'Set up child control properties
 lblDate.ID = "lblDate"
 lblTime.ID = "lblTime"

 'Add child controls to the Controls collection
 Controls.Add(lblDate)
 Controls.Add(lblTime)

 MyBase.CreateChildControls()

 End Sub

 '***
 Protected Overrides Sub OnPreRender(ByVal e As System.EventArgs)

 'Notice that this code is identical to that of the UserControl
 If ShowDate Then
 Me.lblDate.Text = DatePrefix & Format(Now, DateFormat)
 Else
 Me.lblDate.Visible = False
 End If

 If ShowTime Then
 Select Case TimeFormat
 Case TimeFormatEnum.TwentyFourHour
 Me.lblTime.Text = TimePrefix & Format(Now, "HH:mm")
 Case TimeFormatEnum.StandardTime
 Me.lblTime.Text = TimePrefix & Format(Now, "hh:mm tt")
 End Select
 If ShowDate Then lblTime.Text = "
" & lblTime.Text
 Else
 Me.lblTime.Visible = False
 End If

 MyBase.OnPreRender(e)

 End Sub

 End Class

End Namespace

Like user controls, you must register custom controls on the page in which they are used
(or for the entire application in the Web.config). Either way, the Register directive needs to
know which namespace houses the control. In this case, the DateTimeWebPart2 class is in the
CustomWebParts namespace.

Being that the definition of a custom Web Part is that it derives from the WebPart class, it
should come as no shocker that the DateTimeWebPart2 inherits WebPart. This means that the

6293_ch07.fm Page 308 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 309

class has direct access to all the Web Part properties without having to go through the
GenericWebPart class or manually implementing the IWebPart interface. Because the class
has direct access to the properties, you can set defaults for those properties in the New
constructor without fear that your default properties will overwrite the values acquired from
personalization setting stored by the Web Part Framework.

All the controls required by the DateTimeWebPart2 control are instantiated and configured
in the CreateChildControls method. In this example, the task only entails creating two label
controls, setting their ID values, and adding them to the Controls collection. Also note that
you’ll need access to these controls in the OnPreRender method, so references to the labels are
stored at the class level in the lblDate and lblTime fields. In essence, this is what you’ll do for
more complex controls, but the configuration portion will likely be more intensive.

That brings us to OnPreRender, which is fairly anticlimactic. Notice that you have refer-
ences to the lblDate and lblTime labels. This is effectively the same situation you had in the
user control, the only difference being that the labels are generated in code and not defined in
a markup file. As such, the OnPreRender code for the UserControl implementation and the
custom Web Part implementation are nearly identical. The only difference is the call to
MyBase.OnPreRender(e) at the bottom of the method, which ensures that the base control’s
original OnPreRender runs. It’s a good habit to let the base function run as long as it isn’t
affecting anything negatively.

Deploying and Using DateTimeWebPart2

You also need to deploy custom Web Parts to a WebPartZone or a DeclarativeCatalogPart to
allow users to access it on the page. This requires a minor change to the Register directive:

<%@ Register Namespace="CustomWebParts" TagPrefix="WebParts" %>

Then you can declare an instance of the DateTimeWebPart2 using the TagPrefix defined in
the control registration and the class name (which is DateTimeWebPart2) as shown in Listing 7-26.

Listing 7-26. DateTimeWebPart2 Control Defined in a DeclarativeCatalogPart

<asp:CatalogZone runat="server" Width="100%" >
 <ZoneTemplate>
 <asp:DeclarativeCatalogPart ID="DeclarativeCatalogPart1" runat="server"
 Title="Web Part Catalog"
 Description="Add new Web Part to the page">
 <WebPartsTemplate>
 <WebParts:DateTimeWebPart2 ID="MyDateTimeWebPart2" runat="server" />
 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
</asp:CatalogZone>

In the browser, DateTimeWebPart2 behaves no differently than its UserControl-based coun-
terpart. They both have the same properties and the same UI logic, so they are, for all intents
and purposes, identical. The only visual difference is the title text, which was only used to
distinguish them from one another.

Now that you have an idea of how to build simple Web Parts, we’ll build upon that knowl-
edge and take a brief look at some advanced Web Part topics.

6293_ch07.fm Page 309 Monday, November 14, 2005 9:25 AM

310 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Advanced Web Part Topics
There are a couple of advanced Web Part techniques that you won’t necessarily use all the
time, but they definitely come in handy when you need them. In this section, you’ll look at
custom Web Part verbs, building Web Parts that can provide data to and consume data from
other Web Parts, and importing and exporting Web Part settings.

Adding Custom Verbs to Your Web Part
Web Part verbs are action items that appear on the menu of a Web Part. Out of the box, Web
Part verbs provide users with an easy way to access common functionality such as minimizing,
restoring, deleting, editing, exporting, and connecting a Web Part. If you are building a custom
Web Part control, then you can also create your own Web Part verbs that execute custom
actions for your Web Part.

The process for adding a custom Web Part is simple. First, you need to create a Web Part
that derives from the WebPart class. Then you create verb handlers for the verbs you are adding
to the Web Part. A verb handler is a method that executes when a user clicks on the verb. After
defining your verb handlers, you can override the Verbs property and set up your custom verbs.
The Verbs property only has to account for the custom verbs in your Web Part. The Web Part
Framework generates the standard verbs automatically. Setting up custom verbs entails
creating new WebPartVerb objects that point to their appropriate verb handlers, configure the
WebPartVerb property values, and return a WebPartVerbCollection containing all your newly
created WebPartVerb objects. The Web Part Framework automatically adds your new verbs to
the Web Part’s menu and, when users click on the menu item, executes the appropriate
handler.

In Listing 7-27, you’ll see how to add the Next Zone and Previous Zone verbs to the
DateTimeWebPart2 class. These verbs allow users to move the Web Part around the page without
having to switch into design mode. For the sake of brevity, only the applicable portions of code
are shown.

Listing 7-27. Adding Custom Verbs to a Web Part

Namespace CustomWebParts

 Public Class DateTimeWebPart2
 Inherits WebPart

 '... Code Not Shown for the Sake of Brevity ...

 '***
 Public Overrides ReadOnly Property Verbs() _
 As System.Web.UI.WebControls.WebParts.WebPartVerbCollection
 Get

 'Instantiate two new verb objects
 Dim MoveNextZone As New WebPartVerb("v1", _
 New WebPartEventHandler(AddressOf MoveNextZoneClick))

6293_ch07.fm Page 310 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 311

 Dim MovePrevZone As New WebPartVerb("v2", _
 New WebPartEventHandler(AddressOf MovePrevZoneClick))

 'Set up Verb Properties
 MoveNextZone.Text = "Next Zone"
 MoveNextZone.Description = "Moves Web Part to the next zone"
 MoveNextZone.ImageUrl = "~/Images/NextIcon.gif"

 MovePrevZone.Text = "Previous Zone"
 MovePrevZone.Description = "Moves Web Part to the previous zone"
 MovePrevZone.ImageUrl = "~/Images/PrevIcon.gif"

 'Create and return a WebPartVerbCollection
 Dim PartVerbs As WebPartVerb() = {MoveNextZone, MovePrevZone}
 Return New WebPartVerbCollection(PartVerbs)

 End Get
 End Property

 '***
 Private Sub MoveNextZoneClick(ByVal sender As Object, _
 ByVal e As WebPartEventArgs)

 'Moves Web Part to the next zone
 Dim CurrentZoneIndex As Integer = WebPartManager.Zones.IndexOf(Zone)
 Dim MaxZoneIndex As Integer = WebPartManager.Zones.Count - 1

 If CurrentZoneIndex < MaxZoneIndex Then
 WebPartManager.MoveWebPart(Me, _
 WebPartManager.Zones(CurrentZoneIndex + 1), 0)
 Else
 WebPartManager.MoveWebPart(Me, _
 WebPartManager.Zones(0), 0)
 End If

 End Sub

 '***
 Private Sub MovePrevZoneClick(ByVal sender As Object, _
 ByVal e As WebPartEventArgs)

 Dim CurrentZoneIndex As Integer = WebPartManager.Zones.IndexOf(Zone)
 Dim MaxZoneIndex As Integer = WebPartManager.Zones.Count - 1

 'Moves Web Part to the previous zone
 If CurrentZoneIndex > 0 Then

6293_ch07.fm Page 311 Monday, November 14, 2005 9:25 AM

312 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

 WebPartManager.MoveWebPart(Me, _
 WebPartManager.Zones(CurrentZoneIndex - 1), 0)
 Else
 WebPartManager.MoveWebPart(Me, _
 WebPartManager.Zones(MaxZoneIndex), 0)
 End If

 End Sub

 '... Code Not Shown for the Sake of Brevity ...

End Class

Inside the overridden Verbs property, you can see the constructor syntax for a new
WebPartVerb object. It accepts two parameters: a string containing an arbitrary unique ID for
the verb and a WebPartEventHandler object that points to the appropriate verb handler. You
specify which method you want to use as the verb handler by passing it into the
WebPartEventHandler constructor behind the AddressOf keyword. All verb methods share a
common method signature, so the method you specify has to accept an object as the first
parameter and a WebPartEventArgs object as the second parameter. Notice that both the
MoveNextZoneClick and the MovePrevZoneClick methods adhere to the method signature.

After creating the WebPartVerb objects, you should define values for the Name and
Description properties. You can also opt to specify an icon for the verb by setting the ImageUrl
property. The icon appears to the left of the verb text in the menu.

Lastly, you need to create a WebPartVerbCollection object. You do this by first creating an
array containing your WebPartVerb objects, and then you pass that array into the WebPart➥

VerbCollection constructor to initialize the collection. Then you return the collection as the
result of the function, and the Web Parts Framework places the new verbs at the top of the
menu in the order you passed them in. The default verbs (for example, Minimize, Restore,
Close, and so on) appear at the bottom of the menu.

As for the verb handler methods, both are relatively simple and do not require a lot of
explanation. Basically, they determine the index of the zone containing the control and move
the control to the next or previous index. If the index surpasses the high or low bounds of the
zone collection, then it logically “wraps” to the next or previous zone. Figure 7-17 shows the
DateTimeWebPart2 menu as seen in the browser with the newly added Next Zone and Previous
Zone verbs.

Figure 7-17. Custom verbs with icons in the DateTimeWebPart2 class

6293_ch07.fm Page 312 Monday, November 14, 2005 9:25 AM

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

313

Connection Providers and Consumers

Most Web Parts are self-contained components that run independently of other Web Parts on
the page, but occasionally, you’ll want Web Parts to interact with one another. For example,
you may want to display a list of records in one Web Part and display a more detailed view of
the selected record in a second Web Part (or sets of details in a series of other Web Parts). The
Web Parts Framework enables Web Parts to communicate with other Web Parts on the page
through connections.

Connecting two Web Parts requires a connection interface, connection provider, connection
consumer, and connection instance. Figure 7-18 gives an overview of how to create connections
and the various pieces of components are described in more detail in the list that follows.

•

Connection Interface:

 A custom interface you create to define how the two Web Parts in
the connection share information and communicate with one another. There are no
restrictions on what you can define in the interface, so feel free to put whatever proper-
ties, methods, and functions you feel are useful.

•

Connection Provider Web Part:

 Responsible for exposing a function marked with the

ConnectionProvider

 attribute and returning an object that implements the appropriate
connection interface as the result of that function. The Web Part Framework uses the
marked function to acquire the connection interface object before passing it off to the
connection consumer.

•

Connection Consumer Web Part:

 Responsible for exposing a function marked with the

ConnectionConsumer

 attribute, which accepts an appropriate incoming connection
interface object. The Web Part Framework passes the connection interface object
acquired from the connection provider into the connection consumer via the marked
method. The consumer is then responsible for storing a reference to and/or using the
connection interface object accordingly.

•

Connection Instance:

 After creating a connection interface, a connection provider, and a
connection consumer, you have Web Parts that are capable of participating in a connec-
tion. But, you still have to create Web Part instances to go on pages and a connection
instance that connects those Web Part instances. You will explore how to set up connec-
tion instances later on in this section.

In the following sections, you’ll learn about all these topics as you implement the

MessageProvider

 and

MessageConsumer

 Web Parts. These are simple controls that really demon-
strate how to set up connections without the clutter of auxiliary functionality.

■

Note

The Web Parts in this section are implemented as

UserControl

-based Web Parts, but you can

apply the same connection techniques to custom Web Parts.

Defining the IMessage Connection Interface

These controls are both built to send and receive a single string-based message, so the

IMessage

 interface is extremely simple. In the next section, you’ll see how the

MessageProvider

passes a message to the

MessageConsumer

 using the interface. Your connection interface will
probably need a few more properties, but the concept is still the same (see Listing 7-28).

6293_ch07.fm Page 313 Tuesday, November 15, 2005 5:37 PM

314

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Figure 7-18.

 Creating a Web Part connection

Public Interface IMessageListing 7-28. IMessage Interface
 ReadOnly Property Message() As String
 Sub PassBackConsumerData(ByVal ConsumerName As String)
End Interface

6293_ch07.fm Page 314 Tuesday, November 15, 2005 5:37 PM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 315

One thing you need to realize about Web Part connections is that you can pass informa-
tion from the consumer Web Part back into the provider Web Part using the connection
interface object. When you first hear the provider and consumer terminology, it makes
a connection sound very one directional. Later, you’ll see a demonstration showing how to
use the PassBackConsumerData on the connection interface object to send data from the
MessageConsumer Web Part to the MessageProvider Web Part.

Creating the MessageProvider Web Part

The MessageProvider Web Part allows users to enter a text message and submit it, then takes
that message and “provides” it to “consumer” Web Parts where it can be displayed. Onscreen,
the control only has two inputs, a text box and a button. A list at the bottom of the control also
identifies all the consumers to which the Web Part sends data. I’ll use this list later on to
demonstrate how a Consumer Web Part can pass information back to the Provider Web Part
over the Custom Message Interface. Figure 7-19 shows the MessageProvider UI as it appears in
the browser.

Figure 7-19. MessageProvider Web Part

Next, Listing 7-29 and 7-30 show the markup and code used to create the MessageProvider
Web Part. Because you’ve already seen how to use the WebPartUserControl class to help imple-
ment a UserControl based Web Part, I’ll omit the default property overrides to save space. Pay
careful attention to the ConnectionProvider attribute on the ProvideInterface function as you
look over the listing, because this attribute marks the function (and therefore the class) as
being a Provider Web Part.

Listing 7-29. MessageProvider.ascx (Markup)

<%@ Control Language="VB" AutoEventWireup="false"
 CodeFile="MessageProvider.ascx.vb"
 Inherits="MessageProvider" %>
Enter a message:

<asp:TextBox runat=server ID=txtMessage />
<asp:Button runat=server ID=btnSubmit Text="Send Message" />

<asp:Label runat=server ID=lblConsumers EnableViewState=false/>

6293_ch07.fm Page 315 Monday, November 14, 2005 9:25 AM

316 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Listing 7-30. MessageProvider.ascx.vb (Code Behind)

Partial Class MessageProvider
 Inherits WebPartUserControl
 Implements IMessage

#Region "WebPartUserControl Overrides"
 'Not Displayed for the Sake of Brevity
#End Region

 '***
 Public ReadOnly Property Message() As String Implements IMessage.Message
 Get
 Return Me.txtMessage.Text
 End Get
 End Property

 '***
 Public Sub PassBackConsumerData(ByVal ConsumerName As String) _
 Implements IMessage.PassBackConsumerData

 If lblConsumers.Text = String.Empty Then _
 lblConsumers.Text &= "
<u>Consumers</u>"

 lblConsumers.Text &= "
 " & ConsumerName

 End Sub

 '***
 <ConnectionProvider("Message Provider","MyProviderConnectionPoint")> _
 Public Function ProvideInterface() As IMessage

 'Since the MessageProvider class implements the IMessage Interface, it
 'passes a reference of itself to the consumer

 Return Me

 End Function

End Class

Aside from inheriting its base functionality from WebPartUserControl, the MessageProvider
also implements the IMessage interface. As such, the MessageProvider can pass itself as the
connection interface object to connection consumers, which it does in the ProvideInterface
function. Another tactic is to create a third object that supports the connection interface and
pass that object to the consumer. It comes down to a matter of necessity or preference. If you

6293_ch07.fm Page 316 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 317

need to do it a particular way or prefer one way over the other, then feel free to choose which-
ever one suits your needs because either one is valid.

Attached to the ProvideInterace function you’ll see the ConnectionProvider attribute.
This marks the function as being a provider connection point. A provider connection point is a
function capable of returning a connection interface object. Inside the ConnectionProvider
attribute, you give the provider connection point a friendly name (Message Provider) to help
identify the connection point when it displays in the ConnectionsZone. You can also opt to
define a connection point ID (MyProviderConnectionPoint), which is used to reference that
particular connection point when setting up connections programmatically. If you do not
specify the connection point ID, it defaults to “default”.

A single provider connection point can participate in multiple connections, so you can
think of it as a one-to-many relationship. In other words, a single MessageProvider Web Part
can act as the connection provider for multiple MessageConsumer Web Parts. You can also
define multiple provider connection points within a Web Part. This allows you to support sepa-
rate connection interfaces from a single Web Part. This would be helpful if, for example, you
wanted to define two messages in the MessageProvider and allow MessageConsumers to connect
to one message or the other. When you have multiple connection points in a Web Part, the
friendly names and connection point ID values make it possible to locate or specify a particular
connection point.

Notice that the Message property of the IMessage interface acquires its value from the text
in the txtMessage text box control. Thus, when you enter text into the message text box, that
text becomes the value of the Message property in the IMessage interface. Because the
MessageProvider sends a reference of itself as the connection interface object, connection
consumers can get or set the text from the text box in the MessageProvider. This is an example
of the two-way communication between a provider and a consumer. Another example is the
PassBackConsumerData function, which accepts the consumer name as a parameter. This func-
tion builds a list of all the consumers who use the MessageProvider Web Part in a connection.
Because this function is part of the IMessage interface, it means that the consumer has access
to the method and can call it across the connection.

Creating the MessageConsumer Web Part

The MessageConsumer Web Part is a connection consumer that uses the IMessage connection
interface object from the MessageProvider. Its UI consists of a single label that displays the
incoming text messaged. Figure 7-20 shows the MessageConsumer as it appears in the browser.

Figure 7-20. MessageConsumer Web Part

Listing 7-31 is the code for the MessageProvider class. Once again, the overrides for the
inherited WebPartUserControl class have been omitted.

6293_ch07.fm Page 317 Monday, November 14, 2005 9:25 AM

318 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Listing 7-31. MessageConsumer Web Part

Partial Class MessageConsumer
 Inherits WebPartUserControl

#Region "WebPartUserControl Overrides"
 'Not Displayed for the Sake of Brevity
#End Region

 '***
 Private MessageData As IMessage

 '***
 <ConnectionConsumer("Message Consumer","MyConsumerConnectionPoint")> _
 Sub AcquireInterface(ByVal MessageDataIn As IMessage)
 MessageData = MessageDataIn
 MessageData.PassBackConsumerData(Me.Title)
 End Sub

 '***
 Protected Sub Page_PreRender(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreRender

 If (MessageData) Is Nothing Then
 lblMessage.Text = "No connection available"
 Else
 If MessageData.Message = String.Empty Then
 lblMessage.Text = "<No Message>"
 Else
 lblMessage.Text = MessageData.Message
 End If
 End If

 End Sub

End Class

Here’s a quick rundown of how the MessageConsumer works. First, it defines a private field
named MessageData in which to store the connection interface object. Notice that MessageData
is an IMessage variable, meaning that the variable can store a reference to any object that
implements the IMessage interface. That’s good, because that’s what the MessageProvider Web
Part provides.

Next, the class contains a method named AcquireInterface that accepts an incoming
IMessage connection interface object. Notice that the AcquireInterface function is tagged with
the ConnectionConsumer attribute. This marks the function as being a consumer connection
point capable of accepting an interface object from a provider. You use the Connection➥

Consumer attribute to give the consumer connection point a friendly name (Message

6293_ch07.fm Page 318 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 319

Consumer), which helps identify the connection point when it displays in the Connections➥

Zone. You can also opt to define a connection point ID (MyConsumerConnectionPoint),
which is used to reference that particular connection point when setting up connections
programmatically. If you do not specify the connection point ID, it defaults to “default”.

Unlike provider connection points, consumer connection points can only be involved in a
single connection. In other words, a MessageConsumer Web Part instance can only receive its
message information from a single MessageProvider Web Part. Of course, you can still define
multiple consumer connection points inside of your Web Part if you really need to pull from
multiple providers, but each individual consumer connection point is still subject to that
one-to-one relationship.

When the Web Parts Framework passes an IMessage object into the MessageConsumer Web
Part via the AcquireInterface function, the function stores a reference to the object using the
MessageData field variable. It then calls PassBackConsumerData(Me.Title) to demonstrate how
you can execute functions on the Provider Web Part from the Consumer Web Part using
the connection interface. This call forces the MessageProvider to display the name of the
MessageConsumer Web Part in its list of active consumers.

Finally, the render method uses the MessageData field to determine what to display in the
MessageConsumer Web Part’s label. Notice that it checks to see if it has a valid reference to
the connection interface object before using it. When the connection interface object is
not present, it means that the Web Part is not participating in a connection, and the label text
is updated to reflect this situation. Otherwise, the label text can be set to the Message property of
the MessageData field. If the message is blank, the code displays <No Message> as a visual indi-
cating that the connection is working, but the message is blank. Remember, the Message property
pulls the message text directly from the text box field on the MessageProvider Web Part.

■Caution Web Parts that are not yet part of a connection are displayed on the page but will not have a
reference to the connection interface object. You should always check to make sure you have a valid refer-
ence to the connection interface object before you attempt to use it.

Creating Static Connections

Defining a consumer connection point and a provider connection point in a pair of Web Parts
simply sets them up to accept connections; it does not actually create the connection itself. To
create the actual connection, you have to define which Web Part instances and what connec-
tion points in those instances are involved in the connection.

Connections are considered static or dynamic depending on how they are defined. Static
connections appear directly in the page markup in the <StaticConnections> section of the
WebPartManager and ProxyWebPartManger controls. Because the connection is hard-coded, it
cannot change, and is therefore static. Listing 7-32 is a quick example showing how to create a
static connection between a MessageProvider and a MessageConsumer.

6293_ch07.fm Page 319 Monday, November 14, 2005 9:25 AM

320 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Listing 7-32. Creating a Static Connection

<!-- Define static connections in the Web Part Manager -->
<asp:WebPartManager ID="WebPartManager1" runat="server">
 <StaticConnections>
 <asp:WebPartConnection ID="StaticConnection1"
 ProviderID="MessageProvider1"
 ConsumerID="MessageConsumer1"
 ProviderConnectionPointID="MyProviderConnectionPoint"
 ConsumerConnectionPointID="MyConsumerConnectionPoint"
 />
 </StaticConnections>
</asp:WebPartManager>

<!-- Define static Web Part in a WebPartZone -->
<asp:WebPartZone ID="zoneLeft" runat="server" HeaderText="Left Zone">
 <ZoneTemplate>
 <uc1:MessageProvider ID="MessageProvider1" runat="server" />
 <uc2:MessageConsumer ID="MessageConsumer1" runat="server" />
 </ZoneTemplate>
</asp:WebPartZone>

To define a connection, you must specify values for the ID, ProviderID, and ConsumerID
properties. You can leave off the ProviderConnectionPointID and the Consumer➥

ConnectionPointID properties, but the values will default to “default”. That’s all there is
to it. When you run this page, the MessageConsumer Web Part receives message informa-
tion from the MessageProvider Web Part.

Creating Dynamic Connections

In this section, you’ll learn how to set up dynamic connections as we walk through connecting
the MessageConsumer Web Part to the MessageProvider Web Part. Defining a dynamic connec-
tion is done entirely using the browser-based interface, so there are illustrations to help you
visualize what happens onscreen.

The process begins when you place the page into connection display mode. When the page
switches into this mode, the Web Parts Framework iterates through all the Web Part controls on
the page and determines which ones are capable of taking part in a connection, that is, any Web
Parts that have connection points. As the framework encounters Web Parts that can support
connections, it enables the Connect verb in the Web Part’s menu as shown in Figure 7-21.

Figure 7-21. Click the Connect verb on the Web Part context menu.

Selecting the Connect verb from the menu causes the ConnectionsZone to display the
connection information about the Web Part. If the Web Part is new, then the ConnectionsZone

6293_ch07.fm Page 320 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 321

informs you that there are no active connections and gives you a link at the top of the zone to
allow you to create a connection as shown in Figure 7-22.

Figure 7-22. Click on the Create a connection to a Provider link at the top of the Connection Zone.

Clicking on that link takes you to the connection definition screen, which displays a list of
possible provider connection points for the provider in a drop-down list (see Figure 7-23. The
list displays the friendly name specified in the ConnectionProvider attribute and is intelligently
designed, so it only displays provider connection points that match the connection interface
for your consumer. In other words, if your Web Part expects an IMessage object, then only
provider connection points that return IMessage objects show up in the list. If one provider
exposes multiple connection points, then all those connection points show up in the list.

Figure 7-23. Choose a provider connection point from the provider drop-down list, and then click
the Connect button to create a Web Part connection.

After you select the provider from the drop-down list, click on the Connect button to
create the connection. After creating the connection, follow the screen that allows you to
disconnect the connection as shown in Figure 7-24.

This is also the screen you would have seen after clicking on the Connect verb if the Web
Part had an existing connection. Clicking on the Disconnect button removes the connection
and data is no longer sent to the MessageConsumer Web Part.

When you set up the connection from the consumer to the provider, you can only define
one connection. Remember, consumers can only have one provider. Providers, however, can
have many consumers. As such, providers can display all their connections to consumers
when you choose Connect from their verb menu. Figure 7-25 shows the connection screen for
a MessageProvider that is providing data to three MessageConsumer Web Parts.

6293_ch07.fm Page 321 Monday, November 14, 2005 9:25 AM

322 C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

Figure 7-24. The Consumer Web Part’s Manage Existing Connections screen allows you to discon-
nect a Web Part connection by clicking on the Disconnect button. You can only create one
connection at a time for a Consumer Web Part.

Notice that you can manage all the connections at once from the provider. You can
also specify new connections to the provider by clicking on the link at the top of the
ConnectionsZone, but you’ll choose a consumer from the drop-down list this time around
instead of a provider (see Figure 7-26).

Figure 7-25. The Provider Web Part’s Manage Existing Connections screen displays multiple
connections because a Provider Web Part can acts as the provider for multiple consumers.

6293_ch07.fm Page 322 Monday, November 14, 2005 9:25 AM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 323

Figure 7-26. Choosing a consumer connection point from the consumer drop-down list

Exporting Web Part Configuration Files
Earlier in the chapter, you learned how you can add Web Parts to a page by uploading and
importing a Web Part configuration file using the ImportCatalogPart control. Naturally, this
raises the question, how do you get a Web Part definition file? The answer is that you export
them using the built-in export functionality in the Web Parts Framework.

Before you can export a Web Part file, however, you must enable exporting for the applica-
tion in the Web.config. ASP.NET takes security very seriously, and because the possibility exists
for Web Part configurations to contain confidential information, exports are disabled by
default. To enable exporting, you set the enableExport attribute in the <webParts> section to
true as shown in Listing 7-33.

Listing 7-33. Enabling Web Part Configuration File Exporting

<configuration>
 ...
 <system.web>
 ...
 <webParts enableExport="true">
 ...
 </webParts>
 </system.web>
</configuration>

After you have enabled exporting in general, you must also set the ExportMode for the Web
Part. By default, the ExportMode property on a Web Part is set to None, meaning that it does not
allow users to export the Web Part. You need to set the ExportMode to All or NonSensitiveData.
All means that all the data in the Web Part is exported regardless of whether or not it has been
marked as sensitive. NonSensitiveData means that all the data is exported except properties
marked as sensitive. Remember, you can mark a Web Part property as sensitive using the
Personalizable attribute discussed earlier in the chapter.

You set the ExportMode for a custom Web Part either by initializing it along with all the
other Web Part properties in the constructor or by overriding the ExportMode property and
returning a static value. The option you choose depends on what you are trying to accomplish.

6293_ch07.fm Page 323 Monday, November 14, 2005 9:25 AM

324

C H A P T E R 7

■

 B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K

If you specify a default value in the constructor, then the value you choose is simply the default.
In other words, users can change that value using the

BehaviorEditorPart

. If this is your inten-
tion, then use the approach shown in Listing 7-34.

Listing 7-34.

 Setting a Configurable

ExportMode

 on a Custom Web Part

Namespace CustomWebParts

 Public Class DateTimeWebPart2
 Inherits WebPart
 ...

 '***
 Sub New()
 CatalogIconImageUrl = "~/images/ClockIcon.gif"
 Description = "Example Web Part that displays the date and time"
 Title = "Date and Time (Web Part)"
 TitleIconImageUrl = "~/images/ClockIcon.gif"
 HelpUrl = "~/Help/DateDisplayWebPart.htm"
 ExportMode = WebPartExportMode.All
 End Sub

 ...
 End Class

End Namespace

If, however, your objective is to enforce a specific

ExportMode

 value for all Web Part
instances, then you should override the

ExportMode

 property and return a static value from the
get portion of the property as shown in Listing 7-35.

Listing 7-35.

 Setting a Nonconfigurable

ExportMode

 on a Custom Web Part

Imports System.Web.UI.WebControls.WebParts
Namespace CustomWebParts

 Public Class DateTimeWebPart2
 Inherits WebPart
 ...

 '***
 Public Overrides Property ExportMode() _
 As System.Web.UI.WebControls.WebParts.WebPartExportMode
 Get
 Return WebPartExportMode.NonSensitiveData
 End Get
 Set(ByVal value As WebPartExportMode)
 'Do nothing here

6293_ch07.fm Page 324 Tuesday, November 15, 2005 5:42 PM

C H A P T E R 7 ■ B U I L D I N G P O R T A L S U S I N G T H E W E B P A R T S F R A M E W O R K 325

 End Set
 End Property

 ...
 End Class

End Namespace

You can also set the ExportMode value in a UserControl-based Web Part, but it effectively
becomes a static value because there is no effective way to check for a blank value before
setting the default (see Listing 7-36).

Listing 7-36. Setting a Nonconfigurable ExportMode on a UserControl-Based Web Part

Partial Class DateTimeWebPart
 Inherits WebPartUserControl
 ...

 '***
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 WebPartData.ExportMode = WebPartExportMode.NonSensitiveData
 End Sub

 ...
End Class

After specifying either All or NonSensitiveData for the ExportMode, exporting is extremely
simple. The WebPartFramework automatically adds the Export verb to the Web Part’s verb menu.

When a user clicks on the Export verb, the Web Part Framework collects all the configura-
tion data for the Web Part and returns it as an XML file with the .webpart file extension. The
user can then save that file to their hard drive, switch pages, and use the ImportCatalogPart to
add the exported Web Part to the page.

Summary
Portals are a very popular means of displaying a wide variety of information to people in a
consolidated fashion, and many people are already fairly comfortable with portal technology
because of its adoption on major websites. As such, you can rest assured that you’ll be seeing
more and more application requirements focusing on portal technology.

In this chapter, you have had a chance to see the pieces of the Web Part Framework and
how they fit together. You’ve built Web Parts, created custom verbs for Web Parts, connected
Web Parts to other Web Parts, and learned how to manage Web Parts using the Catalog, Editor,
and Connection Zones. You should be well equipped to start implementing portal technology
into your own applications, and you’ll probably have a jump on SharePoint developers when
SharePoint starts using the ASP.NET Web Part Framework as well.

6293_ch07.fm Page 325 Monday, November 14, 2005 9:25 AM

6293_ch07.fm Page 326 Monday, November 14, 2005 9:25 AM

327

■ ■ ■

C H A P T E R 8

Effective Search Tools and
Techniques for Your Business
Applications

S

earching has become a daily activity because of the sheer volume of information available
in the world today. You need the Yellow Pages to sift through thousands of business phone
numbers. Search engines sift through billions of web pages and bring back relevant content.
Radios have a scan button to help search through stations. Even this book has an appendix and
index to help you locate specific topics.

Business applications are no different. After information is entered into a system, users
appreciate the ability to find that information without having to page through hundreds and
hundreds of records. Too many applications have “display” pages that dump countless rows of
data to the screen and rely on the user to employ the browser’s built-in search functionality to
locate a specific item. These “display” pages start out innocently enough, usually because the
number of records being returned in the application’s infancy is low enough to warrant
dumping everything to the page. As the application matures, however, more and more data is
input, so more and more data appears on the screen. Before long, the page is timing out before
all the data can be output, and users lose their patience with incredible load times.

From a business perspective, one of the biggest benefits of searching is application
usability. Sites with little or no searching functionality usually generate a greater number of
complaints and help requests than sites where searching is well thought out and implemented.
People who can easily find information are happy. People who cannot find information are not
happy and can quickly become irate depending on the deadlines under which they are
working. Usually these people end up calling someone for help or just to complain about their
dilemma. If the person they are calling happens to be you, then just think about how much
time you can save yourself in the future by implementing appropriate search features now.

Searching provides other “technical” benefits as well, such as reduced database load and
reduced bandwidth requirements. A search that sends back 50 results is far more efficient than
a dump of 50,000. These technical benefits actually map to business benefits when you think
about not having to spend more money on hardware and network infrastructure, or in the
amount of time you are saving individual employees by eliminating lengthy wait times.

I have worked on a number of different search forms, and this chapter is the result of my
learning experiences with those endeavors. A couple of very powerful searching techniques are
discussed in the following pages. Following is a breakdown of what you will find:

6293_ch08.fm Page 327 Monday, November 14, 2005 11:06 AM

328

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

•

Creating the

SqlQuery

 Tool:

 The overwhelming majority of this chapter details the design
and implementation of a tool that provides an object-oriented approach to writing SQL
queries in code. This section also details how to build paged queries using SQL Server
2005.

•

Commonly Used Search Functions:

 Keywords and date-range searching are two of the
most common search types you will encounter. This section outlines how to build an
advanced keyword-searching mechanism that handles

AND

/

OR

 logic and complex
grouping scenarios, and how to easily add date-range searches to your SQL queries.

•

Displaying Basic and Advanced Searches:

 Another powerful searching option for your
application is to display a basic search form for routine searches, but offer an advanced
search form for more detailed search requirements. This section discusses how to build
a common search-form interface that allows you to easily switch between search forms
on a page.

The

SqlQuery

 component, which uses an object-oriented approach to creating SQL
queries, is used in both this chapter and the next. Make sure you have a thorough under-
standing of the component and how it works before moving on.

Creating the SqlQuery Tool

After working with searches over the course of a few projects, I realized that searching is all
about building queries. People enter search criteria, the criteria are converted into a SQL
query, the query is executed against a database, and the matched results are returned. I also
realized that I constantly implemented two types of searches over and over again. Date range
searches and keyword searches tend to be fairly popular for searching through business data.

Keeping with the mantra that if you plan to reuse it, encapsulate it, I decided to build an
object-oriented query tool to help create search queries. The

SqlQuery

 class is the end result of
that endeavor. As you’ll see in later sections of this chapter, it really makes creating search
queries quick and painless. All the sample code for the

SqlQuery

 class is located in the

Reporting

 class library project in this chapter’s example application in the Source Code area of
the Apress website (http://www.apress.com).

Objectives and Architecture Overview

The primary objective of the

SqlQuery

 class is to encapsulate common query-building logic
into a reusable component to provide an object-oriented approach to creating search queries.
SQL queries have a number of different keywords and clauses, but not all of them are repre-
sented in the

SqlQuery

 class. For example, the

COMPUTE

 and

HAVING

 clauses as well as the

WITH

qualifier for the

GROUP

BY

 clause were left out for the sake of brevity, but you can easily add them
to the class on your own after you learn how it works. The concepts outlined in this chapter
should make it easy for you to implement any SQL features that you want. One feature that we
are interested in, however, is paging functionality. The

SqlQuery

 class provides basic paging
functionality to reduce the total amount of data that needs to be pulled down from the data-
base server.

6293_ch08.fm Page 328 Monday, November 14, 2005 11:06 AM

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

329

Figure 8-1 shows a diagram outlining the properties and methods of

SqlQuery,

 and where
many of the auxiliary classes and enumerations fit into the overall pictures (auxiliary classes
and enumerations are shown in bold).

Figure 8-1.

SqlQuery

 Properties and Methods

Implementing the

SqlQuery

 class requires four auxiliary classes, one interface, and four
enumerations. Each of these items and a description of their purpose are listed in Table 8-1.

Table 8-1.

SqlQuery

 Class and Auxillary Components

Item Name Type Description

SqlQuery Class

Main class that encapsulates all query-building logic.

SqlField Class

Defines information about an individual field in the query. This
class helps define which fields are selected by the query and
which fields appear in the

GROUP BY

 and

ORDER BY

clauses.

SqlFieldCollection Class

Contains a collection of

SqlField

 objects.

ISqlConditional Interface

Defines a common interface for conditional statements used in
the

WHERE

 clause of the query.

SqlCondition Class

Defines an individual condition in the

WHERE

 clause of the query.

6293_ch08.fm Page 329 Monday, November 14, 2005 11:23 AM

330

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

The sections that follow cover each component in more detail. First, you’ll get the
details on the enumerations and simpler auxiliary classes such as the

SqlField

and

SqlFieldCollection

, and then you’ll move into the more complicated items such as the

ISqlConditional

interface and the classes that implement it. Finally, you’ll see how to use those
auxiliary objects to create the actual

SqlQuery

 class itself.

Enumerations in Globals.vb

Throughout this chapter, you’ll see enumerations that define values for certain items. All these
enumerations are stored in the

Globals.vb

 file in the

Reporting

 project in the sample code (in
the Source Code area of the Apress website). Listing 8-1 provides all the enumerations and
their corresponding values.

Listing 8-1.

Globals.vb

'***
Public Enum SqlSortDirection
 Ascending
 Descending
End Enum

'***
Public Enum SqlOperation
 [And]
 [Or]
End Enum

SqlConditionGroup Class

Defines a group of

SqlCondition

 objects in the

WHERE

 clause of
the query.

SqlSortDirection Enum

Defines the sort direction (

ASC

/

DESC

) used in the

ORDER BY

 clause
of the query.

SqlOperation Enum

Defines the operation (

AND

/

OR

) used for conditional statements
in the

WHERE

 clause of the query. You can create simple or
complex queries by applying the

SqlOperation

 to individual
conditions and to groups of conditions in the

WHERE

 clause.

SqlConditionalType Enum

Used by the

ISqlConditional

 interface to identify whether an
object is an individual condition or a group of conditions.

SqlEvaluationType Enum

Determines whether values should be inclusive (greater than or
equal to) or exclusive (greater than but not equal to).

Table 8-1.

SqlQuery

 Class and Auxillary Components (Continued)

Item Name Type Description

6293_ch08.fm Page 330 Monday, November 14, 2005 11:06 AM

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

331

'***
Public Enum SqlConditionType
 Condition
 Group
End Enum

'***
Public Enum SqlEvaluationType
 Exclusive
 Inclusive
End Enum

Public Module Globals

 '***
 Public Function SqlString(ByVal text As String) As String
 Return text.Replace("'", "''")
 End Function

End Module

Refer to Table 8-1 for commentary on each enumeration and what the values represent.
The

SqlString

 function listed in the

Globals

 module replaces any apostrophe in a string with
two apostrophes. This ensures strings are appropriately formatted for a SQL statement and
helps avoid SQL injection attacks because this tool does not use parameterized queries.

SqlField Class

The

SqlField

 class is designed to store information for fields (a.k.a. columns) that appear in the

SELECT

,

ORDER BY

, and

GROUP BY

 clauses of a SQL query. Each of these clauses has a slightly
different syntax, but when you get right down to it, they are all lists of fields. Here are the main
differences between them:

•

SELECT

 clause:

 Field list that defines which fields are returned from the query. This clause
allows you to rename fields using the

AS

 keyword (if desired), such as

SELECT Field1 AS
AliasA, Field2, Field3 AS AliasB,

 and so on.

•

GROUP

BY

 clause:

 Field list that defines result groupings for aggregate data (

MAX

, MIN, SUM,
AVG, and so on). This clause is simply a field list without any additional properties, such
as GROUP BY Field1, Field2, and so on.

• ORDER BY clause: Field list that determines the sort order of the returned data. This clause
allows you to specify sort directions (if desired) along with field names, such as ORDER BY
Field1, Field2 ASC, Field3 DESC, and so on.

You could implement a different field class for each one of these three clauses, but in the
interest of time and space, I’ve created a single class that supports properties for all three. The
very simple SqlField class consists of three properties and three constructors as shown in
Listing 8-2.

6293_ch08.fm Page 331 Monday, November 14, 2005 11:06 AM

332

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

Listing 8-2.

 SqlField

 Class

Public Class SqlField

 '***
 Private _Name As String
 Private _Alias As String
 Private _SortDirection As SqlSortDirection = SqlSortDirection.Ascending

 '***
 Sub New(ByVal Name As String)
 _Name = Name
 End Sub

 '***
 Sub New(ByVal Name As String, ByVal [Alias] As String)
 _Name = Name
 _Alias = [Alias]
 End Sub

 '***
 Sub New(ByVal Name As String, ByVal SortDirection As SqlSortDirection)
 _Name = Name
 _SortDirection = SortDirection
 End Sub

 '***
 Public Property Name() As String
 Get
 Return _Name
 End Get
 Set(ByVal value As String)
 _Name = value
 End Set
 End Property

 '***
 Public Property [Alias]() As String
 Get
 Return _Alias
 End Get
 Set(ByVal value As String)
 _Alias = value
 End Set
 End Property

6293_ch08.fm Page 332 Monday, November 14, 2005 5:44 PM

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

333

 '***
 Public Property SortDirection() As SqlSortDirection
 Get
 Return _SortDirection
 End Get
 Set(ByVal value As SqlSortDirection)
 _SortDirection = value
 End Set
 End Property

End Class

Notice the three constructors in the class, and remember that there are three different SQL
clauses in which the fields may be used (

SELECT

,

GROUP BY

, and

ORDER BY

). This is no coinci-
dence. Each constructor is designed to initialize a

SqlField

 object with the appropriate
properties for a specific clause. Table 8-2 outlines each clause and which properties and
constructors the clauses may use.

You can initialize a

SqlField

 object for any field type just by specifying the field

Name

. For a

SELECT

 field, it means that no alias will be defined. For an

ORDER

BY

 field, it means that the sort
direction will default to

ASC

 (ascending).
If any unused properties are specified for a field, they are simply disregarded by the

method that uses the

SqlField

 object. For instance, if you specify an

Alias

 property for an

ORDER

BY

 or

GROUP

BY

 field, it will

 not

 affect the

GROUP

BY

 or

ORDER

BY

 clause when the SQL state-
ment is written out.

SqlFieldCollection Class

A single

SqlField

 object by itself is of little value because SQL queries usually deal with lists of
fields, not just individual fields. The

SqlFieldCollection

 is a strongly typed collection class
designed to store a list of

SqlField

 objects as shown in Listing 8-3.

Table 8-2.

 SQL Clauses and the

SqlField

 properties and Constructors They Rely On

Clause Name Alias

SortDirection

Constructor

SELECT

X X

Public Sub New(ByVal Name As String)Sub
New(ByVal Name As String, ByVal [Alias] As
String)

GROUP BY

X

Public Sub New(ByVal Name As String)

ORDER BY

X X

Public Sub New(ByVal Name As String) Sub
New(ByVal Name As String, ByVal
SortDirection As SqlSortDirection)

6293_ch08.fm Page 333 Monday, November 14, 2005 7:15 PM

334

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

Listing 8-3.

SqlFieldCollection

 Class

Public Class SqlFieldCollection
 Inherits CollectionBase

 '***
 Public Function Add(ByVal name As String) As Integer
 Return List.Add(New SqlField(name))
 End Function

 '***
 Public Function Add(ByVal name As String, ByVal [alias] As String) As Integer
 Return List.Add(New SqlField(name, [alias]))
 End Function

 '***
 Public Function Add(ByVal name As String, _
 ByVal SortDirection As SqlSortDirection) As Integer
 Return List.Add(New SqlField(name, SortDirection))
 End Function

 '***
 Default Public ReadOnly Property Item(ByVal Index As Integer) As SqlField
 Get
 Return List.Item(Index)
 End Get
 End Property

 '***
 Public Function Find(ByVal name As String) As SqlField
 name = UCase(name) 'Only uppercase the name once

 'Iterate through each field name looking for a match
 For index As Integer = 0 To Count - 1
 If UCase(Item(index).Name) = name Then Return Item(index)
 Next

 Return Nothing
 End Function

 '***
 Public Sub Remove(ByVal item As SqlField)
 List.Remove(item)
 End Sub

6293_ch08.fm Page 334 Monday, November 14, 2005 7:15 PM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 335

 '***
 Public Sub Remove(ByVal name As String)
 Dim item As SqlField = Find(name)
 If Not item Is Nothing Then List.Remove(item)
 End Sub

End Class

Like most collection classes, SqlFieldCollection exposes strongly typed collection prop-
erties and methods such as Item, Add, and Remove that help make working with the SqlField
objects in the collection more intuitive. Notice that there are three different Add functions for
the class. Each Add function maps to its equivalent SqlField constructor discussed in the
previous section.

The only real noteworthy method is the Find function. It accepts name as a parameter and
iterates through the list of fields looking for a SqlField with a matching Name property. If it finds
a suitable match, the matched SqlField object is returned. Otherwise, Nothing is returned. The
Find function is used inside the Remove(byval name as string) method to remove a field from
the list based on its name.

Analyzing the WHERE Clause in Search of an Object Model
Now that the SELECT, GROUP BY, and ORDER BY clauses have been accounted for with the SqlField
and SqlFieldCollection classes, we can now focus on a bit more complicated issue: the WHERE
clause. In a query, the WHERE clause defines a set of conditions that a row of data must meet in
order to be returned by the query. For example, if you have a table containing first names, last
names, and phone numbers of employees in your organization, and you want to find Joe
Smith, then you can use WHERE FirstName='Joe' AND LastName='Smith' to filter out all the other
names. Of course, this is just a simple example.

Our goal is to create an object model that can successfully define a WHERE clause, so we
need to take a look at all the different parts of a WHERE clause. Following is an example SQL
statement containing a WHERE clause. Table 8-3 describes the various parts of the WHERE clause.

SELECT * FROM [MyTable]
WHERE A=1 OR (B=2 AND C>3 AND (D=4 OR E<=5)) OR NOT (Y=5 AND LEN(Z)=6)

Table 8-3. Parts of a WHERE Clause

Part Name Description Examples

Expression An expression is an item can be reduced
into a value. SQL functions, user-defined
functions, variables, and constants can
all be used as expressions.

A (a field)
LEN(Z) (a function)
6 (a constant)

Evaluation Operator The operator used to evaluate one
expression against another expression.

= (equal)
< (greater than)
> (less than)
>= (greater than or equal)
<= (less than or equal)
<> (not equal)

6293_ch08.fm Page 335 Monday, November 14, 2005 11:06 AM

336

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

■

Note

The entire

WHERE

 clause is a condition group even though it may not be enclosed by parentheses.

I can tell you from experience that you do not want a SQL query object model to drill down
into the expression and expression operator level because it is far too granular. It makes
defining a simple condition such as

A=B

 into a three-line statement:

'This would be a ridiculous waste of time and space...
Query.Where.AddExpression("A")
Query.Where.AddExpressionOperator("=")
Query.Where.AddExpression("1")

'This is a much more succinct way to go about it...
Where.AddCondition("A=1")

In reality, the condition is where the object model should start because you’ll mostly be adding
and manipulating entire conditions in a

WHERE

 clause, not individual expressions and expression
operators. The condition group should also be included in the object model because it represents
a collection that stores a mix of conditions and conditions groups. These two classes are named

SqlCondition

 and

SqlConditionGroup

, respectively.

Condition

A condition consists of an expression, an
evaluation operator, and another expres-
sion. Conditions evaluate to a value of

True

 or

False

 and represent require-
ments that must be met in order for a
row of data to be returned by the query.

A=1
C>3
E<=5
LEN(Z)=6

Condition Operator

Defines

AND/OR

 logic for multiple
conditions.

A=1 AND B=2 AND C=3
D=4 OR E=5 OR F=6

Condition Group

A condition group contains a set of condi-
tions enclosed by parentheses. Condition
groups return a value of

True

 or

False

based on the conditions and condition
operators in the condition group. You can
create groups inside of groups.

(D=4 OR E<=5)
(B=2 AND C>3 AND (D=4 OR
E<=5))
(Y=5 AND LEN(Z)=6)

Negation

Negation allows you to reverse the value
returned for a condition or a condition
group using the

NOT

 keyword. For
example,

NOT(True)

 evaluates to

False

and

NOT(False)

 evaluates to

True

NOT (Y=5 AND LEN(Z)=6)

Table 8-3.

 Parts of a

WHERE

 Clause (Continued)

Part Name Description Examples

6293_ch08.fm Page 336 Monday, November 14, 2005 7:17 PM

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

337

Condition operators, however, are not represented by independent objects. I attached
condition operators directly to the

SqlCondition

 and

SqlConditionGroup

 objects. This requires
a bit of explaining. Logically, a condition operator should only exist on the

SqlConditionGroup

object because operators, by definition, operate on two conditions (for example,

D=4 OR E<=5

).
And if you have more than one condition, then it’s a group, and a group is stored in a

SqlConditionGroup

. Logically, a group always contains the same operator, as in

(A=1 AND B=2
AND C=3)

. Ah, but what about a group like

(A=1 AND B=2 OR C=3)

? Doesn’t it have different
operators? No, because implicit groups are defined by order of operations. SQL server auto-
matically applies order of operations to an implicit group, so the statement really executes as
though it was written like

((A=1 AND B=2) OR (C=4))

. So a group with more than one operator
is a perfectly valid statement because SQL “fixes” it for you before executing the statement,
which is why I opted to attach condition operators directly to the

SqlCondition

 and

SqlConditionGroup

 objects. Also know that implicit grouping makes keyword searching
significantly easier because the SQL statements can be built word by word without having to
worry about grouping constructs.

The only issue with defining the condition operator at the

SqlCondition

 level is that not all

SqlCondition

 objects actually use the condition operator. Look at the following example:

(A=1 AND B=2 OR C=3)

Notice that there are three conditions (

A=1

,

B=2

,

C=3

) but only two condition operators (

AND

,

OR

). In my implementation, the condition operator on a

SqlCondition

 object represents the
condition operator that precedes the condition. As such, the operator on the first condition
inside a group is disregarded.

Figure 8-2 shows a

WHERE

 clause represented as a string and as a set of

SqlCondition

 and

SqlConditionGroup

 objects. This should help you visual how a

WHERE

 clause will be stored in
a

SqlQuery

 object. Notice that the condition operation is defined inside the individual

SqlCondition

 and

SqlConditionGroup

 objects.

Figure 8-2.

 String and object representations of a

WHERE

 clause

6293_ch08.fm Page 337 Monday, November 14, 2005 5:34 PM

338 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

■Note The SqlQuery tool automatically surrounds groups with brackets.

ISqlCondition Interface
As mentioned earlier, the SqlConditionGroup needs to store a mix of SqlCondition and other
SqlConditionGroup objects. Thus, it must store and reference two completely different objects.
When you need to refer to two completely different objects from within one collection class,
you have to find some common ground between the objects so you can find a generic way to
reference them. To do this, you have three options:

• Refer to items by using System.Object: All objects inherit from the System.Object base
class, so you can refer to any object using System.Object. This is not an ideal solution
because it requires late binding to access any properties or methods, which slows down
performance.

• Inherit from a common base class: Because both the condition and condition group
share common properties (Name and Type), you can define a base class and have both
objects inherit from that base class. You can then use the base class as the common
ground to reference both classes, and any properties and methods in base class can be
accessed from both objects without having to resort to late binding. This is a perfectly
valid solution. One consideration, however, is that SqlConditionGroup is a collection
class. You can save a significant amount of coding time if you inherit basic collection
class functionality from the CollectionBase base class. The .NET Framework does not
support multiple inheritance, so you have to choose which base class is more important
for your particular situation.

• Implement a common interface: You can also define a common set of properties and
methods in an interface and have both classes implement that interface. You can
then use the interface as the common ground to reference both classes. This avoids
late-binding issues and allows the SqlConditionGroup class to inherit from the
CollectionBase class. This is the approach that I opted for during the design.

So, we’ll end up with two classes, SqlCondition and SqlConditionGroup, both of which
implement the ISqlCondition interface. In addition, SqlConditionGroup inherits from the
CollectionBase object and is designed to store objects that implement the ISqlCondition
interface, thus allowing it to store both SqlCondition and SqlConditionGroup objects.
Figure 8-3 diagrams both the conceptual and the physical representation of this model. Notice
that you can recursively store SqlConditionGroup objects inside SqlConditionGroup objects. So,
be aware that the SqlConditionGroup uses recursive functions for searching and printing out
SQL text.

6293_ch08.fm Page 338 Monday, November 14, 2005 11:06 AM

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

339

Figure 8-3.

 Conceptual and physical model of the

 ISqlCondition

 interface and the

SqlCondition

and

SqlConditionGroup

 classes

Take a look at the

ISqlCondition

 interface in Listing 8-4, and then we’ll discuss each prop-
erty in the interface and why it was included.

6293_ch08.fm Page 339 Monday, November 14, 2005 11:20 AM

340 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

Listing 8-4. ISqlCondition Interface

Public Interface ISqlCondition

 '***
 Property Name() As String
 Property ConditionOp() As SqlOperation
 ReadOnly Property Type() As SqlConditionType

End Interface

The Name property allows you to create named conditions that can easily be retrieved using
the find functions defined in the condition group object. It’s not a required field, so not all
conditions have to be named. You should use named items if you plan on reaccessing an item
in your query. For instance, you may find it convenient to build a complex query and then
remove or change certain named items based on some criteria.

The ConditionOp property represents the condition operation (refer to Table 8-3). It deter-
mines whether the condition should be preceded with AND or OR when output. Once again,
remember that you disregard the ConditionOp property when outputting the first condition in
a condition group.

The Type property returns a SqlConditionalType enumeration value that identifies
whether the current object is a condition (Condition) or a condition group (Group). It’s impor-
tant to know the object type before attempting to cast it from an ISqlCondition to its actual
data type. Of course, you can also use GetType() to determine the object type, but the
System.Type object cannot be used as easily as a property in a Case statement.

Next, let’s look at the two classes that implement the ISqlCondition interface.

SqlCondition Class
When it comes down to it, the SqlCondition class has two objectives: store a string that
contains a SQL condition and implement the ISqlCondition interface so it can be stored in a
SqlConditionGroup. This is a relatively straightforward class because it just exposes simple
properties and has no methods or functions (see Listing 8-5).

Listing 8-5. SqlCondition Class

Public Class SqlCondition
 Implements ISqlCondition

 '***
 Private _Condition As String

 '***
 Public Sub New(ByVal condition As String, ByVal operation As String)
 _Condition = condition
 _ConditionOp = Operation
 End Sub

6293_ch08.fm Page 340 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 341

 '***
 Public Sub New(ByVal condition As String, ByVal operation As String, _
 ByVal name As String)
 _Condition = condition
 _ConditionOp = operation
 _Name = name
 End Sub

 '***
 Public Property Condition() As String
 Get
 Return _Condition
 End Get
 Set(ByVal value As String)
 _Condition = value
 End Set
 End Property

#Region "ISqlConditional Implementation"

 '***
 Private _Name As String
 Private _ConditionOp As SqlOperation

 '***
 Public Property Name() As String Implements ISqlCondition.Name
 Get
 Return _Name
 End Get
 Set(ByVal value As String)
 _Name = value
 End Set
 End Property

 '***
 Public Property Operation() As SqlOperation _
 Implements ISqlCondition.ConditionOp
 Get
 Return _ConditionOp
 End Get
 Set(ByVal value As SqlOperation)
 _ConditionOp = value
 End Set
 End Property

6293_ch08.fm Page 341 Monday, November 14, 2005 11:06 AM

342 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 '***
 Public ReadOnly Property Type() As SqlConditionType _
 Implements ISqlCondition.Type
 Get
 Return SqlConditionType.Condition
 End Get
 End Property

#End Region

End Class

You can see that this class has two constructors. The first allows you to pass in a value for
the condition, and the second allows you to pass in a value for the condition and give the
condition a name. The condition parameter is a string representing the condition text (for
example, A=B or DateField=GetDate()). The name parameter allows you to specify a unique
string that identifies the condition. Later on, you can use the name to search for the condition
inside of a condition group. The operation parameter is the condition operator that should be
associated with the SqlCondition object (AND/OR). Also notice that the read-only Type property
from the ISqlCondition interface returns the value associated with SqlConditionType.➥

Condition because this class represents a condition.

■Note Condition objects do not have a negation property. If you want to negate condition, you must do so
by passing in the negation operation as text, that is, "NOT A=1".

SqlConditionGroup Class
On top of being a multiobject collection class and implementing the ISqlCondition interface,
the SqlCondition class also exposes a number of methods that allow you to add, locate, modify,
and remove conditions and conditions groups. Needless to say, the code for this class is a bit
more detailed than the classes you’ve seen thus far. If you look back at Figure 8-1, you’ll notice
that the Where property is actually a SqlConditionGroup object, so this class contains all the
WHERE clause building logic. Listing 8-6 shows most of the code for the SqlConditionGroup class.

■Note Two functions, CreateKeywords and CreateDateRange, will be covered a bit later when we
discuss defining common search queries. For now, their function definitions are included so you’ll know
where they appear in the listing when we get to them later.

6293_ch08.fm Page 342 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 343

Listing 8-6. SqlConditionGroup Class

Imports System.Text.RegularExpressions

Public Class SqlConditionGroup
 Inherits CollectionBase
 Implements ISqlCondition

 '***
 Private _Not As Boolean
 Private _NextOperation As SqlOperation = SqlOperation.And

 '***
 Public Property [Not]() As Boolean
 Get
 Return _Not
 End Get
 Set(ByVal value As Boolean)
 _Not = value
 End Set
 End Property

 '***
 Public Sub New(ByVal operation As SqlOperation, ByVal [not] As Boolean)
 _ConditionOp = operation
 _Not = [not]
 End Sub

 '***
 Public Sub New(ByVal operation As SqlOperation, ByVal [not] As Boolean, _
 ByVal name As String)
 _ConditionOp = operation
 _Not = [not]
 _Name = name
 End Sub

 '***
 Public Sub [And]()
 _NextOperation = SqlOperation.And
 End Sub

6293_ch08.fm Page 343 Monday, November 14, 2005 11:06 AM

344 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 '***
 Public Sub [Or]()
 _NextOperation = SqlOperation.Or
 End Sub

 '***
 Public Function AddCondition(ByVal condition As String) As SqlCondition
 Return AddCondition(condition, String.Empty)
 End Function

 '***
 Public Function AddCondition(ByVal condition As String, _
 ByVal name As String) As SqlCondition
 Dim item As New SqlCondition(condition, _NextOperation, name)
 List.Add(item)
 Return item
 End Function

 '***
 Public Function AddGroup() As SqlConditionGroup
 Return AddGroup(String.Empty)
 End Function

 '***
 Public Function AddGroup(ByVal name As String) As SqlConditionGroup
 Dim item As New SqlConditionGroup(_NextOperation, False)
 item.Name = name
 List.Add(item)
 Return item
 End Function

 '***
 Public Function AddNotGroup() As SqlConditionGroup
 Return AddNotGroup(String.Empty)
 End Function

 '***
 Public Function AddNotGroup(ByVal name As String) As SqlConditionGroup
 Dim item As New SqlConditionGroup(_NextOperation, True)
 item.Name = name
 List.Add(item)
 Return item
 End Function

6293_ch08.fm Page 344 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 345

 '***
 Private Function GetNamedItem(ByVal name As String, _
 ByVal requestType As SqlConditionType) As ISqlCondition

 Dim item As ISqlCondition
 Dim tempItem As ISqlCondition

 'Ensure there are items before setting item to the first one in the list
 If Me.Count = 0 Then Return Nothing

 item = List.Item(0)

 'Only UCase the name once
 name = UCase(name)

 'Iterate through all items in the list looking for a match
 For Each item In List
 If UCase(item.Name) = name And item.Type = requestType Then
 Return item
 End If
 Next

 'If no match is found, then search subgroups
 For Each item In List

 'If the current item is a group, search through it recusively
 If item.Type = SqlConditionType.Group Then
 tempItem = DirectCast(item, _
 SqlConditionGroup).GetNamedItem(name, requestType)
 If Not tempItem Is Nothing Then Return tempItem
 End If

 Next

 Return Nothing

 End Function

 '***
 Public Function GetNamedGroup(ByVal name As String) As SqlConditionGroup
 Return GetNamedItem(name, SqlConditionType.Group)
 End Function

 '***
 Public Function GetNamedCondition(ByVal name As String) As SqlCondition
 Return GetNamedItem(name, SqlConditionType.Condition)
 End Function

6293_ch08.fm Page 345 Monday, November 14, 2005 11:06 AM

346 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 '***
 Public Sub Remove(ByVal item As ISqlCondition)
 Me.List.Remove(item)
 End Sub

 '***
 Public Sub RemoveNamedCondition(ByVal name As String)
 Dim item As SqlCondition = GetNamedCondition(name)
 If Not item Is Nothing Then Me.List.Remove(item)
 End Sub

 '***
 Public Sub RemoveNamedGroup(ByVal name As String)
 Dim item As SqlConditionGroup = GetNamedGroup(name)
 If Not item Is Nothing Then Me.List.Remove(item)
 End Sub

 '***
 Public Function WriteStatement() As String

 Dim firstItemFlag As Boolean = True
 Dim statement As String = String.Empty
 Dim tempStatement As String = String.Empty

 'Run through each item (may be condition or condition group) in list
 For Each item As ISqlCondition In List

 'Determine the condition type
 Select Case item.Type

 Case SqlConditionType.Condition
 'Acquire the statement from the condition property
 tempStatement = DirectCast(item, SqlCondition).Condition

 Case SqlConditionType.Group
 'Recursively call the WriteStatement function
 Dim group As SqlConditionGroup = _
 DirectCast(item, SqlConditionGroup)

 tempStatement = group.WriteStatement

 'Ensure statement returned text before adding parentheses
 If Not tempStatement = String.Empty Then _
 tempStatement = "(" & tempStatement & ")"

6293_ch08.fm Page 346 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 347

 'If this is a "NOT" group, add the NOT keyword
 If group.Not Then tempStatement = "NOT" & tempStatement

 End Select

 'Ensure statement contains text before appending condition operation
 If Not tempStatement = String.Empty Then

 If firstItemFlag Then
 'Do not add condition operation for first item in group
 firstItemFlag = False
 Else
 'Determine condition operation and add appropriate SQL
 Select Case item.ConditionOp
 Case SqlOperation.And
 tempStatement = " AND " & tempStatement
 Case SqlOperation.Or
 tempStatement = " OR " & tempStatement
 End Select
 End If

 statement &= tempStatement

 End If

 Next

 Return statement

 End Function

#Region "ISqlConditional Implementation"

 '***
 Private _Name As String
 Private _ConditionOp As SqlOperation

 '***
 Public Property Name() As String Implements ISqlCondition.Name
 Get
 Return _Name
 End Get
 Set(ByVal value As String)
 _Name = value
 End Set
 End Property

6293_ch08.fm Page 347 Monday, November 14, 2005 11:06 AM

348 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 '***
 Public Property ConditionOp() As SqlOperation _
 Implements ISqlCondition.ConditionOp
 Get
 Return _ConditionOp
 End Get
 Set(ByVal value As SqlOperation)
 _ConditionOp = value
 End Set
 End Property

 '***
 Public ReadOnly Property Type() As SqlConditionType _
 Implements ISqlCondition.Type
 Get
 Return SqlConditionType.Group
 End Get
 End Property
#End Region

#Region "Common Queries"

 '***
 Public Function CreateKeywords(ByVal keywords As String, _
 ByVal column As String, ByVal defaultOp As SqlOperation) _
 As SqlConditionGroup

 'This code will be discussed in a later section, so return Nothing for now
 Return Nothing

 End Function

 '***
 Public Function CreateDateRange(ByVal startDateStr As String, _
 ByVal endDateStr As String, ByVal column As String, _
 ByVal evalType As SqlEvaluationType, ByVal dateFormat As String) _
 As SqlConditionGroup

 'This code will be discussed in a later section, so return Nothing for now
 Return Nothing

 End Function

#End Region

End Class

Because this is a fairly lengthy code listing, we’ll discuss it in sections.

6293_ch08.fm Page 348 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 349

Class Definition and Imports Statement

The SqlConditionGroup inherits basic collection functionality from the CollectionBase base
class, and it implements the ISqlCondition interface. You saw a collection class earlier in this
chapter when we discussed the SqlFieldCollection. Although this implementation is similar,
there are a few differences because the collection will be storing two different object types
(SqlCondition and SqlConditionGroup) instead of just a single object type.

■Note If you take a good look at the code, you’ll see that there is an import statement for the
System.Text.RegularExpressions namespace, but there aren’t any regular expressions used anywhere
in the code listing. Regular expressions are used in the CreateKeywords function, but that code is not shown
until later on in this chapter. So, know that it’s there for a reason, we just haven’t gotten there yet.

Class Level Variables

There are two class-level variables. The _Not variable stores a Boolean value for the Not prop-
erty, which determines whether the group needs to be negated in the SQL query.
_NextOperation stores a SqlOperation enumeration value (And/Or) and determines which
condition operator to apply to the next condition added to the group. For example, say the
group contains a condition A=1, and the _NextOperation is set to And. When you then add
another condition to the group, say B=2, then the group sets that condition’s condition oper-
ator to the value stored in the _NextOperation variable. Thus, the condition group effectively
contains A=1 AND B=2. You control the _NextOperation value from the And and Or methods on
the class. This allows you to have an object-oriented approach to building SQL statements that
mimics SQL syntax, as you’ll see in the Add and Or method descriptions next.

■Note Do not confuse the _NextOperation value with the ISqlCondition.ConditionOp implementa-
tion for the SqlConditionGroup object. The ConditionOp property stores the condition operation for the
SqlConditionGroup itself. The _NextOperation field defines the condition operation values for the condi-
tions and conditions groups that are added to the SqlConditionGroup.

Not Property

Expressing NOT in a SqlCondition is easy because you can define it directly in the condition text
itself. For example, you can create a condition like IntField!=5 or even NOT IntField=5 to
specify a condition where IntField is not equal to 5.

The SqlConditionGroup also needs negation functionality because you can have a state-
ment like NOT (A=1 AND B=2). This is accomplished by setting the Not property to True when the
group should be prefixed with the NOT keyword. In this text, a group whose Not property is set
to True is referred to as a negated group. You’ll see this property used in the AddNotGroup, and
WriteStatement functions.

6293_ch08.fm Page 349 Monday, November 14, 2005 11:06 AM

350

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

Class Constructors (Sub New)

Creating a new

SqlConditionGroup

 object requires passing in two parameters to the
constructor:

operation

 and

not

. The

operation

 parameter initializes the

ConditionOp

 property
defined in the

ISqlCondition

 interface. Remember that this property determines which oper-
ator (

And

/

Or

) to output before the group when building the SQL query. The

not

 parameter
simply sets the

Not

 property, which was just covered. You can, optionally, specify a unique

name

for the group using the overloaded constructor. Later on, you can use the unique name to
search for this group in the query.

And/Or Methods

Both of these methods set the

_NextOperation

 variable to each method name’s respective
value. Thus, the

And

 method sets

_NextOperation

 to

And

 and the

Or

 method sets

_NextOperation

to

Or

. These two functions help make using the

SqlConditionGroup

 more intuitive in code. For
example, if you wanted a group containing a statement like

A=1 AND B=2 OR C=3

, then the code
would look something like this:

Group.AddCondition("A=1")

Group.And()

Group.AddCondition("B=2")

Group.Or()

Group.AddCondition("C=3")

Because the

_NextOperation

 is retained after calling the

And

 or

Or

 functions, you only have
to call

And

 or

Or

 once when adding a series of conditions. Thus, the statement

(A=1 OR B=2 OR
C=3 OR D=4 AND E=5 AND F=6 AND G=7 AND H=8)

 could be written like this in code:

Group.AddCondition("A=1")

Group.Or()

 'You could also place this line first, if you wanted
Group.AddCondition("B=2")
Group.AddCondition("C=3")
Group.AddCondition("D=4")

Group.And()

Group.AddCondition("E=5")
Group.AddCondition("F=6")
Group.AddCondition("G=7")
Group.AddCondition("H=8")

The intricacies of using the

SqlQuery

 and

SqlConditionGroup

 are covered later in this
chapter.

■

Note

The

And

/

Or

 functions are surrounded by [] brackets because VB .NET recognizes them as

keywords. The [] brackets let the compiler know not to process the term as a keyword.

6293_ch08.fm Page 350 Monday, November 14, 2005 5:37 PM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 351

AddCondition, AddGroup, and AddNotGroup Functions

You need the ability to add conditions and condition groups to the WHERE clause to use the
SqlQuery tool effectively, and the AddCondition, AddGroup, and AddNotGroup methods
make it easy to do just that. Each Add function instantiates a new SqlCondition or a new
SqlConditionGroup object and adds the new object to the List property of the current
SqlConditionGroup object. Remember, the SqlConditionGroup class inherits the List property
from the CollectionBase class.

Each Add function is overloaded so you can create named and unnamed conditions and
groups. To create a named item, just pass a name into the function. Named items are useful
because you can use the name to search for the object. Also, all the Add functions will return the
object that gets added to the list. This allows you to keep a reference to an item without having
to search for it. The following code shows both features in action:

Dim C1 as SqlCondition = Group.AddCondition("x=1") 'Unnamed condition
Dim C2 as SqlCondition = Group.AddCondition("x=1", "Condition1") 'Named condition
Dim G1 as SqlConditionGroup = Group.AddGroup() 'Unnamed group
Dim G2 as SqlConditionGroup = Group.AddGroup("group1") 'Named group

If you take a close look at the code, you’ll notice the “named” version of each function
contains the actual list-adding and property-setting code. The “unnamed” version of each
function simply calls the “named” version and passes in String.Empty as the name.

Finally, the AddNotGroup function is exactly the same as the AddGroup function, but it also
sets the Not property of the SqlConditionGroup it creates to True. This makes it a bit easier to
create negated groups by saving you the hassle of setting the Not property yourself.

■Note A Not property is not included on the SqlCondition because you can define negation directly in
the condition text, for example, "NOT A=1". Groups have no such text, so they require the Not property. If you
want a Not property on your SqlCondition objects, then feel free to add it to the class.

GetNamedItem Function (Private Function)

All the search logic for locating named conditions and named groups resides in the private
GetNamedItem function. It returns a generic ISqlCondition object, allowing it to return either a
SqlCondition or a SqlConditionGroup object. It accepts two parameters: a string value called
name that identifies the name of the item for which you are searching, and a SqlConditionType
enumeration value called requestType that identifies the type of object being sought.

This function starts by checking the count to ensure there are items through which to
search. If there are not, the function returns Nothing. Then the function uppercases the name
parameter using the UCase method because we want to look for case-insensitive matches.
Uppercasing it outside of the loops avoids the recurrent cost of uppercasing the name inside the
loop.

GetNamedItem then iterates through each ISqlCondition item in the list. Inside the loop, it
runs UCase on the Name property of the item and compares it to the name parameter passed into
the function. It also checks the Type property of the item and compares it to the requestType to
determine if the object type matches the object type being sought. If both the name and the

6293_ch08.fm Page 351 Monday, November 14, 2005 11:06 AM

352 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

object type match, then that item is returned. If not, the loop continues until all items in the
current group have been checked.

If no match is made in the current group, then the GetNamedItem iterates through all the
items again, this time checking for SqlConditionGroup objects in the collection. When a
SqlConditionGroup object is encountered, it casts the item into a SqlConditionGroup and recur-
sively calls the GetNamedItem method on the subgroup. The result of the recursive call is stored
in a temporary variable, which is then checked to see if it contains a valid object or Nothing. If
it contains a valid object, then that object is returned. If it contains Nothing, then the loop
continues and the next group in the list is checked.

Finally, if a match is never made, the function simply returns Nothing.

GetNamedGroup and GetNamedCondition Functions

These two functions allow you to search for a named SqlCondition or named SqlCondition➥

Group object, respectively. Each function accepts one parameter, name, which identifies the
name of the item being sought. Both functions call the GetNamedItem and pass in the name
parameter as well as a hard-coded SqlConditionType enumeration value identifying the object
type being sought. The result of the GetNamedItem function is implicitly cast into a strongly
typed SqlCondition or SqlConditionGroup when it is returned.

■Note You may have noticed that you can search for conditions or for groups, but no generic search exists
that will return a named item regardless of its type. You can implement this function on your own if you want
by modifying the GetNamedItem function, but I’ve never run across the need for it.

Remove, RemoveNamedCondition, and RemoveNamedGroup Methods

Each of these methods uses functionality inherited from the CollectionBase class to remove an
item from the collection. Remove accepts an ISqlCondition object and removes that object from
the collection if it’s present.

RemoveNamedCondition and RemoveNamedGroup also remove items from the collection, but
they accept a name parameter instead of an ISqlCondition object. These methods search for the
name using GetNamedCondition and GetNamedGroup, respectively. If the item is located, then it is
removed from the collection.

WriteStatement Function

At some point, all the conditions and condition groups in the SqlConditionGroup object must
be converted from their object representations into text suitable for use in a SQL query.
WriteStatement is responsible for iterating through all the items in its collection and building
a text representation of itself.

Building the string for condition groups that only contain conditions is easy because it
simply requires concatenating all the condition text and adding a couple of operator keywords.
However, a condition group can also contain child condition groups. And of course, that child
condition group may have condition groups of its own, and so on. How do you return all the
text for a condition group? Interestingly enough, the function we’re talking about right now

6293_ch08.fm Page 352 Monday, November 14, 2005 11:06 AM

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

353

handles just that sort of thing. To acquire the text for a child-condition group, the

Write

➥

Statement

 method recursively calls that child group’s

WriteStatement

 method. At some point,
the condition groups only contain conditions, the recursion stops, and the method can build a
string by aggregating the output form its child groups.

The

WriteStatement

 function starts by defining three variables:

•

firstItemFlag

: Boolean value that identifies whether or not the current item is the first
item in the group because the first item requires special processing. This is initially set to

True

.

•

Statement

: Maintains the SQL statement as it’s being built.

•

TempStatement

: Holds the condition from an item or the result of the recursive call to the

WriteStatement

 method to ensure valid SQL is present before appending it to the actual

statement

 variable.

WriteStatement

 begins by jumping into a loop that iterates through each

item

 in the group’s
collection. Inside the loop, it checks the

Type

 property of the

item

 to determine whether it’s a

Condition

 or a

Group

. If the item is a

Condition

, then

WriteStatement

 casts the item into a

SqlCondition

 and sets

tempStatement

 equal to the

SqlCondition

’s

condition

 property.
If the item is a

Group

, then the function casts the item into a

SqlConditionGroup

 and stores
the reference in the

group

 variable. It then recursively calls

group.WriteStatement

 and assigns
the return value to the

tempStatement

 variable. When a group is output as a SQL query, the
group should be surrounded by parentheses. Of course, you do not want to have a set of paren-
theses with no inner content, so

WriteStatement

 checks to make sure

tempStatement

 contains
text before surrounding the text with those parentheses. It also checks the

Not

 property of the

group

 to determine whether the

NOT

 keyword should appear before the group, and adds the

NOT

keyword if necessary.

Next, the function needs to add the condition operator (

AND

/

OR

) to the SQL string. There
are two conditions for adding the condition operator. First,

tempStatement

 must contain some
text to ensure a condition operator is not added without having a condition on which to
operate. Second, the condition operator should

not

 be added to the first item in the group.
So,

WriteStatement

 first checks to see if

tempStatement

 contains text. If it does not contain
any text, then the loop continues on to the next item. If it does, then the function determines
whether this item is the first item in the group using the

firstItemFlag

 variable. If it is the first
item, then the

firstItemFlag

 is cleared by setting it to

False

. If it isn’t the first item, then

WriteStatement

 reads the

item.ConditionOp

 property and adds the appropriate SQL text to the
front of

tempStatement

. The function then appends

tempStatement

 to the statement and moves
on to the next item in the collection.

When all the items in the list have been processed,

WriteStatement

 returns the value that
has been built and stored in the

statement

 variable.

Implementing the ISqlCondition Interface

SqlConditionGroup

 implements the

ISqlCondition

 interface. This interface was covered
in detail in the

SqlCondition

 section, so you may refer to that class for more details. The
only difference between the two implementations is that the

Type

 property of the

SqlConditionGroup

 returns a value of

SqlConditionType.Group

 instead of

SqlCondition

➥

Type.Condition

.

6293_ch08.fm Page 353 Monday, November 14, 2005 5:39 PM

354 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

Building the SqlQuery Class
All the components you have seen so far are auxiliary classes that provide support functionality
for the SqlQuery class. The SqlQuery class is an object representation of a SQL SELECT statement
and exposes a variety of properties to help you build queries in code using a simple program-
matic interface. When the time comes to execute the query, the SqlQuery builds the SELECT
statement based on its object representation. In addition to being able to build out normal
queries, the SqlQuery class also can build paged queries that only return a subset of the entire
set of data.

Before we get too far into the SqlQuery class code, let’s take a minute to discuss paging and some
of the new features in SQL Server 2005 that make paging a lot simpler than in previous versions.

What Is Paging?

Paging is the practice of breaking up large sets of data into smaller, more manageable sets,
known as pages. Instead of being inundated by all the data at once, users can look through
large amounts of data one page at a time, like flipping through the pages of a book. When
implemented appropriately, paging helps reduce database and web server loads, increases
response times, and reduces bandwidth requirements.

Google provides a great example of paging. When you search for “ASP.NET” in Google,
there are more than 7 million results. Nobody in their right mind would want to be shown a
page with 7 million links on it, and Google certainly does not have the bandwidth to constantly
serve up pages with 7 million links. Instead, Google displays 10 results on a page and lets the
searcher go to the next page to see the next 10 results. Rarely do people make it past the first
few pages in a search, so Google saves a lot of bandwidth and processing power by only
showing 10 results at a time.

Paging with Previous Version of SQL Server

My experience with paging in SQL Server 2000 started on a project where I needed to imple-
ment paging functionality on a variety of different reports. What I quickly learned is that
paging in SQL Server 2000 is not an easy task.

You can limit the search results using the TOP keyword, but that only restricts the total
number of rows returned. This is helpful for paging because you do not return extra data
beyond what you need. But you do return all the data up to what you need. For example, say
you have 100 items and you want to use paging to show 10 items per page over 10 pages. On the
first page, you can use TOP 10 to limit the number of items to 10 (items 1–10) and avoid
returning 90 extra results (items 11–100). On the second page, however, your only option is to
use TOP 20. This avoids sending 80 extra results (items 21–100), so it’s better than sending back
everything, but you do send 10 results (1–10) unnecessarily. As you get further and further
along in the page count, you send back more and more extraneous data until you reach the last
page, which returns all the data. So the TOP keyword is helpful but not a great solution. Unfor-
tunately, it’s the only keyword previous versions of SQL Server had to help with paging.

To overcome the paging limitations in previous versions of SQL Server, many developers
turned to stored procedures. The basic idea behind the stored procedure is to create a temporary
table with an identity field, populate that table with records, and then use the auto-generated
identify field as a row number. To select results 51 to 60, the statement reads something like

SELECT * FROM #TempTable WHERE ResultRow > 50 and ResultRow < 61

6293_ch08.fm Page 354 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 355

Of course this is done programmatically, so the values 51 and 60 are actually variables in
the stored procedure whose values are based on the current page and page size. Stored proce-
dures overcome the issue of returning extraneous data, and they are very fast, but they require
a lot of development time to write because you have to write one for every query you want to
make (you may be able to consolidate a few of them). So it’s a good solution, but it takes a lot
of extra time and effort to build.

MySQL, a very well known open-source database, allows you to offset results and specify a
page size using the LIMIT keyword. Returning results 51 to 60 is as easy as adding LIMIT 50,10 to the
query (that is, skip 50 results and then return the next 10). And it has had this built-in paging func-
tionality for at least the last 5 years (if not longer). Unfortunately, Microsoft did not follow suit and
make a similar paging mechanism in SQL Server 2005. Next, let’s take a look at what we did get.

Paging in SQL Server 2005 Using the ROW_NUMBER() Function

One of the new features in SQL Server 2005 is the ROW_NUMBER() function, which allows you to
sequentially number the rows returned by a query. This alleviates you from having to build
stored procedures for your paging needs. Understand, however, that stored procedures are
faster than ad-hoc queries, and they are the way to go if you need to build super-high-
performance applications.

You have to use the ROW_NUMBER() function in conjunction with the OVER() construct,
which accepts an ORDER BY clause as a parameter. For example, if you want to select all the
customer records from the Northwind database and give them each a row number, the query
and subsequent results look something like Listing 8-7.

Listing 8-7. SQL Query Demonstrating the ROW_NUMBER Function

SELECT ROW_NUMBER() OVER (ORDER BY CustomerID) AS RowNum, *
FROM Customers
ORDER BY RowNum

-- Returns the following results

RowNum CustomerID CompanyName ...

1 ALFKI Alfreds Futterkiste ...

2 ANATR Ana Trujillo Emparedados y helados ...

3 ANTON Antonio Moreno Taquería ...

4 AROUT Around the Horn ...

5 BERGS Berglunds snabbköp ...

6 BLAUS Blauer See Delikatessen ...

Although you specify an ORDER BY clause in the OVER() construct, that is not the ORDER BY
clause for your query. In Listing 8-7, the ORDER BY clause for the query uses the RowNum alias to
sort the results so you see the row’s number values in sequential order. The ROW_NUMBER() func-
tion assigns sequential numbers to rows based on the ORDER BY clause in the OVER() construct.
But you don’t have to order your query using the same ORDER BY clause as defined in the OVER()
construct. This means that the rows may be reordered by the actual ORDER BY clause after the

6293_ch08.fm Page 355 Monday, November 14, 2005 11:06 AM

356 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

row numbers have been assigned, leading to a result set with nonsequential ROW_NUMBER()
values as shown in Listing 8-8.

Listing 8-8. SQL Query Demonstrating Nonsequential ROW_NUMBER Values

SELECT ROW_NUMBER() OVER (ORDER BY CustomerID) AS RowNum, *
FROM Customers
ORDER BY City

-- Returns the following results

RowNum CustomerID CompanyName City ...

17 DRACD Drachenblut Delikatessen Aachen ...

65 RATTC Rattlesnake Canyon Grocery Albuquerque ...

55 OLDWO Old World Delicatessen Anchorage ...

83 VAFFE Vaffeljernet Arhus ...

29 GALED Galería del gastrónomo Barcelona ...

46 LILAS LILA-Supermercado Barquisimeto ...

This is behavior by design. It seems a bit odd, but there is probably some great use for
nonsequential row numbers that eludes me. At any rate, queries that return sequential row
numbers are an awesome addition to SQL Server 2005, and they make paging a lot easier
because you don’t have to rely on stored procedures.

SqlQuery Class
Everything discussed so far is brought together in the SqlQuery class. This function exposes
nine properties and three functions that provide you with an object-oriented approach to
building SQL queries. Table 8-4 provides a brief overview of the properties and class-level vari-
ables found in the class and the role each property/variable plays.

Table 8-4. SqlQuery Properties* and Class-Level Variables

Name Type Description

CurrentPage Integer Defines which page of data should be returned.

Distinct Boolean Denotes whether or not the DISTINCT keyword should be
used in the query.

From String Contains the FROM clause text.

GroupBy SqlFieldCollection Field list specifying aggregate data grouping constructs.

GroupByAll Boolean Denotes whether or not the GROUP BY clause should use
include the ALL keyword.

ItemsPerPage Integer Defines the number of items that exist on a single page
of data.

6293_ch08.fm Page 356 Monday, November 14, 2005 11:06 AM

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

357

Now that you have a basic understanding of each property, let’s take a look at the

SlqQuery

class code. The first part of the code mainly consists of variable and property declarations
described previously. It then moves into the SQL query-building functions, which are a bit
more complicated. After you look at Listing 8-9, we’ll consider these functions.

Listing 8-9.

SqlQuery

 Class

Imports System.Text

Public Class SqlQuery

 '***
 Private _Distinct As Boolean
 Private _From As String
 Private _GroupBy As SqlFieldCollection
 Private _GroupByAll As Boolean
 Private _SelectFields As SqlFieldCollection
 Private _Top As Integer
 Private _OrderBy As SqlFieldCollection
 Private _Where As SqlConditionGroup

 'Paged Query Variables
 Private _ItemsPerPage As Integer
 Private _CurrentPage As Integer

 '***
 Public Property Distinct() As Boolean
 Get
 Return _Distinct
 End Get
 Set(ByVal value As Boolean)

OrderBy SqlFieldCollection

Field list specifying which fields and what directions the
query should use to sort the results.

SelectFields SqlFieldCollection

Field list specifying those fields that should be returned
by the query. If none are specified, then

*

 is assumed.

Top Integer

Specifies the number of rows that should be returned by
a query. If

Top

 is

0

, then all rows are returned.

Top

 is
disregarded during a reverse sort query.

Where SqlConditionGroup

Set of conditions and condition groups that make up the

WHERE

 clause.

* All properties have corresponding class-level variables named

_<property name>

 to store their values

Table 8-4.

SqlQuery

 Properties* and Class-Level Variables (Continued)

Name Type Description

6293_ch08.fm Page 357 Monday, November 14, 2005 5:41 PM

358 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 _Distinct = value
 End Set
 End Property

 '***
 Public Property SelectFields() As SqlFieldCollection
 Get
 If _SelectFields Is Nothing Then _
 _SelectFields = New SqlFieldCollection
 Return _SelectFields
 End Get
 Set(ByVal value As SqlFieldCollection)
 _SelectFields = value
 End Set
 End Property

 '***
 Public Property From() As String
 Get
 Return _From
 End Get
 Set(ByVal value As String)
 _From = value
 End Set
 End Property

 '***
 Public Property GroupBy() As SqlFieldCollection
 Get
 If _GroupBy Is Nothing Then _GroupBy = New SqlFieldCollection
 Return _GroupBy
 End Get
 Set(ByVal value As SqlFieldCollection)
 _GroupBy = value
 End Set
 End Property

 '***
 Public Property GroupByAll() As Boolean
 Get
 Return _GroupByAll
 End Get
 Set(ByVal value As Boolean)
 _GroupByAll = value
 End Set
 End Property

6293_ch08.fm Page 358 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 359

 '***
 Public Property OrderBy() As SqlFieldCollection
 Get
 If _OrderBy Is Nothing Then _OrderBy = New SqlFieldCollection
 Return _OrderBy
 End Get
 Set(ByVal value As SqlFieldCollection)
 _OrderBy = value
 End Set
 End Property

 '***
 Public Property Where() As SqlConditionGroup
 Get
 If _Where Is Nothing Then _Where = _
 New SqlConditionGroup(SqlOperation.And, False)
 Return _Where
 End Get
 Set(ByVal value As SqlConditionGroup)
 _Where = value
 End Set
 End Property

 '***
 Public Property Top() As Integer
 Get
 Return _Top
 End Get
 Set(ByVal value As Integer)
 _Top = value
 End Set
 End Property

 '***
 Public Property ItemsPerPage() As Integer
 Get
 Return _ItemsPerPage
 End Get
 Set(ByVal value As Integer)
 _ItemsPerPage = value
 End Set
 End Property

 '***
 Public Property CurrentPage() As Integer
 Get
 Return _CurrentPage
 End Get

6293_ch08.fm Page 359 Monday, November 14, 2005 11:06 AM

360 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 Set(ByVal value As Integer)
 _CurrentPage = value
 End Set
 End Property

 '***
 Private Function BuildQuery(ByVal countOnly As Boolean, _
 ByVal pagedQuery As Boolean) As String

 Dim sql As New StringBuilder(128)
 Dim seperator As Boolean
 Dim whereClause As String

 'Create the beginning of the SELECT statement
 sql.Append("SELECT")
 If Distinct Then sql.Append(" DISTINCT")

 'Append the TOP
 If pagedQuery Then
 sql.Append(" TOP ") : sql.Append(_ItemsPerPage * _CurrentPage)
 Else
 If top > 0 Then sql.Append(" TOP ") : sql.Append(top)
 End If

 'Determine if this is a normal or a count only query
 If countOnly Then
 sql.Append(" COUNT(*) AS TotalRecords")
 Else
 seperator = False
 If pagedQuery And _CurrentPage > 1 Then
 sql.Append(" ROW_NUMBER() OVER(ORDER BY ")
 For Each field As SqlField In OrderBy
 If seperator Then sql.Append(", ") Else seperator = True
 sql.Append(field.Name)

 'Check to see if the order of the field is DESC
 If field.SortDirection = SqlSortDirection.Descending Then
 sql.Append(" DESC")
 End If

 Next
 sql.Append(") as RowNum")
 seperator = True
 End If

 'Append SELECT fields
 If Me.SelectFields.Count = 0 Then

6293_ch08.fm Page 360 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 361

 If seperator Then sql.Append(", ") Else seperator = True
 sql.Append(" *")
 Else
 seperator = False
 sql.Append(" ")
 For Each field As SqlField In SelectFields
 If seperator Then sql.Append(", ") Else seperator = True
 If field.Alias = String.Empty Then
 sql.Append(field.Name)
 Else
 sql.Append(field.Name)
 sql.Append(" AS ")
 sql.Append(field.Alias)
 End If
 Next
 End If

 End If

 'Create the FROM clause
 If Not From = String.Empty Then
 sql.Append(" FROM ")
 sql.Append(From)
 End If

 'Create the WHERE clause
 whereClause = Where.WriteStatement()
 If Not whereClause = String.Empty Then
 sql.Append(" WHERE ")
 sql.Append(whereClause)
 End If

 'Create the GROUP BY clause
 If Not countOnly Then
 If GroupBy.Count > 0 Then
 sql.Append(" GROUP BY ")
 If GroupByAll Then sql.Append("ALL ")
 seperator = False
 For Each field As SqlField In GroupBy
 If seperator Then sql.Append(", ") Else seperator = True
 sql.Append(field.Name)
 Next
 End If

 If pagedQuery And Not CurrentPage = 1 Then

6293_ch08.fm Page 361 Monday, November 14, 2005 11:06 AM

362 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 'Order by the RowNum
 sql.Append(" ORDER BY RowNum")

 Else

 'Create the ORDER BY clause
 If OrderBy.Count > 0 Then
 sql.Append(" ORDER BY ")
 seperator = False

 For Each field As SqlField In OrderBy
 If seperator Then sql.Append(", ") Else seperator = True
 sql.Append(field.Name)

 'Check to see if the query should be reverse sorted
 If field.SortDirection = SqlSortDirection.Descending Then
 sql.Append(" DESC")
 End If

 Next

 End If

 End If

 End If

 Return sql.ToString

 End Function

 '***
 Public Function GetQuery() As String
 Return BuildQuery(False, False)
 End Function

 '***
 Public Function GetCountQuery() As String
 Return BuildQuery(True, False)
 End Function

 '***
 Public Function GetPagedQuery()
 Return GetPagedQuery(CurrentPage, ItemsPerPage)
 End Function

6293_ch08.fm Page 362 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 363

 '***
 Public Function GetPagedQuery(ByVal currentPage As Integer, _
 ByVal itemsPerPage As Integer) As String

 If currentPage < 1 Then currentPage = 1
 If itemsPerPage < 1 Then itemsPerPage = 10
 _CurrentPage = currentPage
 _ItemsPerPage = itemsPerPage

 Dim PagedQuery As String = BuildQuery(False, True)

 If _CurrentPage > 1 Then
 PagedQuery = String.Format(_
 "SELECT * FROM ({0})innerSelect WHERE RowNum > {1}", _
 PagedQuery, _
 _ItemsPerPage * (_CurrentPage - 1))
 End If

 Return PagedQuery

 End Function

End Class

As you can see, most of the complexity lies in the query-building functions, specifically,
the BuildQuery function. Let’s take a look at the query-building functions to see how they
convert the properties of the SqlQuery class into a usable SQL query.

BuildQuery Function (Private)

BuildQuery may be called upon to create three different types of queries. All are very similar,
but each has its own minor variation that makes it slightly different.

• Regular query: Builds out a normal SQL SELECT statement based on the properties of the
SqlQuery class.

• Count query: The count query is the regular query with the SELECT fields replaced by
COUNT(*) AS TotalRecords, and no GROUP BY or ORDER BY clauses. This query determines
how many records the normal query returns when executed and is useful for paging
scenarios when you need to calculate the total number of pages required to display a set
of data. You’ll see this query used in the next chapter when we discuss paging in more
detail.

• Paged query: Builds a query that uses the ROW_NUMBER() function to sequentially order the
rows and limits the overall rows based on the page size and current page. This query is
used in conjunction with the GetPagedQuery method to build a query capable of
returning a single page worth of data.

6293_ch08.fm Page 363 Monday, November 14, 2005 11:06 AM

364 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

BuildQuery accepts two Boolean parameters, countOnly, and pagedQuery, which it uses
throughout the function to determine which query to output. If neither of the parameters are
True, then the method outputs the regular. If countOnly is True, then the method outputs the
count query. And if the pagedQuery parameter is True, then the method knows to output the
paged query.

Immediately after the function declaration, BuildQuery creates three variables. The sql
variable is a StringBuilder object that holds the text of the query as it is built out; separator
helps determine whether or not to use a comma in field lists; and whereClause temporarily
holds the WHERE clause after it has been built using the WriteStatement function.

Now we get into the actual query construction. BuildQuery always outputs the SELECT
portion of the statement because it’s used by all the query types. Then it adds the DISTINCT
keyword if the Distinct property is set to True.

Next, it determines whether or not to output a TOP keyword and value. This is where we see
our first distinction between query types. BuildQuery checks to see if this query is a paged query
and, if so, appends a TOP value calculated based on the number of items per page and the current
page. This limits the total amount of data that must be assigned sequential numbers by the
ROW_NUMBER() function. If the method is not building a paged query, it checks to see if the normal
TOP property has a value greater than zero and appends the TOP keyword and value if needed.

BuildQuery then determines whether or not the query is a count query. If it is a count
query, then the method appends COUNT(*) AS TotalRecords to the field list. In doing so, the
query will only return a single numeric value indicating how many total records are returned
by the query. If the query is not a count query, then the method has to do a little more work.
First, it checks to see if the query is a paged query. If so, it uses the ROW_NUMBER() function to
create a sequentially numbered field named RowNum. To build the OVER() construct, the method
iterates through and outputs all the fields in the OrderBy property. Notice that it uses the
separator variable to determine whether or not to put a comma in the field list, and it checks
each field object’s SortDirection property to see if the field requires the DESC keyword.

Next, BuildQuery constructs the field list for the SELECT statement for both the normal and
the paged query. If no fields are defined in the SelectFields property, then the method appends
* to return all available fields. If fields are defined, then BuildQuery iterates through them and
builds the field listing using the field name and, if it’s available, the field’s alias. You’ll also see the
separator variable used in this section to help create commas to separate fields in the list.

After building the select field list, the function appends the FROM statement to the query if
a FROM statement has been defined. You won’t encounter many queries that do not have a FROM
clause, but it can happen on rare occasions if you only need to select a value from a function
(for example, SELECT GetDate() AS DatabaseDate).

BuildQuery then executes Where.WriteStatement() and stores the result of the function in
the whereClause variable. Remember, the WriteStatement method of the SqlConditionGroup is
responsible for returning a string containing all the conditions and condition groups used in
the WHERE clause. If there are no conditions to apply, the method simply returns an empty
string. If the whereClause variable contains a string, then BuildQuery knows to append the
WHERE clause to the query. Otherwise, the method skips the WHERE clause.

After appending the WHERE clause, BuildQuery appends the GROUP BY and ORDER BY clauses
for the normal and paged queries. Notice that the method skips this section for the count
query. The count query only returns a single value so it doesn’t need any grouping or ordering
clauses. BuildQuery constructs the GROUP BY clause by iterating through all the fields in the
GroupBy property and outputting them as a comma-separated list. BuildQuery then checks to

6293_ch08.fm Page 364 Monday, November 14, 2005 11:06 AM

C H A P T E R 8

■

 E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

365

see whether it’s building a normal or paged query. If a paged query, then it uses

ORDER BY
RowNum

 as the

ORDER BY

 clause because the

RowNum

 contains sequential values based on the

ORDER
BY

 clause supplied to the

OVER

 construct, so you might as well use that to your advantage and
avoid rewriting a duplicate

ORDER BY

 clause. Depending on how SQL optimizes the query, there
may be a slight performance gain by using this method because it’s easier to sort a single
numeric field than say, for example, three text fields. Worst-case scenario is that it reduces the
size of the

SELECT

 statement. If the build query is creating a normal query, it outputs the

ORDER
BY

 clause by iterating through all the fields in the

OrderBy

 property and appending the field
names and sort directions as a comma-separated list.

Finally, the function returns

sql.ToString()

, which contains the query text that was built
out over the course of the function.

GetQuery and GetQueryCount Functions

These two functions both use the

BuildQuery

 function to return their respective queries.

GetQuery

 returns the regular query.

GetQueryCount

 returns the count query. The only differ-
ences between the two functions are their names and the parameters used to call

BuildQuery

.

GetPagedQuery Functions

This function is responsible for building a query that returns data from the requested page. It’s an
overloaded method, so you can call it with or without any parameters.

GetPagedQuery

 uses two
parameters named

currentPage

 and

itemsPerPage,

 which help determine which page of data to
return. You can specify this by calling

GetPagedQuery

 and passing the current page and items per
page in as parameters, or you can set the

CurrentPage

 and

ItemsPerPage

 properties on the

SqlQuery

 object and call

GetPagedQuery

 without any parameters. The parameterless version of
the function simply calls the parameterized version and passes in the property values.

The first couple of lines in the method ensure that there are valid values for the

currentPage

 and

itemsPerPage

 parameters. If either one of the values is invalid, it’s assigned a
valid value. You can also throw an exception here if you want to.

GetPagedQuery

 then calls

BuildQuery(False,True)

, which tells

BuildQuery

 to return a
paged query and stores that paged query in the

PagedQuery

 variable. If the requested page is the
first page, then no more work needs to be done because the

TOP

 value returns the correct
amount of data for the first page. On subsequent pages, however, a bit more work needs to be
done to hack off the extraneous data returned at the beginning of the result set. To get rid of
that data,

GetPagedQuery

 wraps the query in

PagedQuery

 in another

SELECT

 statement that oper-
ates on the data returned by

PagedQuery

. Remember, the data in

PagedQuery

 contains a column
named

RowNum

 that identifies the rows returned by the query in sequential order. Also
remember that the

BuildQuery

 method limits the amount of data returned for a paged query
using the

TOP

 keyword. So, to get the right data, the second

SELECT

 statement only selects rows
whose

RowNum

 value is higher than

_ItemsPerPage * (_CurrentPage - 1)

.
Here’s an example. Say you are trying to get data for page 6 of a query, and you are showing

10 items per page. This means that you are trying to display row numbers 51–60.

BuildQuery

ensures that only 60 rows of data come back, so you only have to worry about getting rid of the
extraneous data before row 51. So, the outer

SELECT

 statement created by

GetPagedQuery

 selects
rows whose

RowNum

 values are greater than 50. You acquire this value using the equation

_ItemsPerPage * (_CurrentPage - 1) = 10 * (6-1) = 10 * 5 = 50

. And that’s how the

SqlQuery

class builds normal and paged queries. Next, you’ll learn how to use the

SqlQuery

 class in code.

6293_ch08.fm Page 365 Monday, November 14, 2005 5:42 PM

366 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

Using a SqlQuery Object to Build Queries
Creating the SqlQuery tool took a bit of work, but now you can see how all that work can really
pay off when you need to manipulate SQL queries in code. This section runs through a series
of scenarios, working from simple to complex, and illustrates how to use a SqlQuery object to
help you create a SQL query for each scenario. The table names and columns come from the
Northwind sample database in case you want to try the queries out on your own.

■Note You can find the Northwind sample database on the Microsoft website. Unfortunately, the link to the
page consists mostly of random characters and is far from intelligible. The easiest way to locate the Northwind
database is to search Google for “Northwind and Pubs Sample Databases.” You can also find a link to the sample
database in the Links section of the sample application in the Source Code area of the Apress website.

Scenario 1: Building a Simple Query

If you are building static queries that will not change, then you use a String to store the query,
not a SqlQuery object. This example is just a demonstration of how to use some of the simple
properties of the SqlQuery object. The scenario is that you want to build a query that allows
your users to see a customer phone list that shows the customer ID, name, city, phone number,
and fax number. You also want to rename the Phone column to read PhoneNumber, and the Fax
column to read FaxNumber. Listings 8-10 and 8-11 show the SQL and SqlQuery representations
of this scenario’s query.

Listing 8-10. Scenario #1 SQL Representation

SELECT CustomerID, CompanyName, City, Phone AS PhoneNumber, Fax as FaxNumber
FROM Customers
ORDER BY CompanyName

Listing 8-11. Scenario #1 SqlQuery Representation

'***
Public Shared Function Scenario1() As String

 Dim SqlQueryObj As New Reporting.SqlQuery

 SqlQueryObj.SelectFields.Add("CustomerID")
 SqlQueryObj.SelectFields.Add("CompanyName")
 SqlQueryObj.SelectFields.Add("City")
 SqlQueryObj.SelectFields.Add("Phone", "PhoneNumber")
 SqlQueryObj.SelectFields.Add("Fax", "FaxNumber")
 SqlQueryObj.From = "Customers"
 SqlQueryObj.OrderBy.Add("CompanyName")
 Return SqlQueryObj.GetQuery()

End Function

6293_ch08.fm Page 366 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 367

This is a very simple and straightforward example that has no conditional logic. The func-
tion simply builds the query and returns it as the value of the function.

Scenario 2: Building Conditional WHERE Clauses

In this scenario, you run the same query as specified in Scenario 1, but with a WHERE clause that
filters the results by a specific city name. If no city is specified, then you want to include all
cities. This effectively means that no WHERE clause should appear when the city name is unspec-
ified. The city name is passed in via the CityName parameter in the function definition. Listings
8-12 and 8-13 show the SQL and SqlQuery representations of this scenario’s query.

Listing 8-12. Scenario #2 SQL Representation

SELECT CustomerID, CompanyName, City, Phone AS PhoneNumber, Fax as FaxNumber
FROM Customers
WHERE City='<City Name>' -- line is optional based on city value
ORDER BY CompanyName

■Note Items that appear in < > brackets represent SQL terms that vary from query to query.

Listing 8-13. Scenario #2 SqlQuery Representation

'***
Public Shared Function Scenario2(ByVal CityName As String) As String

 Dim SqlQueryObj As New Reporting.SqlQuery

 SqlQueryObj.SelectFields.Add("CustomerID")
 SqlQueryObj.SelectFields.Add("CompanyName")
 SqlQueryObj.SelectFields.Add("City")
 SqlQueryObj.SelectFields.Add("Phone", "PhoneNumber")
 SqlQueryObj.SelectFields.Add("Fax", "FaxNumber")
 SqlQueryObj.From = "Customers"

 If Not CityName = String.Empty Then
 SqlQueryObj.Where.AddCondition("City='" & CityName & "'")
 End If

 SqlQueryObj.OrderBy.Add("CompanyName")
 Return SqlQueryObj.GetQuery()

End Function

This example has conditional logic, highlighted in bold, that appends a WHERE clause
condition if the city name is specified in the CityName variable. You can make the conditional
logic for your WHERE clause as simple or as complicated as you need.

6293_ch08.fm Page 367 Monday, November 14, 2005 11:06 AM

368 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

Scenario 3: Building Conditional FROM, SELECT, WHERE, and ORDER BY Clauses

Next, we have a more complicated scenario that gives the user multiple ways to view data and
the ability to specify the order in which the results are returned. The first way to view the data
mimics the data from Scenario 2. The second option returns all the data from Scenario 2 along
with the total amount of money each customer has spent on products in the last six months.
Acquiring the sales totals for customers requires joining the Customers, Orders, and Order
Details tables, adding aggregate columns to the select fields list, and additional WHERE clause
items to limit the orders to those in the last six months. Listing 8-14 and 8-15 show the SQL and
SqlQuery representations of this scenario’s query.

■Note You can extend the SqlQuery tool to programmatically create joins between tables if you want to.
For now, we’ll manually define the joins and assign them to the From property.

Listing 8-14. Scenario #3 SQL Representation

SELECT CustomerID, CompanyName, City, Phone AS PhoneNumber, Fax as FaxNumber
FROM Customers
WHERE City='<City Name>' -- line is optional
ORDER BY <Sort Order Field List> -- line is optional
SQL Representation (Option 2):
SELECT Customers.CustomerID, Customers.CompanyName,
 Customers.Phone AS PhoneNumber, Customers.Fax AS FaxNumber,
 Customers.City,
 SUM([Order Details].UnitPrice * [Order Details].Quantity) AS TotalSpent
FROM Customers INNER JOIN Orders ON
 Customers.CustomerID = Orders.CustomerID INNER JOIN [Order Details] ON
 Orders.OrderID = [Order Details].OrderID
WHERE (Orders.OrderDate > '<Six Months Ago>')
 AND (Customers.City = '<City Name>') -- line is optional
GROUP BY Customers.CustomerID, Customers.CompanyName, Customers.Phone,
 Customers.Fax, Customers.City
ORDER BY <Sort Order Field List> -- line is optional

Listing 8-15. Scenario #3 SqlQuery Representation

'***
Public Shared Function Scenario3(ByVal CityName As String, _
 ByVal ShowTotalSpent As Boolean, ByVal SortColumn As String, _
 ByVal SortDir As Reporting.SqlSortDirection) As String

 Dim SqlQueryObj As New Reporting.SqlQuery

 SqlQueryObj.SelectFields.Add("Customers.CustomerID")
 SqlQueryObj.SelectFields.Add("Customers.CompanyName")

6293_ch08.fm Page 368 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 369

 SqlQueryObj.SelectFields.Add("City")
 SqlQueryObj.SelectFields.Add("Customers.Phone", "PhoneNumber")
 SqlQueryObj.SelectFields.Add("Customers.Fax", "FaxNumber")

 If Not CityName = String.Empty Then
 SqlQueryObj.Where.AddCondition("Customers.City='" & CityName & "'")
 End If

 If ShowTotalSpent Then

 'Set up the additional Select Field
 SqlQueryObj.SelectFields.Add(_
 "SUM([Order Details].UnitPrice * [Order Details].Quantity)", _
 "TotalSpent")

 'Set up the FROM clause with the Joined tables
 SqlQueryObj.From = "Customers INNER JOIN Orders ON " & _
 "Customers.CustomerID = Orders.CustomerID INNER JOIN " & _
 "[Order Details] ON Orders.OrderID = [Order Details].OrderID"

 'Add the WHERE clause to limit orders to the last 6 months
 SqlQueryObj.Where.And()
 SqlQueryObj.Where.AddCondition("Orders.OrderDate > '" & _
 Format(CDate(Now.AddMonths(-6)), "MM/dd/yyyy") & "'")

 'Set up the GROUP BY clause
 SqlQueryObj.GroupBy.Add("Customers.CustomerID")
 SqlQueryObj.GroupBy.Add("Customers.CompanyName")
 SqlQueryObj.GroupBy.Add("Customers.Phone")
 SqlQueryObj.GroupBy.Add("Customers.Fax")
 SqlQueryObj.GroupBy.Add("Customers.City")

 Else
 'Set up the single table FROM clause
 SqlQueryObj.From = "Customers"
 End If

 'Build out ORDER BY based on SortColumn value
 Select Case UCase(SortColumn)
 Case "CUSTOMERID"
 SqlQueryObj.OrderBy.Add("CustomerID", SortDir)
 Case "TOTALSPENT"
 SqlQueryObj.OrderBy.Add("TotalSpent", SortDir)
 SqlQueryObj.OrderBy.Add("CompanyName", SortDir)
 Case Else
 SqlQueryObj.OrderBy.Add("CompanyName", SortDir)
 End Select

6293_ch08.fm Page 369 Monday, November 14, 2005 11:06 AM

370 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 Return SqlQueryObj.GetQuery()
End Function

As you can see, the SqlQuery class allows you to focus more on building queries and less
on string manipulation. Scenario3 begins by adding the common fields to both queries to
SqlQueryObj. Notice that the SELECT field names are fully qualified; that is, they contain both
the table and the column name in their definition. It always helps to fully qualify fields because
SQL Server does not have to do any extra work to determine which table the field belongs to.
And you are required to fully qualify field names that appear in more than one of the tables you
are joining because SQL has no way of resolving the name otherwise.

Both queries use the CityName filter in the WHERE clause if it’s specified, so Scenario3 runs
the conditional logic to determine if the clause should be added.

Then the function determines whether or not the user wants to see the total amount each
customer has spent in the last six months by checking the ShowTotalSpent flag parameter of the
function. If the flag is set to True, then Scenario3 sets up an additional SELECT column that
calculates the sum of all items ordered, and sets up an alias for that column named TotalSpent.

Next, assuming that the ShowTotalSpent flag is True, the function sets up the appropriate
FROM clause because the Customers, Orders, and Order Detail tables all need to be joined before
the TotalSpent column can be calculated. To do this, we join the Customer table to the Order
table, which contains a record of an individual order, but not the details of that order. We then
join the Order table to the Order Details table, which contains a listing of the items included in
the order and their purchase price. This gives us a relationship between customers and order
details that we can use to calculate the total amount of money each customer has spent. After
the FROM clause has been set up, Scenario3 calculates a date value six months in the past using
Now.AddMonths(-6) and adds the condition to the WHERE clause to ensure only orders from the
last six months are included in the TotalSpent calculation. Finally, the method adds a series of
GROUP BY items to the query. These are required by SQL syntax because they are nonaggregate
columns (that is, not calculated using an aggregation function such as SUM or AVG).

If the ShowTotalSpent flag is not set, then Scenario3 assigns “Customers” to the FROM clause
because no joins are required and continues on to the ORDER BY section.

The last thing the function does before returning the query is to set up the appropriate
ORDER BY clause based on the sortColumn and SortDir parameters of the function. The function
uses a case statement to determine which column was specified and then adds the appropriate
items to the OrderBy property based on that determination.

■Tip You can add a field list parser or an alternative string property to your SqlQuery class if you would
rather specify your SELECT, GROUP BY, and ORDER BY items as a single string instead of as a series of indi-
vidual items.

Executing Queries with the SqlQuery Class
Building a query is only one part of the equation; you also have to execute that query. Because
a normal query is just like any static query that you would create with a string, you just have to
create the appropriate database objects and execute it as shown in Listing 8-16.

6293_ch08.fm Page 370 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 371

Listing 8-16. Executing a Normal Query

Imports System.Data.SqlClient
...

Private Sub RunQuery()
 Dim SqlQueryObj As New Reporting.SqlQuery
 Dim dbConn As New SqlConnection(_
 ConnectionStrings("Northwind").ConnectionString)
 Dim dbCmd As SqlCommand
 Dim dr As SqlDataReader

 'Build SQL Query (SELECT * FROM CUSTOMERS)
 SqlQueryObj.From = "Customers"

 'Execute the query
 dbConn.Open()
 dbCmd = New SqlCommand(SqlQueryObj.GetQuery, dbConn)
 dr = dbCmd.ExecuteReader()

 'Do what you need to with the data reader
 ' ... Code ...

 dr.Close()
 dbConn.Close()
End Sub

This should not look much different than another database access routine that you have
seen. It creates a connection object and a command object, opens the database, and executes
the command. The command initializes a data reader that can then be used for whatever
purpose you need. Then you close the data reader and the database connection.

Executing Paged Queries with the SqlQuery Class
Executing a paged query is just as simple as executing a normal query, but you must specify an
ORDER BY clause, the number of items to display on a page, and which page of data you want the
query to return. Listing 8-17 provides an example outlining the differences.

Listing 8-17. Executing a Paged Query

Imports System.Data.SqlClient
...

'***
Private Sub RunQuery(ByVal currentPage as Integer, ByVal itemsPerPage as Integer)
 Dim SqlQueryObj As New Reporting.SqlQuery
 Dim dbConn As New SqlConnection(_
 ConnectionStrings("Northwind").ConnectionString)

6293_ch08.fm Page 371 Monday, November 14, 2005 11:06 AM

372 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 Dim dbCmd As SqlCommand
 Dim dr As SqlDataReader

 'Build SQL Query (SELECT * FROM CUSTOMERS)
 SqlQueryObj.From = "Customers"
 SqlQueryObj.OrderBy.Add("CustomerID")

 'Execute the query
 dbConn.Open()
 dbCmd = New SqlCommand(_
 SqlQueryObj.GetPagedQuery(currentPage, itemsPerPage), dbConn)
 dr = dbCmd.ExecuteReader()

 'Do what you need to with the data reader
 ' ... Code ...

 dr.Close()
 dbConn.Close()
End Sub

These examples have given you a good demonstration of the basic usage of the SqlQuery
class. You can use it to create as simple or as complex of a query as you desire, and it’s espe-
cially handy when working with the ORDER BY and WHERE clauses, and for paging data. In the
next chapter, you’ll learn a lot more about the paging features of the SqlQuery class and how to
use the count query to display detailed paging information like the total number of records
returned and the overall page count.

In this next section, you’ll see how easy it is to build out common search clauses using the
SqlConditionGroup object.

Commonly Used Search Functions
As you work with search and query features, you may find yourself building out the same WHERE
clauses over and over again. The most common ones are usually date range and keyword
searches, both of which are fairly generic. You may also have less-generic ones that align them-
selves more with your core business. For instance, you may repetitively use certain customer,
product, category, or other clauses that are more tightly linked to your company’s business
processes. If you continually use it over and over again, then you might as well make it easier
to use over the long haul by creating a commonly used search function.

There are two options for building out commonly used search functions. If the search func-
tion is fairly generic and thus can be reused on almost every one of your projects, then you can
add the function directly to the SqlConditionGroup class. Adding the function in this location
makes it easy to call the function from a logical place when you are using a SqlQuery object.

sqlQueryObj.SelectFields.Add("OrderID")
sqlQueryObj.SelectFields.Add("OrderDate")
sqlQueryObj.From = "Order"
sqlQueryObj.Where.CreateDateRange("1/1/2004", "1/1/2005", "Order Date", _
 Exclusive, "MM/dd/yyyy")

6293_ch08.fm Page 372 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 373

Notice that the CreateDateRange function can be called from the Where property of the
SqlQuery object because it resides in the SqlConditionGroup class. This makes your code fairly
easy to read.

The other option is to create a function in a separate library, and pass the function a refer-
ence to a SqlQuery object. Then you can manipulate the SqlQuery object accordingly inside the
function. This option is useful when you have a function that will be common in a single
project but not necessarily in all your projects.

sqlQueryObj.SelectFields.Add("OrderID")
sqlQueryObj.SelectFields.Add("OrderDate")
sqlQueryObj.From = "Order"
ProjectLibrary.CustomSearchQuery(sqlQueryObj,Param1,Param2)

This approach helps keep your SqlConditionGroup class from becoming cluttered with
code that cannot be ported from one project to the next.

Because both the CreateDateRange and CreateKeyword functions are generic, they will be
placed in the SqlConditionGroup class. You can see their function definitions and location in
the class by looking near the end of Listing 8-6 earlier in this chapter.

Date Range Search
Searching for records in a specific date range is one of the most common ways to search for
records because time is very important when it comes to data. It may be important to find data
created in the past few days so it can be processed appropriately. It may be important to
exclude data beyond a certain date because the data is no longer applicable. Whatever the
case, it’s a situation that is very likely to come up in your searching and querying endeavors.

The idea behind the CreateDateRange function is simple. It acts like the AddGroup function,
but it adds a group containing date-range conditions. It also returns the SqlConditionGroup
that it creates as the result of the function, just like the AddGroup function, in case you want to
store a reference to it. You’ll notice that there are two function definitions for the Create➥

DateRange function. The first allows you to create a date-range group without a
unique group name, and the second allows you to specify a unique group name for searching
purposes. This discussion is limited to the second function because the first one just calls the
second one and passes in an empty string for the unique name (see Listing 8-18).

Listing 8-18. CreateDateRange Function

 '***
 Public Function CreateDateRange(ByVal startDateStr As String, _
 ByVal endDateStr As String, ByVal column As String, _
 ByVal evalType As SqlEvaluationType, ByVal dateFormat As String) _
 As SqlConditionGroup

 Return CreateDateRange(startDateStr, endDateStr, column, evalType, _
 dateFormat, String.Empty)

 End Function

6293_ch08.fm Page 373 Monday, November 14, 2005 11:06 AM

374 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 '***
 Public Function CreateDateRange(ByVal startDateStr As String, _
 ByVal endDateStr As String, ByVal column As String, _
 ByVal evalType As SqlEvaluationType, ByVal dateFormat As String, _
 ByVal name As String) As SqlConditionGroup

 Dim group As SqlConditionGroup
 Dim startDate As Date
 Dim endDate As Date

 'Make sure that there is at least one date specified before continuing
 If IsDate(startDateStr) Then startDate = CDate(startDateStr)
 If IsDate(endDateStr) Then endDate = CDate(endDateStr)
 If startDate = Nothing And endDate = Nothing Then Return Nothing

 'Specify a date format string if none was supplied
 If dateFormat = String.Empty Then dateFormat = "MM/dd/yyyy"

 'Create new group. Specify that all conditions in group must be met
 group = New SqlConditionGroup(_NextOperation, False, name)
 group.And()

 'Append the start date criteria, if applicable
 If Not startDate = Nothing Then

 Select Case evalType

 Case SqlEvaluationType.Exclusive
 group.AddCondition(String.Format("{0}>'{1}'", column, _
 Format(startDate, dateFormat)))

 Case SqlEvaluationType.Inclusive
 group.AddCondition(String.Format("{0}>='{1}'", column, _
 Format(startDate, dateFormat)))

 End Select
 End If

 'Append the end date criteria, if applicable
 If Not endDate = Nothing Then
 Select Case evalType

 Case SqlEvaluationType.Exclusive
 group.AddCondition(String.Format("{0}<'{1}'", column, _
 Format(endDate, dateFormat)))

6293_ch08.fm Page 374 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 375

 Case SqlEvaluationType.Inclusive
 group.AddCondition(String.Format("{0}<='{1}'", column, _
 Format(endDate, dateFormat)))

 End Select
 End If

 List.Add(group)
 Return group

 End Function

CreateDateRange accepts a number of parameters. Before we go any further, Table 8-5
clarifies what those parameters are and what they represent.

The CreateDateRange function begins by creating a series of variables that will be used
throughout the function. The group variable is a SqlConditionGroup that stores the statement
as it’s being built. Both startDate and endDate are Date variables used to store the actual Date
representation of the startDateStr and endDateStr parameters, respectively. The code to
check and convert the strings into dates is shown directly under the variable declarations.

If neither startDate nor endDate is a valid date, then there is no reason to continue. The
function simply returns Nothing, and nothing is added to the statement. If there is at least one
valid date, then the function continues.

Because at least one date exists, the function initializes the group object so it can store
conditions as they are added to the statement. Notice that the method passes _NextOperation,
False, and name into the group constructor. You pass _NextOperation into the group to assign
the group its ISqlCondition.ConditionOp value to determine which condition operator
precedes the group when it is output as a string. The second parameter, False, simply means
that the group should not be negated. And the last parameter gives the group a unique name,
assuming a unique name was provided (it could be an empty string). The method then calls

Table 8-5. CreateDateRange Parameters

Parameter Name Type Description

startDateStr String Start date.

endDateStr String End date.

column String Name of the column containing the date information.

evalType SqlEvaluationType Defines whether the actual date should be included or
excluded in the query results. If inclusive is specified
then, >= and <= will be used. If exclusive is specified then
> and < will be used.

dateFormat String Allows you to specify a format for the date string in the
SQL query. If no format string is specified, then MM/DD/
yyyy is used. This is helpful if you want to specifically
include the time portion of a date in the query or you
need to specify a different date format for your locale.

name String Allows you to give the group created by the method a
unique ID.

6293_ch08.fm Page 375 Monday, November 14, 2005 11:06 AM

376 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

group.And() because all the conditions in the group must be met for the date to fall within the
date range. Remember, you do not need to repeatedly call group.And() because it sets an
internal value that will continue to use AND with conditions until you explicitly change it.

Next, if startDate contains a valid date, CreateDateRange checks to see which evaluation
method should be used by checking the evalType parameter. If the exclusive evaluation type is
being used, then the function will use > in the condition. If inclusive is being used, then the
function will use >= in the condition. In either case, String.Format is used to create a condition
containing the column named and appropriately formatted startDate information. That
condition is then added to group.

The following section behaves similarly, but it applies to the end date. Thus, it uses < and
<= in the condition.

At the end of the function, group is added to the collection of ISqlCondition objects stored
in the List property of the SqlConditionGroup, and then returned as the result of the function.

Using the DateRangeSearch
You may be wondering why the DateRangeSearch function accepts string representations of the
start and end dates instead of actual date types. The reasoning is that this function is designed
for use with web-based applications, and web-based applications usually acquire dates as
strings. Thus, the DateRangeSearch function encapsulates the logic for converting those strings
into dates.

Listing 8-19 is a simple example of how to use the DateRangeSearch function. Assume there
are three text boxes named txtCustomerID, txtStartDate, and txtEndDate; a GridView control
named myGrid; and a button named btnDateRangeQuery:

Listing 8-19. CreateDateRange Function Example

'***
Protected Sub btnDateRangeQuery_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnDateRangeQuery.Click

 Dim sqlQueryObj As New Reporting.SqlQuery
 Dim dbConn As New SqlConnection(_
 ConnectionStrings("Northwind").ConnectionString)
 Dim dbCmd As SqlCommand
 Dim dr As SqlDataReader

 sqlQueryObj.From = "Orders"

 If Not Me.txtCustomerID.Text = String.Empty Then
 sqlQueryObj.Where.AddCondition(_
 String.Format("CustomerID='{0}'", txtCustomerID.Text))
 End If

 sqlQueryObj.Where.And()
 sqlQueryObj.Where.CreateDateRange(Me.txtStartDate.Text, _
 Me.txtEndDate.Text, "OrderDate", _
 Reporting.SqlEvaluationType.Inclusive, "MM/dd/yyyy")

6293_ch08.fm Page 376 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 377

 dbConn.Open()
 dbCmd = New SqlCommand(SqlQueryObj.GetQuery(), dbConn)
 dr = dbCmd.ExecuteReader()

 myGrid.DataSource = dr
 myGrid.DataSource.DataBind()

 dr.Close()
 dbConn.Close()

End Sub

Listing 8-19 demonstrates how you can pass text directly into the CreateDateRange func-
tion, and how you can apply conditional logic to the SqlConditionGroup added by function.
Take note of the sqlQueryObj.Where.And() call in the code. This means that if both the
CustomerID and a date range are specified, then only rows matching the CustomerID AND the
date range will be returned. If the sqlQueryObj.Where.Or() had been called, then OR logic
would apply.

Now let’s move on to another useful search feature, the CreateKeywords function.

Keyword Search
Keyword searching should be a more common search tool in business applications. I say
should because most of the applications I run across either do not have keyword searching, or
it’s implemented very poorly. The following keyword search allows you to search for multiple
keywords in multiple columns, and it allows you to employ conditional and parenthetical
operators. This means that if your users are, for example, searching for a particular employee,
they can enter complex text-based keyword queries like (Smith OR Abrams) AND NOT (Manager)
to help narrow down searches. Notice that the text for the keyword search is totally free form.
You pass the text entered by the user directly into the method and it sorts out the details, so it’s
very simple to use. Plus, the search mechanism uses LIKE searching with wildcards that
matches on substrings. For example, a search for “Jo” returns matches on “Joe”, “Joseph”,
“Jonathan”, and so on.

Although keyword searching may seem like a complicated task, it’s actually fairly simple
because of the SqlQuery tool’s architecture, and actually requires a few less lines of code than
the CreateDateRange function. Listing 8-20 is the code for the function.

Listing 8-20. CreateKeywords Function

Imports System.Text.RegularExpressions
...

'***
Public Function CreateKeywords(ByVal keywords As String, _
 ByVal column As String, ByVal defaultOp As SqlOperation) As SqlConditionGroup

 Dim group As New SqlConditionGroup(_NextOperation, False)
 Dim groupStack As New Stack
 Dim keywordList As String()

6293_ch08.fm Page 377 Monday, November 14, 2005 11:06 AM

378 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 Dim [not] As Boolean
 Dim hasCondition As Boolean

 If Trim(keywords) = String.Empty Then Return Nothing
 keywords = Regex.Replace(keywords, "\(|\)", " $0 ")
 keywords = Regex.Replace(keywords, "\s{2,}", " ")
 keywordList = Split(UCase(Trim(keywords)))

 For Each keyword As String In keywordList
 Select Case keyword
 Case "AND"
 group.And()
 Case "OR"
 group.Or()
 Case "NOT"
 [not] = True
 Case "("
 groupStack.Push(group)
 group = group.AddGroup()
 group.Not = [not]
 [not] = False
 Case ")"
 If groupStack.Count > 0 Then group = groupStack.Pop
 Case ""
 'Do nothing
 Case Else
 group.AddCondition(String.Format(_
 "{0}{1} like '%{2}%'", IIf([not], "NOT ", ""), _
 column, SqlString(keyword)))
 [not] = False
 hasCondition = True
 End Select
 Next

 If hasCondition Then
 'Make sure you end up with the top level group
 While groupStack.Count > 0
 group = groupStack.Pop()
 End While
 List.Add(group)
 Return group
 Else
 Return Nothing
 End If

End Function

6293_ch08.fm Page 378 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 379

CreateKeywords has eight different parameters and variables used throughout the func-
tion. For reference, they are outlined in Table 8-6.

After defining and initializing its function variables, CreateKeywords checks to make sure
keywords is not empty. If keywords is empty, then the function immediately returns Nothing.
Otherwise, it runs two regular expressions that ensure keywords can be split appropriately.

The first regular expression adds a space before and after any parenthesis in the string.
Thus, ((A OR B)AND(C OR D)) becomes ((A OR B) AND (C OR D)) . This is important because
we want each parenthesis to be recognized as its own item in the keyword list, and the list is

Table 8-6. CreateKeyword Variables

Name Type Description

keywords String Contains the free-form keyword text entered by the user. The
bolded text in this section’s introduction is an example of the
text that may be coming in via the keywords parameter.

column String Parameter containing the name of the column to search.
You can search multiple columns at the same time by
passing in a column name like “Column1 + Column2 +
Column3”. At runtime, SQL concatenates the column
values together and allows you to search through all the
column text at once. You will see an example of this trick
later on in the chapter.

defaultOp SqlOperation Parameter defining the default conditional logic (AND/OR)
applied when no conditional logic is explicitly defined; that
is, if the keywords are BILL SMITH, defaultOp defines
whether it means BILL AND SMITH or BILL OR SMITH.

group SqlConditionGroup Holds a reference to the active SqlConditionGroup to which
conditions are being added.

groupStack Stack Maintains a stack of SqlConditionGroup objects to help
build out the parenthetical logic defined in the keyword
text. When you encounter an open parenthesis in the
keyword string, you create a new group and set it as the
active group. But you need a way to return to the parent
group when you encounter the end parenthesis. Because
the SqlConditionGroup object does not have a property
identifying its parent, you need the groupStack to maintain
parent references. When you encounter the end paren-
thesis, you simply pop a group off the stack because it is the
parent of the current group. You can then continuing
processing the keyword text.

keywordList String() Holds the resulting string array when the keywords param-
eter is split into an individual word list.

[not] Boolean When the NOT keyword is encountered, this flag is set so the
next condition can be negated.

hasCondition Boolean This flag is set when a condition is encountered. This helps
the function avoid returning a completely empty
SqlConditionGroup.

6293_ch08.fm Page 379 Monday, November 14, 2005 11:06 AM

380 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

split using the space character as a delimiter. Without this regular expression, the list would
look like this: {((A, OR, B)AND(C, OR, D))} (5 items). With the regular expression, the list looks
like this: {(,(,A,OR,B,),AND,(,C,OR,D,),)} (13 items). You’ll see why this is important in a
minute.

The second regular expression looks for any parts of the string where there are two or more
spaces and replaces those spaces with a single space. Because the keyword list is delimited by
spaces, two spaces in a row will create a blank item in the list. Removing extra spaces reduces
these blank items.

After the keyword string has been checked and processed, it is forced into uppercase,
trimmed to remove leading and trailing spaces, and then split into a string array that is stored
in the keywordList variable.

■Caution If your SQL Server is set up to do case-sensitive text searching, then you will not want to UCase
the entire keyword string. You may want to just use a regular expression to uppercase the AND, OR, and NOT
keywords in the string instead, or add additional Case statements to handle the different spellings of those
keywords.

Next, the CreateKeywords function iterates through each keyword string in keywordList and
checks the keyword against a series of options in a Select Case statement. Following is a list of
the Case options and what happens if keywords matches that particular Case:

• Case “AND”: When this keyword is encountered, the next condition or group added to the
current group should be added with AND conditional logic, so this Case simply calls
group.And().

• Case “OR”: When this keyword is encountered, the next condition or group added to the
current group should be added with OR conditional logic, so this Case simply calls
group.Or().

• Case “NOT”: When this keyword is encountered, the next condition or group added to the
current group should be negated. This Case sets the [Not] flag to True. The actual nega-
tion is handled when the next condition or group is added.

• Case “ (”: When this keyword is encountered, a new child group should be added to the
current group. This Case begins by pushing the current group to the groupStack. It then
adds a new child group to the current group using the group.Add() method. Remember,
group.Add()returns the newly created group object, which you assign back to the group
variable on the same line. This makes the new child group the active group. Also, the
group.Not property is set to the [Not] flag, which negates the group if the [Not] flag has
been set. The [Not] flag is then cleared.

• Case “)”: When this keyword is encountered, the active group has been closed, and the
parent of the active group should become the new active group. The parent of the active
group is always the topmost item on the stack because it was pushed to the stack before
the child group was created. This Case first checks to make sure the stack contains an
item, then pops the value from the stack and stores it in the group variable. Checking the

6293_ch08.fm Page 380 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 381

stack for an item avoids issues that could arise if a user accidentally enters too many
closing parentheses, such as (A AND B))). You do not have to worry about users entering
too many opening parentheses either because parentheses are automatically closed by
the SqlQuery object when it writes out the query.

• Case “”: If this case is encountered, it is simply skipped.

• Case Else: If none of the other cases are matched, then a new condition should be added
to the active group that searches the column for the keyword. You can see that the
String.Format function is used to construct a condition using the [Not] flag, column,
and the keyword. The condition uses the SQL LIKE operator and surrounds the keywords
with % wildcard characters, so the operation checks to see if the keyword exists anywhere
in the specified column or columns. It also sets the [Not] flag to False and the has➥

Condition flag to True.

■Tip You can modify the wildcard functionality by allowing your users to include wild cards directly in their
searches and removing the automatic wild-card insertion in the code if you so desire.

Finally, the CreateKeywords function checks to see if the hasCondition flag has been set to
True. If not, then it knows that it never encountered an actual keyword, so it returns Nothing.
Otherwise, it pops any items still remaining on the stack off the stack, which ensures the group
contains the topmost SqlConditionGroup. It then adds that topmost group to the collection of
ISqlCondition items in the List property (that is, the function adds the group to the current
SqlQuery object) and returns a reference to the newly created keyword text group as the result
of the function.

Using the CreateKeywords Function
You can use the CreateKeywords function in a couple of different ways, most of which revolve
around how many fields you have on your search form and how many columns you want to
search. For example, let’s say that you want to create a search form that allows your users to
search for a customer by CustomerID. You would create a text box named txtCustomerID where
users would enter keywords. Then you would use the following code to create a query using
that keyword information:

sqlQueryObj.Where.CreateKeywords(Me.txtCustomerID.Text, "CustomerID",
 Reporting.SqlOperation.And)

You just pass in the search text, the column to search, and default operator to use if
multiple keywords exist. In this case, And is the default operator so the CustomerID must match
all the keywords specified. This reduces the number of values returned (because it is more
restrictive than an Or search). If you want to maximize the number of values returned, then use
Or as the default operator instead.

Later on, let’s say you wanted to add two more text box fields to your search form to
expand the search functionality. One allows for a keyword search on the FirstName column

6293_ch08.fm Page 381 Monday, November 14, 2005 11:06 AM

382 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

(txtFirstName), and the other allows for a keyword search on the LastName column
(txtLastName). Your code would then look like this:

sqlQueryObj.Where.And()
sqlQueryObj.Where.CreateKeywords(Me.txtCustomerID.Text, "CustomerID", _
 Reporting.SqlOperation.And)
sqlQueryObj.Where.CreateKeywords(Me.txtFirstName.Text, "FirstName", _
 Reporting.SqlOperation.And)
sqlQueryObj.Where.CreateKeywords(Me.txtLastName.Text, "LastName", _
 Reporting.SqlOperation.And)

Then let’s say that your users come back to you and say they don’t like tabbing through all
the fields on the form, and they would prefer to just have one field for the keyword entry. They
still want it to search through the CustomerID, FirstName, and LastName fields, however. You can
do this by having a single text box named txtKeywords and running this code:

sqlQueryObj.Where.CreateKeywords(Me.txtKeywords.Text, _
 "FirstName + ' ' + LastName + ' ' + CustomerID", _
 Reporting.SqlOperation.And)

Notice that the “column” specified in this code is really three columns that are concate-
nated together (with spaces placed in-between). When the SqlQuery object outputs the text to
build the query, it places FirstName + ' ' + LastName + ' ' + CustomerID directly in the SQL
query. When SQL encounters this text, it concatenates the value of the columns together to
produce a large string value that you can search all at once.

There are, of course, some performance considerations. For the most part, you should not
see many issues, but if you do, here are some things you may want to check. As you use more
and more CreateKeywords functions (as in the second example), your SQL query will become
longer and longer and take longer and longer to process. Along the same lines, as you concate-
nate more and more columns together (as in the third example), your SQL query will have to
process more and more text before it can search through it. If you are experiencing issues, you
may want to reduce the number of columns on which you are searching. Also, the number of
keywords specified has an impact on performance, so you may want to limit the number of
keywords users may enter if you notice any performance issues.

Displaying Basic and Advanced Searches
Everyone has their own preferences when it comes to searches. Some people may want to see
a simple search with only a few fields. Others may want to see an advanced search that allows
for a more detailed query. Fortunately, you don’t have to choose one over the other. You can
let your users choose their preferred option by providing the ability to switch between a simple
and an advanced search. The next few sections walk you through a simple architecture for
switching out search forms.

In the examples that follow, you’ll see the implementation of a simple and advanced
search form, both of which generate queries for the Employee table in the Northwind database.
The basic idea behind this solution is that you want to create a generic interface that a search
form can implement, then use that interface to allow different search forms to communicate
with the actual search page. Because the actual search form is abstracted through the interface,

6293_ch08.fm Page 382 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 383

you can implement any type of search form you want and the page can still work with it. That
means simple forms, advanced forms, or even different forms for different security levels. You
are not just limited to simple and advanced forms under this architecture.

There are a total of four components in this example. The ISearchControl interface
defines a common set of search functionality for search forms. The SimpleForm.ascx and
AdvancedForm.ascx are two search forms that implement the ISearchControl form and expose
varying levels of searching functionality. And lastly, the EmployeeSearch.aspx page demon-
strates how you can easily switch back and forth between search forms that implement the
ISearchControl interface. All these components can be found in the Chapter 8 sample applica-
tion in the Source Code area on the Apress website.

ISearchControl Interface
The ISearchControl interface exists to abstract the functionality of a search form so there can be
a single generic way to extract data from the form. The objective of a search form is to take user
search criteria and build a query from those criteria. Because the actual fields change from form
to form, the only piece of data we are really interested in acquiring from a search form is the
actual query it constructs based on that user input. Take a look at the ISearchControl interface,
which is housed in the Reporting project of the sample application as shown in Listing 8-21.

Listing 8-21. ISearchControl Interface

Public Interface ISearchControl
 Function GetSqlQuery() As SqlQuery
End Interface

Notice that this interface only requires the implementation of a single function.
GetSqlQuery is designed to return a SlqQuery object containing the query built out by the form.
This SqlQuery object can then be used by the main page to pull back search results from a
database.

Creating the Basic Search Form (SimpleForm.ascx)
Search forms are user controls that implement the ISearchControl interface. Like any user
control, you can drag ASP.NET controls onto the user control, and use the code-behind file to
execute code in response to any events fired by the controls on the form.

In this example, the simple form allows users to enter keywords into a text box control
named txtEmployeeInfo as shown in Figure 8-4. In the code behind, it builds a query that
searches for those keywords in the FirstName, LastName, and Title columns in the Employees
database. Listing 8-22 is code behind for the simple form.

Figure 8-4. Screenshot of SimpleForm.ascx

6293_ch08.fm Page 383 Monday, November 14, 2005 11:06 AM

384 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

Listing 8-22. SimpleForm.ascx.vb (Code-Behind File)

Imports Reporting

Partial Class SimpleForm
 Inherits System.Web.UI.UserControl
 Implements ISearchControl

 '***
 Public Function GetSqlQuery() As Reporting.SqlQuery _
 Implements Reporting.ISearchControl.GetSqlQuery

 Dim SqlQueryObj As New SqlQuery

 SqlQueryObj.From = "Employees"
 SqlQueryObj.Where.CreateKeywords(Me.txtEmployeeInfo.Text, _
 "FirstName + ' ' + LastName + ' ' + Title", SqlOperation.And)

 Return SqlQueryObj

 End Function

End Class

You can see that the only function the user control has is the GetSqlQuery function
required by the ISearchControl interface. Inside the GetSqlQuery function, a SqlQuery object
named SqlQueryObj is instantiated, it’s From property is set to the Employees table, and a
keyword condition is added to the WHERE clause using the keywords from the txtEmployeeInfo
text box control. Then SqlQueryObj is returned as a result of the function so it can be used in the
main search page.

You’ll get to see how the form interacts with the actual page in a minute, but for now, let’s
also take a quick look at the advanced form.

■Note Both the simple and the advanced forms are located in the SearchForms folder of the website
project in the sample application in the Source Code area of the Apress website.

Creating the Advanced Search Form (AdvancedForm.ascx)
The advanced form allows people to create more granular searches. Users can search for a
specific employee ID, for keywords in the employee’s first and last name, for keywords in the
employee’s title, and even for employees who were born in a specific date range. The advanced
form is shown in Figure 8-5. Although the form is more advanced, it still implements the
ISearchControl interface, just like the simple form. Listing 8-23 shows the code behind.

6293_ch08.fm Page 384 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 385

Figure 8-5. Screenshot of AdvancedForm.ascx

Listing 8-23. AdvancedForm.ascx.vb (Code-Behind File)

Imports Reporting

Partial Class AdvancedForm
 Inherits System.Web.UI.UserControl
 Implements ISearchControl

 '***
 Public Function GetSqlQuery() As Reporting.SqlQuery _
 Implements Reporting.ISearchControl.GetSqlQuery

 Dim sqlQueryObj As New SqlQuery
 sqlQueryObj.From = "Employees"

 'This query will use AND conditional logic
 sqlQueryObj.Where.And()

 'Set up the employee ID condition if applicable
 If Me.txtEmployeeID.Text <> String.Empty Then _
 sqlQueryObj.Where.AddCondition("EmployeeID=" & _
 SqlString(Me.txtEmployeeID.Text))

 'Set up the employee name keywords
 sqlQueryObj.Where.CreateKeywords(_
 Me.txtEmployeeName.Text, "FirstName + ' ' + LastName", SqlOperation.And)

 'Set up the title keywords
 sqlQueryObj.Where.CreateKeywords(_
 Me.txtTitle.Text, "Title", SqlOperation.And)

 'Set up the birth date date range
 sqlQueryObj.Where.CreateDateRange(_

6293_ch08.fm Page 385 Monday, November 14, 2005 11:06 AM

386 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 Me.txtBirthDateStart.Text, Me.txtBirthDateEnd.Text, "BirthDate", _
 SqlEvaluationType.Inclusive, "MM/dd/yyyy")

 Return sqlQueryObj

 End Function

End Class

Once again, the only method this user control implements is the GetSqlQuery function
required by the ISearchControl interface. The GetSqlQuery function instantiates a SqlQuery
object, sets the FROM property to the Employee table, and proceeds to add conditions to the
WHERE clause for the employee ID (if applicable), name keywords, title keywords, and the birth
date range. Remember, you do not have to check for the existence of the value before calling
the CreateKeywords or CreateDateRange functions. They will not add entries to the Where prop-
erty unless there are valid entries to add. When all is said and done, it returns the SqlQuery
object as a result of the function. Now let’s see how to switch back and forth between these
types of forms on the actual search page.

Implementing the Main Search Page (EmployeeSearch.aspx)
The main search page contains all the logic for loading a default search form, switching back
and forth between forms, for acquiring the query from the form, and for actually using the
query after it has been received. Before we get into the code, however, you need to know about
four controls on the main search page as listed in Table 8-7.

Table 8-7. Relevant Controls on EmployeeSearch.aspx

Control Name Type Description

phForm PlaceHolder Acts as a placeholder for the actual form that will be loaded
by the search page. You should position the placeholder in
the location where you want the form to appear.

btnDisplayQuery Button Action button. When the viewer clicks this button, the
search page acquires the SqlQuery object from the form and
displays the query on the page. You always need some form
of action control to kick off the query, but it doesn’t have to
be a button.

lnkToggleForm LinkButton Toggle button. When the viewer clicks this button, the
search page toggles between the simple and the advanced
form. You normally display a toggle button to change
between search forms. The exception is if you are using
some other mechanism, such as security permissions, to
determine which form to display. Like the action button,
this does not have to be a LinkButton.

lblQueryOutput Label Displays the query after the action button has been clicked.
Normally you would use the query to execute a database
search, but this example just outputs the query to this label.

6293_ch08.fm Page 386 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 387

Now that you have an idea about some of the page components, lets take a look at the code
behind for the EmployeeSearch.aspx page (see Listing 8-24).

Listing 8-24. EmployeeSearch.aspx.vb (Code-Behind File)

Imports Reporting
Imports System.Data.SqlClient
Imports System.Configuration.ConfigurationManager

Partial Class EmployeeSearch
 Inherits System.Web.UI.Page

 '***
 Private SearchControl As ISearchControl

 '***
 Private Property FormName() As String
 Get
 'You could also use the profile here if you wanted
 If Session("SearchForm") Is Nothing Then
 Return "simpleForm.ascx"
 Else
 Return CStr(Session("SearchForm"))
 End If
 End Get
 Set(ByVal value As String)
 Session("SearchForm") = value
 End Set
 End Property

 '***
 Private Sub SetupForm()

 Dim SearchForm As Control = LoadControl("~/SearchForms/" & FormName)
 SearchControl = CType(SearchForm, ISearchControl)
 SearchForm.ID = "ucSearchForm"
 phForm.Controls.Clear()
 phForm.Controls.Add(SearchForm)

 If FormName = "SimpleForm.ascx" Then
 Me.lnkToggleForm.Text = "Advanced Search"
 Else
 Me.lnkToggleForm.Text = "Simple Search"
 End If

 End Sub

6293_ch08.fm Page 387 Monday, November 14, 2005 11:06 AM

388 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

 '***
 Protected Sub lnkToggleForm_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles lnkToggleForm.Click
 If FormName = "SimpleForm.ascx" Then
 FormName = "AdvancedForm.ascx"
 Else
 FormName = "SimpleForm.ascx"
 End If
 SetupForm()
 End Sub

 '***
 Protected Sub Page_PreLoad(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreLoad
 SetupForm()
 End Sub

 '***
 Protected Sub btnDisplayQuery_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnDisplayQuery.Click

 Dim SQL As String = SearchControl.GetSqlQuery.GetQuery()
 Me.lblQueryOutput.Text = SQL

 Dim SqlQueryObj As New Reporting.SqlQuery
 Dim dbConn As New SqlConnection(_
 ConnectionStrings("Northwind").ConnectionString)
 dbConn.Open()

 Dim dbCmd As New SqlCommand(SQL, dbConn)
 Dim dr As SqlDataReader = dbCmd.ExecuteReader()

 MyGrid.DataSource = dr
 MyGrid.DataBind()

 dr.Close()
 dbConn.Close()

 End Sub

End Class

There are five methods in the EmployeeSearch.aspx.vb code-behind file, and a single class-
level variable named SearchForm. SearchForm holds a reference to the appropriate form (simple
or advanced) so the page can acquire the SqlQuery from the form.

6293_ch08.fm Page 388 Monday, November 14, 2005 11:06 AM

C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S 389

FormName Property

When you allow users to switch back and forth between two forms, you need a way to deter-
mine which form they want to use. This example uses the FormName property to make that
determination. FormName returns the file name of the search form (user control) that is to be
loaded. The property uses the Session object to actually store the information, so the user only
needs to change the setting once per login. You can make this a profile setting if you want
the information to be retained between logins. Also, if the user has not specifically selected a
form—that is, Session("SearchForm") returns Nothing—then the property returns "Simple➥

orm.ascx" by default.

SetupForm Method

SetupForm is responsible for loading the appropriate search form and adding it to the phForm
placeholder. It does this by calling LoadControl("~/SearchForms/" & FormName), which loads
the user control at the specified file name and stores the resulting object in the SearchForm
variable. Then it casts the SearchForm into to an ISearchControl and stores a reference to the
ISearchControl in a class-level variable named SearchControl. The page uses SearchControl
later on in the btnDisplayQuery_Click event handler to acquire the SQL query.

It then sets the ID of the user control to ensure that it has a well-defined name. If you do
not set the ID on the user control, then ASP.NET automatically generates an ID for the control.
This may result in lost data and events if ASP.NET does not reassign your control the same ID
on the next postback, so we always give this control the same name to ensure data reaches it
appropriately. After setting the ID, SetupForm clears any controls in phForm, and adds Search➥

Form to the PlaceHolder.
The last section of code in SetupForm makes sure the toggle link text reads “Advanced

Search” if the simple search form is being shown and “Simple Search” if the advanced search
form is being shown.

lnkToggleForm_Click Method

Clicking the toggle button causes the advanced form to be displayed if the simple one is
currently being shown, or the simple one to be displayed if the advanced one is being shown.
This method uses an If statement to check the FormName property and switches the FormName
property accordingly. Then it calls SetupForm(), which removes the current form from the
PlaceHolder and adds the new one.

Page_PreLoad Event Handler

The Page_PreLoad method simply calls the SetupForm() method, which loads the selected form
into the placeholder. Loading the form into the page during the Page_PreLoad event handler
also means that the search form data is automatically loaded back into the user control on a
postback.

btnDisplayQuery_Click Method

When the action button is clicked, the SqlQuery object is acquired from the search form refer-
enced by the SearchForm variable. The GetQuery() function of that object is then called, and the

6293_ch08.fm Page 389 Monday, November 14, 2005 11:06 AM

390 C H A P T E R 8 ■ E F F E C T I V E S E A R C H T O O L S A N D T E C H N I Q U E S F O R Y O U R B U S I N E S S A P P L I C A T I O N S

resulting SQL statement is stored in a label so it can be displayed on the page. Normally, you
would execute the query, but this is just an example.

Benefits of User Control–Based Search Forms
Now that you understand how to implement interchangeable search forms, let’s consider
some of the benefits of implementing search forms in this fashion. I’ve worked on numerous
projects where search forms are used in multiple locations. An employee search form may be
used directly on the employee management page, and it could also be used to help search for
an employee while filling out a form. When you implement your forms as user controls, it
increases the likelihood that you can easily reuse those forms in other areas of your project.

Another benefit comes from implementing your search forms with the ISearchControl
interface. This makes your search forms interchangeable and allows you to manage their
display more effectively. Without the ISearchControl interface, you usually end up managing
the form displays by showing and hiding panels and using a lot more code.

Summary
We spent a great deal of time discussing the SqlQuery tool in this chapter, but I think you’ll find
that an object-oriented SQL query builder can definitely save you a lot of time and hassle in
certain situations. As mentioned before, the SqlQuery tool is by no means a complete solution.
There are still certain keywords and clauses that it does not support, and you can always add
more common search functionality to it as you find the need.

You also learned a great deal about paging using the new features in the features in SQL
Server 2005, which should help you make your data applications more efficient. Paged data
can definitely boost performance for most applications, and the SqlQuery tool makes using
paged data a breeze. It also makes it easier for your users to look through large sets of data.

Finally, you learned how to build search forms and how to make interchangeable forms to
give users advanced and simple search options. People definitely appreciate flexibility, so these
types of features can help boost user acceptance and the overall usability of an application.

6293_ch08.fm Page 390 Monday, November 14, 2005 11:06 AM

391

■ ■ ■

C H A P T E R 9

Building a Reusable
Reporting Framework

S

earching and reporting are tied together because one naturally leads to the other. So, it
should come as no surprise that this chapter on reporting follows the chapter on searching. My
experience with reporting began on my very first project where I was assigned to create a series
of reports for a workflow system. There were about a dozen reports in all, all of which had the
same requirements: allow users to filter the data with a search form, display the data as rows in
a table, and allow users to sort the columns in ascending and descending order by clicking on
the column name in the table header. Sound familiar?

After writing the first couple of reports, I noticed that I was using the same query-building
logic, the same database connection and command-execution logic, the same paging logic,
and the same column-sorting logic on every page. Instead of repeating that sequence 10 more
times, I made a reusable reporting framework to simplify the report-creation process.
Thinking through and building out that framework took about as much time as creating one or
two reports, but it allowed me to build subsequent reports in a fraction of the time. It was defi-
nitely worth the effort.

On the business side, there are three reasons for developing against a reporting frame-
work: speed, accuracy, and consistency. All the tedious reporting logic is written once and
encapsulated in a reusable reporting component. You can then leverage the component when-
ever needed instead of copying and pasting code from page to page or starting over from
scratch. This speeds up report creation significantly, which ultimately helps meet deadlines
and keep projects on time and on budget.

As speed increases, accuracy normally decreases. Think about it. If you have five days to
develop a report or one day to develop the same report, which one is going to be more error
prone? Coding against a framework allows you to create reports faster, without adverse effects
on accuracy. The speed increase is a function of efficiency, not of cutting corners or short-
changing the development process. In fact, because the complex reporting logic is
encapsulated in a component, you are actually less likely to encounter errors because you are
touching less code.

Finally, using a reporting framework means that each of your reporting pages will be
consistent. I remember looking at an application that was coded by a team of developers, and
each developer had a different way of creating a Report Page. Some pages supported column
sorting, others did not. Some pages supported pagination; some just dumped the content
directly to the screen. And those that did have pagination had different ways to navigate
through the pages. Consistency is imperative for the user experience.

6293_ch09.fm Page 391 Monday, November 14, 2005 12:55 PM

392

C H A P T E R 9

■

 B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

This chapter outlines how to create and use a reporting framework. You can feel free to use
it as-is or as a basis for your own framework. Here’s how the chapter breaks down:

•

Building the Reporting Framework:

 Discusses the design and implementation of a
reporting framework to encapsulate the more complex aspects of reporting. The frame-
work simplifies the database connection, query execution, result sorting, pagination,
and loading of

ISearchControl

 and

IPaginationControl

 components.

•

Creating a Report Using the Reporting Framework:

 Demonstrates how to use the
reporting framework to create a feature-rich Report Page. This includes the construction
of multiple search forms, a paging navigation component, and the actual Report Page
itself. You’ll also learn how to use the framework to easily toggle between an advanced
search form and a simple search form.

Just to forewarn you, the reporting framework discussed in this chapter uses many of the
tools and concepts discussed in the pervious chapter. Make sure you are familiar with the

SqlQuery

 class and the

ISearchControl

 interface from the last chapter before continuing.

Building the Reporting Framework

Reporting is a complicated subject because it has so many pieces. Report pages need to build
a query, connect to a database, execute the query, display the query results, handle pagination,
and allow users to sort data by clicking on a column header. Performance is also a consider-
ation, so it would be nice to use a

DataReader

 to acquire report data, and it should take steps to
limit the size of the

ViewState

 as much as possible.

■

Note

DataReaders

 are faster than

DataSets

 in terms of raw reading performance; however,

DataSets

can outperform

DataReaders

 if you have complex calculations in your reports. Why? Because

DataSets

acquire data, close the database connection, and then operate on the data.

DataReaders

 operate on the data
while the connection is still open. If you’re doing your reporting calculations on the database side (recom-
mend), then a

DataReader

 should perform well. If you need to do complex calculation in code, then you may

get a performance increase using a

DataSet

.

If you’re familiar with the data controls that ship with ASP.NET 2.0, then you may say that
most of the requirements described previously can be implemented using the

GridView

control. The

GridView

 control in ASP.NET 2.0 is the next generation of the

DataGrid

 control
from ASP.NET 1.x. Although the

GridView

 control does support paging and column sorting,
some restrictions limit those features. Paging with

GridView

 requires the use of a

DataSet

because

DataReader

 objects do not inherently support server-side paging. Even if you could use
a

DataReader

 with the paging features, the built-in paging navigation leaves much to be
desired. You can use a

DataReader

 with the sorting capabilities of the

GridView

 as long as you
are using an intermediary

SqlDataSource

 as the

GridView

’s data source, you’ve specified that
the

SqlDataSource

 should return a

DataReader

, the

SqlDataSource

 is using a stored procedure to
acquire that

DataReader

, the stored procedure has a parameter that allows the

SqlDataSource

6293_ch09.fm Page 392 Monday, November 14, 2005 12:55 PM

C H A P T E R 9

■

 B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

393

to specify a sort column. Needless to say, I’m not a fan of the built-in paging and sorting func-
tionality from the

GridView

 control.
To circumnavigate these issues, you’ll learn how to build a reporting framework that

allows you to create feature-rich reports in no time at all.

Abstract Class Primer

You’ll implement a good chunk of the reporting framework as an abstract (

MustInherit

) class
named

ReportFramework

, so it’s imperative that you understand how abstract classes work. An
abstract class consists of both concrete and abstract (

MustOverride

) members. Concrete
members are defined and written directly in the abstract class. They look and act just like any
other properties or methods in a normal class (for example, they contain code, you can over-
ride and overload them in a derived class, and so on). Abstract members are defined in the
abstract class, but no code for the member is written in the abstract class. The code for abstract
members must be provided by whatever class inherits the abstract class.

To illustrate the point, think about two household objects: a glass vase and a book. All
household objects have a status that identifies how the object is doing. It could be fine, old,
worn, broken, and so on. All household objects can also be dropped; however, the result of the
item being dropped differs between each object, so each object will have a different post-drop
status. Listing 9-1 shows how these objects would be represented in code.

Listing 9-1.

Example\HouseHoldItem.vb

 (Reporting Project)

Public MustInherit Class HouseHoldItem

 MustOverride Function PostDropStatus() As String
 Private _Status As String

 '***
 Public ReadOnly Property Status() As String
 Get
 Return _Status
 End Get
 End Property

 '***
 Public Sub Drop()
 _Status = PostDropStatus()
 End Sub

End Class

This is the

HouseHoldItem

 abstract class. For the most part, it looks like a normal class. You
can see it has a property named

Status

 and a method named

Drop

. Both of these items are
considered concrete because the code for the items exists directly in the

HouseHoldItem

abstract class. If you look at the

PostDropStatus

 method, however, you’ll notice that it isn’t
normal. It’s an abstract method that is defined, but for which no code exists. This method is

6293_ch09.fm Page 393 Tuesday, November 15, 2005 5:53 PM

394

C H A P T E R 9

■

 B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

marked as

MustOverride

, which lets the inheriting class know that it needs to provide the actual
code for the

PostDropStatus

 method. Notice, however, that you can still call the

Post

➥

DropStatus

 method in the abstract class, even though no code for the method exists. The

Drop

method uses the

PostDropStatus

 method to determine the status of the household item after it
has been dropped.

Because the

PostDropStatus

 method is marked

MustOverride

, the class is incomplete. It
has no code for that method. Thus, the class must be marked as

MustInherit

; otherwise, you
get a build error. This lets the inheriting class know that it must “complete” the abstract class
by providing code for any of the abstract methods; in this case, it’s just the

PostDropStatus

method. Because abstract classes are incomplete, you cannot instantiate them directly. So
calling

New HouseHoldItem()

gives you a build error.
Now let’s take a look at the

Book

 class, which inherits its household item functionality from
the

HouseHoldItem

 class (see Listing 9-2).

Listing 9-2.

Example\Book.vb

 (Reporting Project)

Public Class Book
 Inherits HouseHoldItem

 '***
 Public Overrides Function PostDropStatus() As String
 Return "OK"
 End Function

End Class

Because a book is a household item, the

Book

 class inherits its base household item
functionality from the

HouseHoldItem

 class. In doing so, the

Book

 class is obligated to override
the

PostDropStatus

 method because it’s marked as

MustOverride

 in the

HouseHoldItem

class. You can see that the overridden

PostDropStatus

 method in the

Book

 class returns

"OK"

, because books can survive a short drop without any damage. Thus, if you were to call

BookObject.Drop()

, then

BookObject.Status

 would be

"OK"

 after the

drop method completed.
Now let’s take a look at the GlassVase class in Listing 9-3.

Listing 9-3. Example\GlassVase.vb (Reporting Project)

Public Class GlassVase
 Inherits HouseHoldItem

 '***
 Public Overrides Function PostDropStatus() As String
 Return "Shattered into a thousand pieces"
 End Function

End Class

6293_ch09.fm Page 394 Monday, November 14, 2005 12:55 PM

C H A P T E R 9

■

 B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

395

Once again, the

GlassVase

 class inherits its household item functionality from the

HouseHoldItem

 class, and it’s obligated to override the

PostDropStatus

 method. This time,
however, the method returns

"Shattered into a thousand pieces"

 because a vase behaves a
bit differently than a book when dropped. When the

Drop

 method is called, the

Status

 of the
vase indicates that it has shattered.

So, you can alter the outcome of the

Drop

 method on a class-by-class basis by changing the

PostDropStatus

 method. When a book is dropped, it’s okay. When a glass vase is dropped, it
shatters. Two different outcomes occur with only one

Drop

 method.
If you think about the implications of this, you should begin to understand the usefulness

of abstract classes. The

ReportFramework

 abstract class, for instance, needs to connect to a
database and execute a query, but it does not always connect to the same database nor execute
the same query. So, you can create a concrete method with code to query the database and
execute a query that uses abstract properties to acquire the connection string and SQL state-
ment. Then, when you need to create a reporting page, you inherit the majority of the reporting
functionality and implement a few basic abstract members to make the reporting page work.

Of course, there is a lot more to it than just abstract members, but you should now have a
basic understand of where all this is heading as we take a high-level look at the reporting
framework architecture.

Solution Architecture

The design goals for the reporting framework described in this chapter are to maximize visual
flexibility and to minimize repetitive coding. Most of the Report Pages I create use a search
form and paging navigation, so I build support for those components directly into the
reporting framework. The

ISearchControl

 interface from the last chapter is used for the search
support, and a new interface named

IPaginationControl

 is used for the paging navigation.
You’ll notice the

SqlQuery

 tool from the last chapter as well because it’s very useful for building
out paged queries.

In the end, six components work together to make the reporting framework. The most
prominent component is the

ReportFramework

 abstract class, which was mentioned briefly in
the previous section. It acts as a coordinator between the other components and really drives
the entire framework. Figure 9-1 shows how all the components fit into the reporting frame-
work, and Table 9-1 outlines the components and their purpose in the overall design.

6293_ch09.fm Page 395 Tuesday, November 15, 2005 6:31 PM

396 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

Figure 9-1. Reporting framework architecture

6293_ch09.fm Page 396 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 397

When you look at the sample application, you’ll notice that the Reporting class library
project looks very similar to the Reporting class library in the previous chapter. The Reporting
class library in this sample application contains the SqlQuery tool and auxiliary classes that you
looked at in the last chapter, plus some new components from the reporting framework
discussed in this chapter.

Database
Ultimately, the objective of the reporting framework is to display data; therefore, you need a
data source containing the data that you want to display. Most projects use databases for their
primary data store, so the reporting framework is designed around acquiring data from a
database.

In this example, you’ll acquire data from the Customers table in the Northwind database.
The Northwind database is in the App_Data folder of the sample application in the Source Code
area of the Apress website (http://www.apress.com), and a connection string entry named
"Northwind" for the Northwind database is in the <connectionStrings> section of the
Web.config. If you installed the sample applications to the default location, then this connec-
tion string should work. If not, then you may need to change the AttatchDbFilename parameter
to match your custom location. Refer to the introduction for this book for more information on

Table 9-1. Reporting framework components and descriptions

Component Description

Database Contains the report data ultimately displayed by the Report Page.

ISearchControl Interface for a search form used to create a query for the database.

IPaginationControl Interface for a navigation form that allows the user to page through data (next
page, last page, go to specific page, and so on).

ReportFramework Abstract class that coordinates all data access, data display, pagination, and
sorting functionality for a Report Page. The ReportFramework inherits its base
functionality from the Page class because it needs to respond to page-level
events such as PreLoad and PreRender. This also makes it easy to build Report
Pages because your .ASPX page inherits from the ReportFrameworkClass
instead of the Page class. All you have to do then is complete the abstract
members from the ReportFramework class in the Report Page code behind. The
abstract members of this class identify connection string information, number
of items to display per page, the search form to use, and so on.

Report Page (Layout) Defines the look and feel of the report, that is, which columns of data should
be displayed, how that data is formatted, how the page around the data
should appear, and so on. The Report Page layout is required to have at least
one GridView control to which the ReportFramework can output its report data.
There are also two optional PlaceHolders that identify where an
ISearchControl control can appear and where an IPaginationControl control
can appear.

Report Page (Class) Inherits the ReportFramework abstract class and completes all abstract
members required by ReportFramework. The completed members identify the
setting and controls with which the ReportFramework functionality will interact
(for example, the connection string used to connect to the database, the
number of items to display per page, the search form to use, and so on).

6293_ch09.fm Page 397 Monday, November 14, 2005 12:55 PM

398

C H A P T E R 9

■

 B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

the

Northwind

 database and setting up connections with SQL Server Express. Table 9-2 outlines
the fields in the

Customers

 table.

The ISearchControl Interface

This interface was introduced in the previous chapter as a generic way to define search forms
and to acquire the SQL queries generated by those forms. Notice, however, that the interface
exposes a new event named

SearchButtonClicked

. The new event helps

ReportFramework

 know
when the user executed a search from the form. Because it is a rather brief interface, it is shown
in Listing 9-4.

Listing 9-4.

Interfaces\ISearchControl.vb

 (Reporting Project)

Public Interface ISearchControl

 Function GetSqlQuery() As Reporting.SqlQuery
 Event SearchButtonClicked()

End InterfaceSecond

The

ISearchControl

 must be implemented by a user control because the

ReportFramework

is specifically designed to load user controls into the Report Page. One side benefit is that user
controls make the search forms reusable if you ever need them for another page or project. The
objective of a user control that implements

ISearchControl

 is twofold. The first objective is to
display search fields so the user may enter search criteria, and the second is to build out a

Table 9-2.

Customer

 Table in the

Northwind

Database

Field Type Description

CustomerID nchar(5)

Primary key; Nonnullable; unique customer identifier

CompanyName nvarchar(40)

Nonnullable; company name

ContactName nvarchar(30)

Nullable; name of the primary company contact

ContactTitle nvarchar(30)

Nullable; title of the primary company contact

Address nvarchar(60)

Nullable; address of the company

City nvarchar(15)

Nullable; city of the company address

Region nvarchar(15)

Nullable; region of the company address

PostalCode nvarchar(10)

Nullable; postal (zip) code of the company address

Country nvarchar(15)

Nullable; country of the company address

Phone nvarchar(24)

Nullable; company phone number

Fax nvarchar(24)

Nullable; company fax number

You do not need to create this table or populate it with data. The

Northwind

 sample database already
contains the

Customer

 table and sample customer data.

6293_ch09.fm Page 398 Monday, November 14, 2005 6:05 PM

C H A P T E R 9

■

 B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

399

SqlQuery

 object based on the entered criteria when the

ReportFramework

 calls

GetSqlQuery

. The
user control also raises the

SearchButtonClicked

 event when the user clicks the Search button,
alerting the

ReportFramework

 that it should run the query.

Pagination and the IPaginationControl Interface

Pagination is the process of dividing large sets of data into smaller more manageable pages,
which can help make your application more responsive and user friendly. To understand how
it makes an application more responsive and user friendly, let’s look at an extreme example.

Most people use search engines to help find information on the Internet, and if you look at the
total number of matches for a search, you can see why. A search for “ASP.NET” on a couple of major
search engines nets between 9 and 12 million results. Luckily, each search engine only showed 10
results at a time. Now, image what would happen if they tried to return all 12 million results on one
page. The page would be huge. It would take forever to load (assuming that it did not time out).
About 12 million results would have been unnecessarily sent because most people rarely look
beyond the first 20 matches. And all the search engines would grind to a halt because fulfilling
requests would take hours instead of milliseconds. So, paging has some descent benefits.

When you display data using pagination, you also need to display paging navigation
controls to allow users to jump from one page to the next. The

GridView

 control has built-in
support for paging navigation, but you have very little control of its appearance and behavior.
Basically, it looks like Figure 9-2.

Figure 9-2.

 Paging navigation for the

GridView

 control

Each individual link is a separate command:

<<

 means jump to the first page and

>>

 means
jump to the last page. The ellipses (

. . .

) allow you to jump to the next or previous set of pages.
Notice how pages 11–20 are displayed in the Figure 9-2. Clicking the first ellipsis takes you to
page 10 and displays pages 1–10 in the navigation. Clicking on the second ellipsis takes you to
page 21 and displays pages 21–30 in the navigation. And lastly, clicking on a number takes you
to that specific page.

There are three usability issues with the

GridView

’s paging navigation. First, it requires a lot
of clicking. If you want to get to page 50, you have to click about five times because only 10 page
links are displayed. You can increase the total number of page links displayed, but you still run
into the same problem, and the navigation becomes jumbled with tons of links. Granted, most of
the time you’ll have fewer than 10 pages, but when you do end up with more, it can be a burden
on your users. Second, the

GridView

 does not display the total number of pages or the total
number of records in the result set, which users often want to know. You can display this infor-
mation, but you’ll have to set up the appropriate controls and code the display routines. And
lastly, the pagination features of the

GridView

 control don’t work with

DataReader

 objects and, of
course, the reporting framework relies on

DataReader

objects. For these reasons, we’ll forgo the

GridView

’s built-in paging support.
Because we can’t use the

GridView

’s paging mechanism, we have to come up with our own.
But, we don’t want to create another rigid and inflexible component, so care should be taken to
make the component flexible enough to support a variety of visual designs while exposing a

6293_ch09.fm Page 399 Tuesday, November 15, 2005 5:53 PM

400

C H A P T E R 9

■

 B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

standard set of functionality common to all paging navigation. This definitely sounds like a job
for an interface (see Listing 9-5).

Listing 9-5.

Interfaces\IPaginationControl.vb

 (Reporting Project)

Public Interface IPaginationControl

 Sub SetInfo(ByVal currentPage As Integer, ByVal totalPages As Integer, _
 ByVal totalRecords As Integer, ByVal itemsPerPage as Integer, _
 ByVal recordStart as Integer, ByVal recordEnd as Integer)
 Event NextPageRequested()
 Event PrevPageRequested()
 Event NewPageRequested(ByVal page As Integer)

End Interface

Communication between the reporting framework and the paging navigation component
takes place via the

IPaginationControl

 interface shown in the preceding listing. The reporting
framework initializes the paging navigation component by calling the

SetInfo

 method and
passing in important information, such as the current page, total number of pages, total
number of records, the number of items displayed on each page, and the starting and ending
record numbers currently being displayed (for example, 1–10, 11–20, and so on). The paging
navigation component can then display that information in any way it chooses.

When a user interacts with the paging navigation component, the component raises
different events that the reporting framework can listen for and handle. There are three events
the

IPaginationControl

 can raise:

•

NextPageRequested

:

Raised when the user wants to jump to the next page.

•

PrevPageRequested

:

 Raised when the user wants to jump to the previous page.

•

NewPageRequested

:

 Raised when the user wants to jump to a specific page. This event
accepts a single integer parameter identifying the page to which the user wants to jump.

You may have realized, after looking at all the events, that you could get away with only
exposing the

NewPageRequested

 event. The others are included because it simplifies jumping to
the next and previous pages, which is a very common feature of paging navigation. You could
also include events such as

JumpToFirstPage

 or

JumpToLast

 page if you so desired, or you could
handle them by raising the

NewPageRequested

 event and passing in

1

 (which is always the first
page) or the total page count (which is always the last page) as the requested page.

Now that you have an understanding of the

IPaginationControl

 interface, let’s take a look
at the

ReportFramework

 class.

ReportFramework Abstract Class

Most of the reporting functionality exposed by the reporting framework is contained in the

ReportFramework

 abstract class. As mentioned before, it has routines to load the search and
paging controls, acquire a query, connect to a database, retrieve data, display data in a

GridView

, paginate through the data, and handle sorting data. Needless to say, it takes a lot
of code to make all that happen.

6293_ch09.fm Page 400 Tuesday, November 15, 2005 6:31 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 401

Listing 9-6 includes the entire code listing for the ReportFramework class. In all, there are
about 400 lines of code. It’s a lot to take in all at once, but each part of the class is covered in
more detail in the sections that follow.

■Note You need to add a project reference to the System.Configuration and System.Web assemblies
for this code listing to build.

Listing 9-6. ReportFramework.vb (Reporting Project)

Imports System.Configuration.ConfigurationManager
Imports System.Data.SqlClient
Imports System.Web.UI
Imports System.Web.UI.WebControls

Public MustInherit Class ReportFramework
 Inherits System.Web.UI.Page

 '***
 'View State Name (VSN) Constants
 '***
 Const CurrentPageVSN = "1"
 Const LastSqlVSN = "2"
 Const SearchFormIndexVSN = "3"

 '***
 'Private Class Variables
 '***
 Private WithEvents _SearchForm As ISearchControl
 Private WithEvents _PaginationForm As IPaginationControl
 Private _TotalRecords As Long
 Private _SortClicked As Boolean
 Private _SortExpression As String
 Private _SortDirection As SqlSortDirection

 '***
 'MustOverride Methods and Properties
 '***
 Protected MustOverride Function ConnectionStringKey() As String
 Protected MustOverride Function ReportGrid() As GridView
 Protected MustOverride Function ItemsPerPage() As Integer
 Protected MustOverride Function SearchFormFileName() As String
 Protected MustOverride Function SearchFormPH() As PlaceHolder

6293_ch09.fm Page 401 Monday, November 14, 2005 12:55 PM

402 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

 Protected MustOverride Function PaginationFormFileName() As String
 Protected MustOverride Function PaginationFormPH() As PlaceHolder
 Protected MustOverride Sub SetSortOrder(ByVal query As SqlQuery, _
 ByVal sortExpression As String)

 '***
 'Overridable Methods
 '***
 Protected Overridable Function GetSqlQuery() As SqlQuery
 If _SearchForm Is Nothing Then
 Return Nothing
 Else
 Return _SearchForm.GetSqlQuery
 End If
 End Function

 '***
 Protected Overridable Sub OnReportError(ByVal ex As Exception)
 Throw ex
 End Sub

 '***
 Protected Overridable ReadOnly Property BindInPreLoad() As Boolean
 Get
 Return False
 End Get
 End Property

'***
 'Class Properties
 '***
 Protected Property LastSql() As String
 Get
 If ViewState(LastSqlVSN) Is Nothing Then
 Return String.Empty
 Else
 Return ViewState(LastSqlVSN)
 End If
 End Get
 Set(ByVal value As String)
 If value = String.Empty Then
 ViewState.Remove(LastSqlVSN)
 Else
 ViewState(LastSqlVSN) = value
 End If
 End Set
 End Property

6293_ch09.fm Page 402 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 403

 '***
 Protected Property SearchFormIndex() As Short
 Get
 If ViewState(SearchFormIndexVSN) Is Nothing Then
 Return 0
 Else
 Return ViewState(SearchFormIndexVSN)
 End If
 End Get
 Set(ByVal value As Short)
 If value = 0 Then
 ViewState.Remove(SearchFormIndexVSN)
 Else
 ViewState(SearchFormIndexVSN) = value
 End If
 End Set
 End Property

 '***
 Protected Property CurrentPage() As Long
 Get
 If ViewState(CurrentPageVSN) Is Nothing Then
 Return 1
 Else
 Return ViewState(CurrentPageVSN)
 End If
 End Get
 Set(ByVal value As Long)
 If value <= 1 Then
 ViewState.Remove(CurrentPageVSN)
 Else
 ViewState(CurrentPageVSN) = value
 End If
 End Set
 End Property

 '***
 Protected ReadOnly Property TotalPages() As Long
 Get
 If ItemsPerPage() = 0 Then
 Return 1
 Else
 Return (_TotalRecords \ ItemsPerPage()) + _
 CInt(IIf(_TotalRecords Mod ItemsPerPage() = 0, 0, 1))
 End If
 End Get
 End Property

6293_ch09.fm Page 403 Monday, November 14, 2005 12:55 PM

404 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

 '***
 'Page Event and Related Methods
 '***
 Private Sub Page_PreLoad(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreLoad

 If ReportGrid() Is Nothing Then
 OnReportError(New Exception("ReportGrid cannot be Nothing"))
 Exit Sub
 End If

 If Page.IsPostBack Then AcquireHiddenFieldValues()
 LoadSearchForm()
 LoadPaginationForm()

 If _SortClicked Then
 CurrentPage = 1
 SetupSearchSql()
 End If

 If BindInPreLoad() Then BindReport()

 End Sub

 '***
 Private Sub AcquireHiddenFieldValues()

 _SortClicked = CBool(Request.Form("sortClicked") = "1")
 _SortExpression = Request.Form("sortExp")

 If CBool(Request.Form("sortDir") = "1") Then
 _SortDirection = SqlSortDirection.Descending
 Else
 _SortDirection = SqlSortDirection.Ascending
 End If

 End Sub

 '***
 Protected Sub LoadSearchForm()
 If SearchFormPH() Is Nothing Then Exit Sub
 Try
 _SearchForm = LoadControl(SearchFormFileName())
 DirectCast(_SearchForm, UserControl).ID = "SearchFormControl"
 SearchFormPH.Controls.Clear()
 SearchFormPH.Controls.Add(_SearchForm)
 Catch ex As Exception

6293_ch09.fm Page 404 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 405

 OnReportError(New Exception("Error loading search form", ex))
 End Try
 End Sub

 '***
 Protected Sub LoadPaginationForm()
 If PaginationFormPH() Is Nothing Then Exit Sub
 Try
 _PaginationForm = LoadControl(PaginationFormFileName())
 DirectCast(_PaginationForm, UserControl).ID = "PaginationFormControl"
 PaginationFormPH.Controls.Clear()
 PaginationFormPH.Controls.Add(_PaginationForm)
 Catch ex As Exception
 OnReportError(New Exception("Error loading pagination form", ex))
 End Try
 End Sub

 '***
 Private Sub SearchButtonClicked() Handles _SearchForm.SearchButtonClicked
 CurrentPage = 1
 _SortExpression = String.Empty
 _SortDirection = SqlSortDirection.Ascending
 SetupSearchSql()
 If BindInPreLoad() Then BindReport()
 End Sub

 '***
 Private Sub SetupSearchSql()

 Dim SqlQueryObj As SqlQuery = GetSqlQuery()
 If SqlQueryObj Is Nothing Then ClearSearch() : Exit Sub

 SetSortOrder(SqlQueryObj, _SortExpression)

 If _SortDirection = SqlSortDirection.Descending Then _
 ReverseOrderBy(SqlQueryObj)

 If _PaginationForm Is Nothing Then
 LastSql = SqlQueryObj.GetQuery()
 Else
 LastSql = SqlQueryObj.GetPagedQuery(_
 CurrentPage, ItemsPerPage) & ";" & _
 _SearchForm.GetSqlQuery.GetCountQuery()
 End If

 End Sub

6293_ch09.fm Page 405 Monday, November 14, 2005 12:55 PM

406 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

 '***
 Private Sub ReverseOrderBy(ByVal Query As SqlQuery)
 For Each field As SqlField In Query.OrderBy
 If field.SortDirection = SqlSortDirection.Ascending Then
 field.SortDirection = SqlSortDirection.Descending
 Else
 field.SortDirection = SqlSortDirection.Ascending
 End If
 Next
 End Sub

 '***
 Protected Sub ClearSearch()
 LastSql = String.Empty
 End Sub

 '***
 Private Sub BindReport()

 If LastSql = String.Empty Then Exit Sub

 Dim dbConn As SqlConnection
 Dim dbCmd As SqlCommand
 Dim dbDr As SqlDataReader
 Dim RecordStart As Integer
 Dim RecordEnd As Integer

 Try
 dbConn = New SqlConnection(_
 ConnectionStrings(ConnectionStringKey).ConnectionString)
 dbCmd = New SqlCommand(LastSql, dbConn)
 dbConn.Open()
 dbDr = dbCmd.ExecuteReader()
 ReportGrid.DataSource = dbDr
 ReportGrid.DataBind()
 If Not _PaginationForm Is Nothing _
 AndAlso dbDr.NextResult AndAlso dbDr.Read Then
 _TotalRecords = dbDr.Item(0)

 'Ensure page bounds are correct
 If CurrentPage < 1 Then CurrentPage = 1
 If CurrentPage > TotalPages Then CurrentPage = TotalPages

 'Calculate the Starting and Ending Records
 RecordStart = ((CurrentPage - 1) * ItemsPerPage()) + 1
 If CurrentPage = TotalPages Then
 RecordEnd = _TotalRecords
 Else

6293_ch09.fm Page 406 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 407

 RecordEnd = RecordStart + ItemsPerPage() - 1
 End If

 'Initialize the Paging Component
 _PaginationForm.SetInfo(CurrentPage, TotalPages, _
 _TotalRecords, ItemsPerPage, RecordStart, RecordEnd)

 End If
 dbConn.Close()

 Catch ex As Exception
 OnReportError(ex)
 End Try

 End Sub

 '***
 Private Sub Page_PreRender(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreRender

 If Not BindInPreLoad() Then BindReport()
 SetupHiddenFields()
 SetupJavaScript()
 If Not _PaginationForm Is Nothing Then _
 If ReportGrid.Rows.Count = 0 Then Me.PaginationFormPH.Controls.Clear() _
 Else SetupSortableColumns()

 End Sub

 '***
 Private Sub SetupHiddenFields()
 ClientScript.RegisterHiddenField("sortClicked", "0")
 ClientScript.RegisterHiddenField("sortExp", _SortExpression)
 ClientScript.RegisterHiddenField("sortDir", _
 IIf(_SortDirection = SqlSortDirection.Ascending, 0, 1))
 End Sub

 '***
 Private Sub SetupJavaScript()
 Dim script As String = _
 " function setSortExp(sortExp){" & _
 " var sortExpField = document.getElementById('sortExp');" & _
 " var sortDirField = document.getElementById('sortDir');" & _
 " if(sortExpField.value==sortExp){" & _
 " if(sortDirField.value==0){" & _
 " sortDirField.value=1;" & _

6293_ch09.fm Page 407 Monday, November 14, 2005 12:55 PM

408 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

 " }else{" & _
 " sortDirField.value=0;" & _
 " }" & _
 " }else{" & _
 " sortExpField.value=sortExp;" & _
 " sortDirField.value=0;" & _
 " }" & _
 " document.getElementById('sortClicked').value = '1';" & _
 " }"
 ClientScript.RegisterClientScriptBlock(Me.GetType, "sortExp", script, True)
 End Sub

 '***
 Private Sub SetupSortableColumns()

 Dim sortButton As LinkButton
 Dim columnHeading As Label

 For index As Integer = 0 To ReportGrid.Columns.Count - 1
 'If neither the header text, nor the sort expression are defined
 'then do not place anything in the header
 If ReportGrid.Columns.Item(index).SortExpression = String.Empty _
 And ReportGrid.Columns.Item(index).HeaderText <> String.Empty Then
 'Do not allow sorting on the column
 columnHeading = New Label
 columnHeading.Text = ReportGrid.Columns.Item(index).HeaderText
 ReportGrid.HeaderRow.Cells.Item(index).Controls.Add(columnHeading)
 Else
 'Allow sorting on the column
 sortButton = New LinkButton
 sortButton.Text = ReportGrid.Columns.Item(index).HeaderText

 sortButton.Attributes.Add("onclick", String.Format(_
 "setSortExp('{0}');", _
 ReportGrid.Columns.Item(index).SortExpression))

 ReportGrid.HeaderRow.Cells.Item(index).Controls.Add(sortButton)
 End If
 Next

 End Sub

 '***
 'Pagination Methods
 '***
 Protected Sub RequestNextPage() _
 Handles _PaginationForm.NextPageRequested
 CurrentPage += 1

6293_ch09.fm Page 408 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 409

 SetupSearchSql()
 If BindInPreLoad() Then BindReport()
 End Sub

 '***
 Protected Sub RequestPrevPage() _
 Handles _PaginationForm.PrevPageRequested
 CurrentPage -= 1
 SetupSearchSql()
 If BindInPreLoad() Then BindReport()
 End Sub

 '***
 Protected Sub RequestNewPage(ByVal page As Integer) _
 Handles _PaginationForm.NewPageRequested
 CurrentPage = page
 SetupSearchSql()
 If BindInPreLoad() Then BindReport()
 End Sub

End Class

As mentioned before, that is definitely a lot to take in all at once. The sections that follow
discuss each portion of the code in more detail. It will help to reference the code as you look
through the commentary.

Class Definition

Notice that the ReportFramework inherits the System.Web.UI.Page class. Because of this, any
class inheriting the ReportFramework class also inherits the System.Web.UI.Page class. This is a
necessity because the Report Pages that use the ReportFramework class for their base function-
ality are actually ASP.NET web forms, and ASP.NET web forms must, at some point, derive
from the System.Web.UI.Page class.

Reducing the ViewState with ViewState Name (VSN) Constants

Items stored in the ViewState are referenced by a string-based key. Ideally, you want the key
to be long enough to describe the item it references, but the key actually gets stored in the
ViewState along with the data. So, long key names translate into a larger overall ViewState.

You can get around this issue by using ViewState Name (VSN) constants. The idea is that
you can make the constant name very descriptive, but leave its value very short. Then you use
the constant in your code when you need to reference an item in the ViewState:

Const SomeViewStateValue as String = "1"
ViewState(SomeViewStateValue) 'Instead of ViewState("SomeViewStateValue")

It’s a small step to take, but it’s those small steps that really help keep the ViewState size
down to a minimum. You’ll see the VSN constants used a bit later in the LastSql, CurrentPage,
and TotalPages properties.

6293_ch09.fm Page 409 Monday, November 14, 2005 12:55 PM

410 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

Declaring the Private Class Variables

Throughout the ReportFramework class, you’ll see six different class-level variables used
to store various pieces of information. Table 9-3 outlines each variable and its purpose in
the class.

You’ll be seeing more of these as we go through more code, so keep them in the back of
your mind as we continue along.

Reviewing the MustOverride Methods

After the private class definitions, you’ll see a series of MustOverride members. These members
are declared here, in the ReportFramework abstract class, but they must be overridden in each
Report Page that inherits from the ReportFramework abstract class. This allows the Report Page

Table 9-3. ReportFramework private class variables

Name Type Description

_SearchForm ISearchControl Stores a reference to the ISearchControl displayed on the
actual Report Page (if a search form is displayed).
Declared WithEvents so ReportFramework can respond to
the control’s SearchExecuted event.

_PaginationForm IPaginationControl Stores a reference to the IPaginationControl displayed
on the actual Report Page (if paging navigation is
displayed). Declared WithEvents so the ReportFramework
can respond to the control’s NextPageRequested,
PrevPageRequested, and NewPageRequested
events._SearchForm

_TotalRecords Long Stores the total number of records returned by the query.

_SortClicked Boolean Flag indicating whether or not the current postback was
caused by the user clicking on a sort column. When this
value is True, ReportFramework knows to save the new
_SortExpression and _SortDirection values for the
report.

_SortExpression String Stores the sort expression of the column the users wants
to sort on. ReportFramework saves the _SortExpression
value in a hidden field to ensure that it’s available on
subsequent request. The value only changes when the
user sorts on a different column.

_SortDirection SqlSortDirection Stores a value indicating the sort direction (ascending or
descending) used in conjunction with _SortExpression.➥
ReportFramework saves the SortExpression value in a
hidden field to ensure that it’s available on subsequent
requests. The value only changes when the user sorts on a
different column.

6293_ch09.fm Page 410 Monday, November 14, 2005 12:55 PM

C H A P T E R 9

■

 B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

411

to control certain functionality in the

ReportFramework

 abstract class. Table 9-4 provides a brief
description of each

MustOverride

 method and its purpose in the class.

All the

MustOverride

 members must be overridden in the Report Page, so each of these
items will be discussed in more detail a bit later when we get to the actual Report Page. For
now, let’s continue on with the

ReportFramework

 class.

Table 9-4.

 Description of

MustOverride

 members in the

ReportFramework

 abstract Class

Name Type Description

ConnectionStringKey Function

Returns a connection string key used to acquire a
connection string from the

<connectionStrings>

 section
of

Web.config

. That connection string is ultimately used
to open a database connection to acquire the report data.

ReportGrid Function

Returns a reference to the

GridView

 control where the
report data is output. You must always return a valid

GridView

 control from this function.

ItemsPerPage Function

Returns an

Integer

 value indicating how many items
should appear on each page.

SearchFormPH Function

Returns a

PlaceHolder

 control into which an

ISearch

➥

Control

 control may be loaded. If no

SearchFormPH

 is
returned (for example, the function returns

Nothing

), the
page doesn’t use an

ISearchControl

 (and you must over-
ride the

GetQuery

 function—by default it relies on the

ISearchControl

).

SearchFormFileName Function

Returns a

String

 containing the path to the

ISearch

➥

Control

 user control (

.ascx

 file) that is to be loaded into
the

SearchFormPH

 control.

PaginationFormPH Function

Returns a

PlaceHolder

 control into which an

IPaginationControl

 control may be loaded. If no

PaginationFormPH

 is provided (for example, it is

Nothing

),
the page does not use an

IPaginationControl.

PaginationForm

➥

FileName
Function

Returns a

String

 containing the path to the

IPaginationControl

 user control (

.ascx

 file) that is to
be loaded into the

PaginationFormPH

 control.

SetSortOrder Sub

Users can click on the column headers over the data
displayed on a Report Page to sort the data according to
that column. To do this, however, the query needs to
know which sort orders to use for which column. The

SetSortOrder

 method accepts a query and a sort expres-
sion value and expects the overridden

SetSortOrder

method in the Report Page to set up the appropriate sort
orders for the query based on the sort expression. The

SortDirection

 is not used in this method because

ReportFramework

 automatically reverses the sort direc-
tion, if needed, before executing the query.

6293_ch09.fm Page 411 Monday, November 14, 2005 6:02 PM

412 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

The GetQuery and OnReportError Overridable Methods

You just looked at all the MustOverride methods, but you can also choose to override a few
other methods in the ReportFramework class. They are the GetSqlQuery method and the
OnReportError method. These members have been created with default functionality, but
you can opt to override them with your own code if you so choose.

The GetSqlQuery method returns a SqlQuery object containing the query used to pull
report data from the database. You may recall that the ISearchControl interface also has
a GetSqlQuery method that returns a SqlQuery object as well. One of the key features of
the ReportFramework is that it can easily load an ISearchControl component, so the
GetSqlQuery method in the ReportFramework class uses the GetSqlQuery method from the
loaded ISearchControl component to acquire the SqlQuery for the report. Listing 9-7 shows
what it looks like in code.

Listing 9-7. GetSqlQuery method—ReportingFramework.vb

Protected Overridable Function GetSqlQuery() As SqlQuery
 If _SearchForm is Nothing then Return Nothing
 Return _SearchForm.GetSqlQuery
End Function

Here’s the problem. Although the ReportFramework class can use an ISearchControl to
provide searching functionality to users, it does not have to use one. If that is the case, then the
code in Listing 9-7 will return Nothing, and the report will not display any search results. So, if
you do not use an ISearchControl, then you need to override the ReportFramework’s
GetSqlQuery method on the ReportPage and then build out and return a SqlQuery object from
that overridden method.

The same holds true for the OnReportError method. With its default code, it simply throws
an exception when an error occurs in the ReportFramework class as shown in Listing 9-8.

Listing 9-8. OnReportError method—ReportingFramework.vb

Protected Overridable Sub OnReportError(ByVal ex As Exception)
 Throw ex
End Sub

You can override the method and log the error, or execute some other error-handling code
of your own liking. Refer to Chapter 2 for information on structured error handling and error
logging.

Boosting Performance with the BindInPreLoad Property

One notable aspect of the ReportFramework is that it implements sorting using client-side script
and hidden form variables instead of relying on the postback sorting events in the GridView
control. Here’s why. If you want to use the sorting events in the GridView, then you must data
bind the report data to the GridView during the PreLoad or Load events, otherwise, the paging
and sorting events will not fire. More than likely, Report Pages are posted-back when users
want to display another page of data or need to sort the results differently. This means that you
have to reload the old report to get the events to fire, and then load the new report data to

6293_ch09.fm Page 412 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 413

display to the end user. As such, you regularly execute two round trips to the database, which
is inefficient. The client-side sorting functionality allows the ReportFramework to sort report
data without needing to data bind the GridView in the page load. You can actually load the data
in the PreRender event, which ensures you will only make one round trip to the database.

There is a catch, however. If you do not data bind the GridView to its data in the page load,
many of its postback events will not fire. This is a problem if you like the row editing, updating,
and deleting functionality of the GridView control. The problem of where to put the data
binding is solved by putting it in both places and using the Overridable BindInPreLoad prop-
erty to control whether or not the framework binds the report during the PreLoad or the
PreRender event. If BindInPreLoad returns True, then the data binding occurs in the PreLoad
event and the GridView control’s postback events should fire without any problems.

Data binding also occurs in other methods when the report data changes to ensure the
GridView control displays the most current data. If BindInPreLoad returns False, then the data
binding is a bit more efficient and only occurs in the PreRender event and only one round trip
to the database occurs. By default, BindInPreLoad returns False to take advantage of the perfor-
mance gain. You may override the method on the Report Page and return True if you need to
bind the data in the PreRender event.

Calculated and ViewState Based Class Properties

Directly following the Overridable methods section, you’ll find four class property definitions.
Table 9-5 provides a brief overview of the class properties and their purpose in the
ReportFramework class.

Three of the properties listed in the preceding table are used to store and retrieve informa-
tion from the ViewState. These properties follow the same basic structure and use the VSN

Table 9-5. ReportFramework class properties

Name Type Description

LastSql String Uses the ViewState to store and retrieve the SQL statement that
needs to be executed. When this is empty, no search will be
executed.

SearchFormIndex Short Allows you to store a value indicating which search form the user
has elected to use on the page. This is not used directly by the
ReportFramework class, it simply exists to give you a predefined
location to store data about which form the user wants to view
when your page has multiple search-form options. It is intended
for use in the overridden SearchFormFileName method in your
Report Page. You’ll see an example outlining its use later in the
chapter when you learn how to implement an actual Report Page.

CurrentPage Long Uses the ViewState to store and retrieve a value that identifies
which page the user is currently viewing.

TotalPages Long Uses the private class variable _TotalRecords and the
MustOverride ItemsPerPage property to calculate the total
number of data pages required to show the result set.

6293_ch09.fm Page 413 Monday, November 14, 2005 12:55 PM

414 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

constants discussed earlier to reduce the overall ViewState size. Listing 9-9 shows the LastSql
property, following by a brief description regarding the code for a ViewState-based property.

Listing 9-9. LastSql Property—ViewState property example

Protected Property LastSql() As String
 Get
 If ViewState(LastSqlVSN) Is Nothing Then Return String.Empty Else _
 Return ViewState(LastSqlVSN)
 End Get
 Set(ByVal value As String)
 If value = String.Empty Then ViewState.Remove(LastSqlVSN) Else _
 ViewState(LastSqlVSN) = value
 End Set
End Property

In the Get section, the property first determines whether or not a value for the property has
been saved in the ViewState. Notice that it uses the VSN constant as the ViewState key. If a
value for the property does not exist (that is, it’s Nothing), then the property returns a default
value. If a value does exist, then the property returns that value.

In the Set section, the property determines if the incoming values is the default value used
in the Get section. If so, the property will clear the value from the ViewState to save space. If the
value is not the default value, the value is stored to the ViewState. Once again, notice that the
VSN constant is used as the ViewState key.

Setting Up the Report Framework with the Page_PreLoad Method

One of the new events in the ASP.NET 2.0 page model is the PreLoad event, which is useful
when you are loading dynamic controls into a page. Any static controls you declare directly on
the page are initialized and loaded with their ViewState and postback data by the time PreLoad
fires. This means PreLoad can use the values in those controls.

In turn, any controls you add to the page in the PreLoad event are initialized with their
ViewState and postback data by the time the Load event fires. So, if you add dynamic controls
in the PreLoad event, all the controls on the page are initialized and ready for use by the time
the Load event fires. Also, any events tied to those controls fire, assuming the control has been
initialized with all its data. This is why you have to bind the GridView in a report back to its orig-
inal data source in the PreLoad event if you want its events to fire correctly.

■Note ReportFramework does not need to work with the dynamic controls in the Load event because it
completes everything it needs to do in the PreLoad and PreRender Page events; however, it’s a good habit
to start putting dynamically created controls into your page in the PreLoad event so they are available when
Load fires.

ReportFramework uses the PreLoad event to load both the ISearchControl and the
IPaginationControl into the page and to do a couple of other setup routines. The code in the

6293_ch09.fm Page 414 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 415

PreLoad event references a number of other members that will be discussed in more detail
momentarily.

Here’s how it works. First, the Page_PreLoad method checks to make sure the MustOverride
ReportGrid method returns a non Nothing reference. Remember, the ReportGrid is the only
required element. If the ReportGrid method returns Nothing, then a new Exception is gener-
ated and passed into the OnReportError method, and then the method exits. If it does not
return Nothing, then the method continues on normally.

After that, the Page_PreLoad method determines whether or not the current request is a
PostBack. If so, it calls the AcquireHiddenFieldValues() method, which acquires sort values
stored in hidden fields. If not, the method simply continues onward.

Next, the Page_PreLoad method calls the LoadSearchForm() and LoadPaginationForm()
methods. LoadSearchForm determines whether or not an ISearchControl user control needs to
be added to the page, and does so if necessary. LoadPaginationForm() does the same thing with
an IPaginationControl user control. By adding these items during the PreLoad event, it ensures
that the events associated with the ISearchControl and the IPaginationControl are raised and
handled accordingly.

The Page_PreLoad method then determines whether or not the user clicked on a column
heading to sort the data. It does this by checking the _SortClicked variable that is set during the
AcquireHiddenFieldValues() method mentioned earlier. If the user clicked on a column
heading, then the method sets the CurrentPage value to 1, and calls the SetupSearchSql
method. Reordering a query is similar to creating a new query altogether, and because it makes
little sense to start the user off in the middle of a new query, you should set CurrentPage to 1.
SetupSearchSql then prepares the Report Page to display the reordered query.

Finally, if BindInPreLoad is True, then the method calls BindReport to ensure the GridView
postback events fire. BindReport contains all the logic for connecting to a database, retrieving
data, and binding that data to the GridView control on Report Page.

Determining Sorting Values with the AcquireHiddenFieldValues Method

Sorting values stored in the _SortClicked, _SortExpression, and _SortDirection class variables
are determined on the client side using JavaScript and hidden form values. When the browser
submits the web form, those hidden field values are sent back as well, but those values are not
automatically stored in class-level variables. The AcquireHiddenFieldValues method pulls
those hidden field values from the Request.Form collection and stores them in appropriate
variables so they can be easily referenced.

AcquireHiddenFieldValues is fairly straightforward. It checks form variables and sets the
corresponding class variables to the appropriate value. You will see where these hidden vari-
ables and client-side JavaScript are sent to the browser momentarily.

Loading an ISearchControl Component with the LoadSearchForm Method

LoadSearchForm is responsible for determining whether or not to load an ISearchControl
component, and if so, loading the component into the appropriate PlaceHolder control on the
Report Page. It starts off by checking the SearchFormPH virtual method to see if it returns
Nothing. If it does, then the method knows not to load an ISearchControl into the page and it
simply exits. If SearchFormPH returns a PlaceHolder, then the rest of the method continues.

The remainder of the method is surrounded in a Try Catch block. If any errors occur, the
error is caught and passed into the OnReportError method. LoadSearchForm actually loads the
search from on the first line in the Try Catch block using the LoadControl method. LoadControl

6293_ch09.fm Page 415 Monday, November 14, 2005 12:55 PM

416 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

accepts a URL to a user control, loads the user control found at that URL, and returns a refer-
ence to the loaded control as the value of the method. If any issues are encountered loading
the control, an exception is thrown—hence the Try Catch block. The method assigns the
LoadControl return value to the _SearchForm class variable.

After loading the component, the method casts _SearchForm into a UserControl to set
the component’s ID property. Setting the ID property ensures that controls inside the
ISearchControl component retain their appropriate values from postback to postback. If
you do not specify an ID property, then an ID is auto-generated for the control, which can
cause data loss issues or events not being fired appropriately because ASP.NET may not auto-
generate the same ID each time.

Finally, LoadSearchForm clears all the controls in the PlaceHolder control returned by the
SearchFormPH virtual method and then adds the component referenced by _SearchForm into
that PlaceHolder’s controls collection. This makes the ISearchControl component appear on
the page.

Loading an IPaginationControl Component with the LoadPaginationForm Method

Loading the IPaginationControl follows the same logic as the LoadSearchForm, although it
uses the PaginationFormPH and PaginationFormFileName virtual methods instead of the
LoadSearchForm equivalents. Review the previous section for more information on how this
method works.

Responding to the SearchButtonClicked Event with the SearchButtonClicked Method

Remember that that ISearchControl component exposes an event named SearchButton➥

Clicked. Any time a user clicks on a Search button located directly on an ISearchControl
component, the component raises this event. When the event is raised, the ReportFramework
must set up a new query to be executed. The SearchButtonClicked method handles the
SearchButtonClicked event and contains the code for the query setup.

Because a new query is being executed, the method begins by setting certain query vari-
ables back to their default settings. CurrentPage is set to 1, _SortExpression is set to an empty
string, and _SortDireciton is set to Ascending. After setting the default values, the method calls
SetupSearchSql, which prepares the SQL query for execution. If BindInPreLoad is True, then it
calls BindReport to execute the new query and overwrite any existing data loaded into the
Report Page during the PreLoad event. If BindInPreLoad is False, then the report is data bound
in the PreRender method, and it does not need to be executed in this method.

■Note If you do not use an ISearchControl component on your Report Page, then you must create
a search button directly on the Report Page. In the click event of that button, make sure to call the
SearchButtonClicked method directly so the ReportFramework can set up the query for execution.

Preparing the SQL Query with the SetupSearchSql Method

Later on in the BindReport method, the ReportFramework class executes a SQL statement to
acquire the report’s result set. It stores that SQL statement in the LastSql property as a string,

6293_ch09.fm Page 416 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 417

but that string is built using the SqlQuery object returned by the GetSqlQuery method. The
SetupSearchSql method acquires the SqlQuery object and uses it to build out a SQL statement
to store in the LastSql property.

First, the SetupSearchSql method declares a variable named SqlQueryObj to store the
SqlQuery object. It assigns the variable the result of the GetSqlQuery method in the declaration,
and then checks the SqlQueryObj to ensure that it’s not Nothing. If the variable is Nothing, then
the method calls ClearSearch and then exits; no data is displayed when this occurs.

After acquiring the SqlQuery object, the SetupSearchSql method passes the object and the
_SortExpression variable into the SetSortOrder method. The SetSortOrder is a MustOverride
method and determines and sets up the appropriate ORDER BY clause for the SqlQuery object
using the value in _SortExpression. You’ll see the code for the SetSortOrder method when we
get to the Report Page.

Next, SetupSearchSql checks the _SortDirection variable to determine whether the
overall order of the search results should be ascending or descending. The SetSortOrder
method always returns the SqlQuery object in ascending mode. If the overall results are to be
shown in descending order, then the method calls ReverseSortOrder and passes in the
SqlQuery object. This “flips” all the SortDirection properties on the ORDER BY fields in the
SqlQuery object, effectively reversing the direction of the query from ascending to descending.

Finally, the method checks the _PaginationForm variable to determine whether or not
it contains an IPaginationControl control. If not, the method assumes that no paging is
being used and assigns LastSql the result of the SqlQuery object’s GetQuery method. If an
IPaginationControl control is found, then the method assumes paging is being used, concate-
nates the result from the GetPagedQuery and GetCountQuery together using a semicolon to
separate the two queries, and saves the query to the LastSql property. Placing two queries
together in the same SQL statement allows you to execute both statements without the over-
head of needing to execute two individual commands. You’ll see how to retrieve the data from
both commands in the BindReport method.

Reversing the Sort Order with the ReverseOrderBy Method

As mentioned in the previous section, ReverseOrderBy flips the overall sort order of a SqlQuery
object. It accomplishes this by iterating through each of the SqlField objects in the SqlQuery
object’s OrderBy collection. The method checks each SqlField object’s SortDirection property
and then reverses its value. If the SortOrder is ascending, it is changed to descending. If the
SortOrder is descending, it is changed to ascending. This effectively flips the overall order of
the query.

Clearing the Search Query with the ClearSearch Method

At some point, you may want to clear the search so the Report Page does not display any data.
You can do this using the ClearSearch method, which sets the LastSql variable equal to an
empty string. The page does not attempt to execute a query when the LastSql variable does not
contain text, so this effectively clears the search. This is a protected method so you can access
it from the Report Page if you need to use it.

6293_ch09.fm Page 417 Monday, November 14, 2005 12:55 PM

418 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

Acquiring and Displaying Report Data with the BindReport Method

Inside the BindReport method, you’ll find all the logic for connecting to a database, querying
data, outputting the data to the Report Page, and setting up the paging navigation controls.
The BindReport method is called from a number of different locations. The ReportFramework
class calls the BindReport method in the Pre_Load event so the appropriate GridView events
fire. Whenever the user executes a new search or navigates to another page, then the
ReportFramework class must set up the new query and call BindReport to ensure that the
Report Page displays the appropriate information.

BindReport starts out by determining whether or not the LastSql property is an empty
string. If so, then the method exits; otherwise, the method continues on and declares a number
of method variables. Three of the variables, dbConn, dbCmd, and dbDr, store references to data-
base objects used to connect to the database, execute a command, and retrieve the results,
respectively. RecordStart and RecordEnd store the beginning and ending record numbers of the
items displayed during a paged query.

A Try Catch block surrounds most of the code in the BindReport method. Following suit
with other Try Catch blocks in the ReportFramework class, it catches any exception that occurs
and sends it to the OnReportError method.

Inside the Try Catch block, the method creates a new SqlConnection object. The connec-
tion string for the SqlConnection object comes from the <connectionString> section of
Web.config and is acquired by passing the value from the ConnectionStringKey method—
implemented in the derived class—into the ConnectionStrings property. The resulting
ConnectionStringSettings object contains the appropriate connection string in its
ConnectionString property.

After creating the database connection, the method then creates a new SqlCommand object,
passing in LastSql as the query and dbConn as the database connection. After the SqlCommand
object is created, BindReport opens the database connection, executes the SqlCommand using
the ExecuteReader method, and stores the resulting SqlDataReader in the dbDr variable. The
method then assigns dbDr to the DataSource property of the ReportGrid, and calls DataBind to
bind the ReportGrid to its data source. All the data from the SqlDataReader then populates the
ReportGrid according to its display templates defined on the Report Page.

After the ReportGrid has been data bound, the BindReport uses an IF statement and a
series of AndAlso conditionals to check whether or not it should set up the paging navigation
controls. This IF statement uses AndAlso because one condition must be met before the next
condition can be safely checked. The IF statement starts out by checking whether or not the
_PaginationForm variable is set to Nothing. If not, it assumes that paging is being used and
continues on to the next condition.

The next condition in the IF statement is AndAlso dbDr.NextResult. Remember back to the
SetupSearchSql method, and you’ll recall that paged queries contain two SQL statements. The
first statement returns a result set with a single page of data, and the second statement returns
a scalar value containing the total number of records across all pages of data. Calling
dbDr.NextResult makes dbDr move from the first statement’s result set to the second state-
ment’s result set. If it successfully moves to the next result set, then the call returns True, which
is required to meet the second condition of the If statement.

The last condition in the IF statement is AndAlso dbDr.Read. After dbDr has moved to the
next result set, you call the Read method to determine if any data has been returned and to
prepare that data to be read. If data has been returned, then the data reader moves to the first
record in the result set and returns True to indicate that the data is ready to be read.

6293_ch09.fm Page 418 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 419

Assuming all three of the If statement conditions are met, then the BindReport method
sets up the paging navigation controls. The method begins by assigning the value in
dbDr.Item(0), which contains an integer value identifying the total number of records located
by the query, to the TotalRecords variable. Then method runs some validation on the
CurrentPage property to ensure that it’s within the appropriate page range. The validation
occurs after TotalRecords is set because TotalRecords is used in the TotalPages property
calculation.

After the validation routines, BindReport calculates the starting and ending record
numbers. RecordStart, which holds the starting record number, is always calculated using
the equation ((CurrentPage - 1) * ItemsPerPage()) + 1. Multiplying (CurrentPage - 1) by
ItemsPerPage gives you the total number of items on previous pages (that is, page 1 has 0
records before it). Adding 1 gets you to the first records on the current page (that is, page 1
starts at record 1). RecordEnd, which holds the ending record number, is calculated differently
depending on whether or not the current page is the last page. If the current page is the last
page, then the last record should be the same as the value stored in TotalRecords because it is
the last record being shown. If it isn’t the last page, then the calculation for RecordEnd is simply
the RecordStart plus the value stored in ItemsPerPage minus 1. Remember, you added 1 to
acquire the RecordStart value, so now you have to subtract it to make the math work out.

After all the paging calculations have been made, BindReport calls PaginationForm.➥

SetInfo and passes the appropriate values into the method. Recall that the SetInfo method of
the IPaginationControl interface sets up the visual display of the paging navigation form.

Finally, regardless of whether or not paging navigation was set up, the BindReport method
calls dbConn.Close to close the database connection.

Rendering Data and Client-Side Functionality with the Page_PreRender Method

Right before ASP.NET generates the output for a page, the PreRender event fires, and the event
is handled by the Page_PreRender method. Inside Page_PreRender, a series of method calls
helps output client-side sorting functionality.

First, if BindInPreLoad is False, then the method calls BindReport to populate the GridView
with the report data.

Then the method calls SetupHiddenFields which outputs a series of hidden fields to store
the sort expression, sort direction, and whether or not the user clicked on a column heading to
sort the result set. Next, it calls SetupJavaScript, which outputs a JavaScript method that helps
set sorting values when the user clicks on a column heading. Then the method checks to see
whether or not PaginationForm references a valid IPaginationControl component.

If _PaginationForm references a valid IPaginationControl component, then the method
checks to see if the ReportGrid contains any data by checking its row count. If the row count
is 0, then no data is present, and the method removes the paging navigation controls by
calling PaginationFormPH.Controls.Clear(). If data is present, then the method calls
SetupSortableColumns, which runs through all the column headings and creates column
headers that use the client-side sorting functionality output earlier.

Storing Client-Side Sort Settings with the SetupHiddenFields Method

The ReportFramework maintains three different sort values to help determine how to sort the
report. You should remember SortClicked, SortExpression, and _SortDirection from the
section covering class variables and the AcquireHiddenFieldValues method. The values for

6293_ch09.fm Page 419 Monday, November 14, 2005 12:55 PM

420 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

these variables are stored on the client-side between postbacks, and their values change on the
client side based on which column header the user clicks. SetupHiddenFields is the method
that builds out the hidden fields and places them on the page.

SetupHiddenFields uses the ClientScript.RegisterHiddenField method to create three
hidden fields named sortClicked, sortExp, and sortDir. The RegisterHiddenField method
accepts two parameters, a name and a value, and outputs the name and value as a hidden field
directly under the <form> tag when ASP.NET renders the page. The sortClicked value is always
set to 0 when the page is output. If the user clicks on a column header, then the client-side
scripts change the sortClicked value to 1 to denote that the user clicked on a column heading,
set sortExp to the sort expression value associated with the column, and set the sortDir based
on whether or not the user clicked on the same column more than once (allowing users to
reverse the sort by clicking on a column twice in succession). SetupHiddenFields outputs both
the sortExp and the sortDir with their current values because those values are used in the
setSortExp client-side method. We’ll talk about it next.

Creating Client-Side Sorting Functionality with the SetupJavaScript Method

The SetupJavaScript method constructs a JavaScript method as a string, and then outputs
that method using the Page.ClientScript.RegisterClientScriptBlock method. The
RegisterClientScriptBlock method accepts four parameters.

The first parameter is the object type of the object requesting to add the client script block.
This gives the key a context and helps avoid issues with different components overwriting each
other’s scripts because they use the same key. In this example, me.GetType() provides the type.
The key is the unique identifier for the script that ensures your component does not output a
single script multiple times. You can name it anything you want, but in this case it’s sortExp. The
script string is a string containing the client-side code to output to the page. You can see that the
lines above the call to RegisterClientScriptBlock are devoted to building out the script string.
We’ll discuss it a bit more in a second. The last parameter tells RegisterClientScriptBlock
whether or not to add <script> tags around the client-side script. Because the script does not
include <script> tags, the parameter is set to True so the tags will be included.

Next, Listing 9-10 provides the client-side JavaScript used to set the hidden variables that
store the sorting values. Remember that the SetupHiddenFields method creates the hidden
fields used in this method.

Listing 9-10. setSortExp client-side JavaScript method

function setSortExp(sortExp){
 var sortExpField = document.getElementById('sortExp');
 var sortDirField = document.getElementById('sortDir');
 if(sortExpField.value==sortExp){
 if(sortDirField.value==0){
 sortDirField.value=1;
 }else{
 sortDirField.value=0;
 }
 }else{

6293_ch09.fm Page 420 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 421

 sortExpField.value=sortExp;
 sortDirField.value=0;
 }
 document.getElementById('sortClicked').value = '1';
}

The setSortExp method executes when a user clicks on a column heading to sort the
report. We’ll take a look at exactly how this works in the next section. For now, know that each
column heading passes a different sortExp value into the method denoting which column
heading was clicked. Inside the method, setSortExp first acquires a reference to the sortExp
and sortDir hidden fields, and stores those references in sortExpField and sortDirField,
respectively. The sortDirField contains the last sort expression value, and sortDirField
contains the last sort direction value.

The first if statement in the method checks to see if the incoming value, sortExp, matches
the last sort expression value in sortExpField. If so, the method knows that the column has
been clicked two or more time in a row. When an item is clicked more than once, the sort order
reverses. If the sort direction is 0, which represents ascending, then it becomes 1. If 1, which
represents descending, then it becomes 0. If it’s the first time the user clicked the column, then
the method sets the sortExpField value to the incoming sortExp value, and sets sortDirField
to be ascending, or 0.

At the very end of the code, the method sets the sortClicked hidden field to 1, indicating
that the user clicked on a sort heading.

Creating Sorting Functionality with the SetupSortableColumns Method

With ViewStateEnabled set to False, the default sorting mechanism of the GridView does
not fire its Sorting postback event. This means the column headers that generate the Sorting
postback event are useless. To circumvent this issue, the ReportFramework creates its own set of
column headers and sets up each one to execute the setSortExp client-side method with a
different sort expression for each column. When the user clicks on a column header to sort the
query, the LinkButton executes the setSortExp client-side method, stores the appropriate sort
expression and direction, and then posts the page back.

SetupSortableColumns begins by declaring two variables named sortButton and
columnHeading, a LinkButton and Label control, respectively. The method then iterates over
each column in the ReportGrid.Columns collection. Inside that loop, SetupSortableColumns
checks the SortExpression and HeaderText properties of the column to determine which
control it should place in the column header. If the column does not provide a SortExpression
but does provide a HeaderText, then the method places a Label containing the HeaderText
value in the column header.

If the column provides a SortExpression, then the method builds out a LinkButton that
displays the HeaderText. It then adds an attribute for the client-side onClick event specifying
that the setSortExp client-side method should execute—using the appropriate SortExpression
for the column—when the user clicks on the column header.

6293_ch09.fm Page 421 Monday, November 14, 2005 12:55 PM

422 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

Paging Through Data with the Pagination Methods

The final three methods in the ReportFramework handle pagination. RequestNextPage handles
the NextPageRequested event of the _PaginationForm, RequestPrevPage handles the PrevPage➥

Requested event, and RequestNewPage handles the NewPageRequested event.
Each method follows the same logic and structure. First, the method adjusts the

CurrentPage value. RequestNextPage increments CurrentPage by one, RequestPrevPage
decreases CurrentPage by one, and RequestNewPage assigns CurrentPage the incoming page
value. Then each method calls SearchSearchSql to create a new query to acquire the new data
page. Finally, if BindInPreLoad is True, then the method calls BindReport and overwrites any
data placed in the GridView control during the PreLoad event.

This concludes the code for the reporting framework. Next, you will implement reporting
framework components and make a working Report Page.

Creating a Report Using the Reporting Framework
Now that you have a reporting framework at your disposal, you can use it to create a Report
Page. In this example, you’ll create a Report Page named CustomerSearch.aspx to search for
and display customer records from the Northwind database. This will allow users to easily
locate contact information for customers. The search is paginated to avoid dumping too much
data to the screen, and it has a simple and advanced search form to allow users searching flex-
ibility. Figure 9-3 shows the CustomerSearch.aspx page when it is fully output to the browser.

Figure 9-3. CustomerSearch.aspx

The sections that follow outline the implementation of all the components required to put
a Report Page together. This includes a couple of ISearchControl components to show you
how to switch back and forth between search forms, IPaginationControl to demonstrate
paging navigation, and the actual Report Page layout and code behind that inherits the
ReportFramework abstract class.

6293_ch09.fm Page 422 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 423

Building Search Forms Using the ISearchControl Interface
One feature the reporting framework boasts is the capability to automatically load an
ISearchControl component into the Report Page and to use the SqlQuery object it creates to
populate the report. You can use this built-in functionality to easily toggle between different
types of search forms with ease. To see this functionality in action, you need to create a couple
of ISearchControl components for your Report Page.

Creating the CustomerSimple.ascx UserControl

First, let’s look at the simple search form. Because this is a simple form, it only contains a text
box named txtCustomerInfo and a button named btnSearch. The text box is where users enter
keywords to search through the CustomerID, CompanyName, ContactName, and ContactTitle fields
of the Customers table. Figure 9-4 shows the CustomerSimple.ascx control, and the code for the
CustomerSimple class is shown in Listing 9-11.

■Tip If you are using the Visual Studio IDE, make sure you type Implements ISearchControl and then
press the Enter key. The IDE automatically creates the definitions for all members of the ISearchControl
interface. You can then fill them out.

Listing 9-11. SearchForms\CustomerSimple.ascx.vb (Web Project)

Imports Reporting

Partial Class CustomerSimple
 Inherits UserControl
 Implements ISearchControl

 '***
 Public Event SearchExecuted() Implements ISearchControl.SearchButtonClicked

 '***
 Public Function GetSqlQuery() As SqlQuery Implements ISearchControl.GetSqlQuery
 SqlQueryObj.From = "Customers" Dim SqlQueryObj As New SqlQuery
 SqlQueryObj.Where.CreateKeywords(Me.txtCustomerInfo.Text, _
 "CustomerID + ' ' + CompanyName ' ' + ContactName + ' ' + " & _
 "ContactTitle", SqlOperation.And)
 Return SqlQueryObj
 End Function

6293_ch09.fm Page 423 Monday, November 14, 2005 12:55 PM

424 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

 '***
 Protected Sub btnSearch_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSearch.Click
 RaiseEvent SearchExecuted()
 End Sub

End Class

You’ve seen an ISearchControl implementation before, so the main thing you need to
know about this listing is that the SqlQuery object created by the GetSqlQuery method creates
a query to pull data from the Customers table, and it uses a single CreateKeywords with four
concatenated database fields to build out the WHERE clause of that query. This allows the query
to search for any keywords entered in the text box across all those concatenated fields. Also, the
Search button used to execute the search functionality of the reporting framework is located
directly on the UserControl, so clicking btnSearch raises the SearchExecuted event.

Figure 9-4. CustomerSimple.ascx search form

Creating the CustomerAdvanced.ascx User Control

Next, you need to see the advanced customer search form that allows users a bit more control
in regards to their search criteria. This search form actually displays four text boxes and uses
the keywords from those text boxes to search specific fields in the Customers table, which can
be helpful when you’re getting too many accidental matches from the simple search form.

For example, let’s say a user needs to search for a CompanyID that has “Ana” in it. A search
using the simple form yields 35 results. Searching specifically through the CompanyID field in the
advanced search yields 2 results, so it definitely helps narrow the search down.

You’ll see four text boxes in the CustomerAdvanced.ascx UserControl: txtCustomerID,
txtCompanyName, txtContactName, and txtContactTitle. Each text box allows a user to enter
keywords for a specific field, CustomerID, CompanyName, ContactName, and ContactTitle, respec-
tively. Figure 9-5 shows the CustomerAdvanced.ascx UserControl, and the code for the
component is in Listing 9-12.

Listing 9-12. SearchForms\CustomerAdvanced.ascx.vb (Web Project)

Imports Reporting

Partial Class CustomerAdvanced
 Inherits UserControl
 Implements ISearchControl

6293_ch09.fm Page 424 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 425

 '***
 Public Event SearchExecuted() Implements ISearchControl.SearchButtonClicked

 '***
 Public Function GetSqlQuery() As SqlQuery Implements ISearchControl.GetSqlQuery
 Dim SqlQueryObj As New SqlQuery
 SqlQueryObj.From = "Customers"
 SqlQueryObj.Where.And()
 SqlQueryObj.Where.CreateKeywords(Me.txtCustomerID.Text, _
 "CustomerID", SqlOperation.And)
 SqlQueryObj.Where.CreateKeywords(Me.txtCompanyName.Text, _
 "CompanyName", SqlOperation.And)
 SqlQueryObj.Where.CreateKeywords(Me.txtContactName.Text, _
 "ContactName", SqlOperation.And)
 SqlQueryObj.Where.CreateKeywords(Me.txtContactTitle.Text, _
 "ContactTitle", SqlOperation.And)
 Return SqlQueryObj
 End Function

 '***
 Protected Sub btnSearch_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSearch.Click
 RaiseEvent SearchExecuted()
 End Sub

End Class

The CustomerAdvanced UserControl is similar to the CustomerSimple UserControl because
both implement the ISearchControl interface, both build queries that pull data from the
Customers table, and both contain a button that begins the searching process when clicked.
Really, the main difference is in how the SqlQuery object constructs the WHERE clause of the
query. Instead of using a single CreateKeywords call that spans four database fields, the
advanced version of the form uses four CreateKeywords calls and only reference one field in
each of those calls. This allows specific keywords to be targeted to specific fields, instead of the
more general search across all fields.

Figure 9-5. CustomerSimple.ascx search form

6293_ch09.fm Page 425 Monday, November 14, 2005 12:55 PM

426 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

Creating a Paging Navigation Component
You are about to look at one way paging navigation controls can appear, but you can make
your own pagination component look and behave however you want. That’s the beauty of
generalizing the component using the IPaginationControl interface. This version of a pagina-
tion control displays links to easily navigate to the next and previous pages and a text box that
allows you to enter the page to which you want to jump. It also displays the current page, total
pages, which records are currently being displayed, and the total number of records in the
result set as shown in Figure 9-6.

Figure 9-6. Pagination.ascx UserControl shown in design mode and as it appears onscreen

The paging navigation component shown in Figure 9-6 contains the controls in Table 9-6.

Now that you know which controls appear in the PagingControl, let’s take a look at how
they are used and how the control implements the IPaginationControl interface (see Listing
9-13).

Table 9-6. Controls in the Pagination.ascx UserControl

ID Type Description

lnkPrev LinkButton Clicking this link takes the user to the next page of data.

lnkNext LinkButton Clicking this link takes the user to the previous page of data.

txtCurrentPage TextBox Displays the current data page when the web form first
loads. It also allows the user to enter the page to which they
want to be taken after clicking the lnkGotoPage LinkButton.

lnkGotoPage LinkButton Clicking this link takes the user to the page specified in the
txtCurrentPage TextBox.

lblPageTotal Label Displays the total number of pages in the result set.

lblRecordInfo Label Displays information about the current records being
displayed and the total number of records in the result set.

rngPageNumber RangeValidator Ensures the page number entered into the txtCurrentPage
TextBox is valid.

Refer to the PagingControl.ascx UserControl in the web project of the sample application in the
Source Code area of the Apress website for exact control settings and layout.

6293_ch09.fm Page 426 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 427

Listing 9-13. PaginationForms\PagingControl.ascx.vb (Web Project)

Imports Reporting
Partial Class PagingControl
 Inherits System.Web.UI.UserControl
 Implements IPaginationControl

 'IPaginationControl Events
 '***
 Public Event NewPageRequested(ByVal page As Integer) _
 Implements IPaginationControl.NewPageRequested

 Public Event NextPageRequested() _
 Implements IPaginationControl.NextPageRequested

 Public Event PrevPageRequested() _
 Implements IPaginationControl.PrevPageRequested

 '***
 Public Sub SetInfo(ByVal currentPage As Integer, ByVal totalPages As Integer, _
 ByVal totalRecords As Integer, ByVal itemsPerPage As Integer, _
 ByVal recordStart as Integer, ByVal recordEnd as Integer) _
 Implements IPaginationControl.SetInfo

 'Set up current page, total page, and record display labels
 Me.lblPageTotal.Text = totalPages.ToString
 Me.txtCurrentPage.Text = currentPage.ToString
 Me.lblRecordInfo.Text = String.Format(_
 "Displaying {0}-{1} of {2} Total Items", _
 recordStart, recordEnd, totalRecords)

 'Set up validation for jumping to another page
 rngPageNumber.MinimumValue = "1"
 rngPageNumber.MaximumValue = totalPages.ToString

 'Disable
 If currentPage = totalPages Then Me.lnkNext.Enabled = False
 If currentPage = 1 Then Me.lnkPrev.Enabled = False
 If totalPages = 1 Then Me.lnkGotoPage.Enabled = False

 End Sub

 '***
 Protected Sub lnkPrev_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles lnkPrev.Click
 RaiseEvent PrevPageRequested()
 End Sub

6293_ch09.fm Page 427 Monday, November 14, 2005 12:55 PM

428 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

 '***
 Protected Sub lnkNext_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles lnkNext.Click
 RaiseEvent NextPageRequested()
 End Sub

 '***
 Protected Sub lnkGotoPage_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles lnkGotoPage.Click
 If Not IsNumeric(Me.txtCurrentPage.Text) Then Exit Sub
 RaiseEvent NewPageRequested(CInt(Me.txtCurrentPage.Text))
 End Sub

End Class

The PagingControl class inherits from System.Web.UserControl because it is a
UserControl, and it implements the IPaginationControl interface. Remember, three events
and one method make up the IPaginationControl interface. The events for the interface are
defined immediately after the class definition; there is no code involved with the definition of
the events.

After the reporting framework loads the paging navigation component, it passes in impor-
tant initialization data to the component’s SetInfo method. You can see from the code listing
above that the SetInfo method for this component uses this data to accomplish three things.
First, it displays the information so the user can see the current page, total pages, and record
count information. Second, it sets up validation for the txtCurrentPage text box. This ensures
that users can only attempt to jump to valid pages. Lastly, it disables the lnkPrev control when
the first page is being displayed, disables the lnkNext control when the last page is being
displayed, and disables the Go link if there is only one page. Like the validation on
txtCurrentPage, this ensures users cannot request pages that do not exist.

Below the SetInfo method, the PagingControl contains a series of methods that handles
the click events of the lnkPrev, lnkNext, and lnkGotoPage controls. When clicked, each one
of these buttons raises one of the IPaginationControl events. So, lnkPrev causes the
PrevPageRequested event to fire, lnkNext causes the NextPageRequested event to fire, and
lnkGotoPage causes the NewPageRequested event to fire. Note that the requested page value in
txtCurrentPage.text is converted into an integer and passed into the raised NewPageRequested
event.

That’s the extent of a paging navigation component that implements the IPagination➥

Control interface. Most of the code you write will be to display information passed into the
SetInfo method and raise the IPaginationControl events in response to user actions. Next,
you’ll see the ReportFramework abstract class that brings everything together that we’ve talked
about so far.

Building the Report Page Layout
The Report Page is, for the most part, just like any other ASP.NET web form. The only real
difference is that is inherits additional reporting functionality from the ReportFramework
abstract class. Remember, ReportFramework inherits System.Web.UI.Page, so the Report Page
still has all the normal web-form functionality that you have come to expect in ASP.NET.

6293_ch09.fm Page 428 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 429

Because it is a normal ASP.NET page, it means you are free to use any ASP.NET technologies
you want to create the page layout and behavior. You can employ Master Pages, themes, user
controls, server controls, or anything else you would normally use.

From the beginning of the chapter, recall that there are three controls that have special
meaning to the ReportFramework. The first is the GridView control where the framework
displays data. This is mandatory for all Report Pages. The other two controls are PlaceHolder
controls. One defines the position where the ISearchControl should appear, and the other
defines the position where the IPaginationControl should appear. These are optional compo-
nents. If you don’t want them on a Report Page, you don’t have to have them.

Listing 9-14 shows the page layout code from CustomerSearch.aspx. Because the page uses
both an ISearchControl and an IPaginationControl, it contains two PlaceHolder controls
defining the locations where these items should be inserted. It also has the mandatory
GridView control. You may name these controls anything you like because references to the
controls are returned by the overridden virtual members defined in the Report Page code
behind; it has nothing to do with their actual names. Figure 9-7 shows the layout as it appears
in design mode.

Figure 9-7. CustomerSearch.aspx design time

Listing 9-14. CustomerSearch.aspx (Web Project)

<asp:PlaceHolder ID="MyReportPlaceHolder" runat="server"
 EnableViewState=false />

<asp:LinkButton ID="ToggleSearchForm" runat="server" EnableViewState=false />

<asp:GridView ID="MyReportGrid" runat="server" ShowHeader=true
 EnableViewState=False AutoGenerateColumns="False" Width="100%">
 <Columns>
 <asp:BoundField DataField="CustomerID" HeaderText="ID"
 SortExpression="CustomerID" />
 <asp:BoundField DataField="CompanyName" HeaderText="Company"
 SortExpression="CompanyName" />
 <asp:BoundField DataField="ContactName" HeaderText="Contact"
 SortExpression="ContactName" />
 <asp:BoundField DataField="ContactTitle" HeaderText="Title"
 SortExpression="ContactTitle" />
 <asp:BoundField DataField="Phone" HeaderText="Phone"
 SortExpression="Phone" />

6293_ch09.fm Page 429 Monday, November 14, 2005 12:55 PM

430 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

 </Columns>
 <EmptyDataTemplate>
 Your search did not return any results
 </EmptyDataTemplate>
</asp:GridView>

<asp:PlaceHolder ID="MyPagingControls" runat="server" EnableViewState=false />

This page has a total of four controls: two PlaceHolder controls, one LinkButton, and one
GridView. The LinkButton is used to toggle between the simple and advanced ISearchControl
components. Both PlaceHolders define the location where ReportFramework should insert the
ISearchControl and IPaginationControl components. Set EnableViewState to False on all
these items to keep the ViewState size to a minimum, unless there is a compelling reason to do
otherwise.

Make sure you take advantage of the GridView control’s visual properties, styles, and
column templates to format the report data as you see fit. Remember, the field names of the
data coming into the report will match the field names defined in the SqlQuery you created in
the ISearchControl component used on the page (or in the overridden GetSqlQuery method if
no ISearchControl exists). Also remember to define the HeaderText property if you want the
column to have a heading, and to define the SortExpression if you want the user to be able to
sort the report based on that column.

Developing the Report Page Code Behind
Developing a Report Page is a fairly easy process because the ReportFramework class encapsu-
lates most of the complex reporting logic. You just need to override a series of simple
MustOverride methods to make the Report Page work. Many of the methods only require a
single line of code, so you can hopefully begin to appreciate how easy a reporting framework
can make the report-creation process. Listing 9-15 shows the CustomerSearch.aspx.vb code
behind.

Listing 9-15. CustomerSearch.aspx.vb (Code-Behind File)

Imports Reporting
Imports System.Web.UI.WebControls

Partial Class CustomerSearch
 Inherits ReportFramework

 '***
 ' Search Form Toggling Functionality
 '***
 Protected Sub ToggleSearchForm_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ToggleSearchForm.Click
 If SearchFormIndex = 1 Then SearchFormIndex = 0 Else SearchFormIndex = 1
 LoadSearchForm()
 End Sub

6293_ch09.fm Page 430 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 431

 '***
 Protected Sub Page_PreRender(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreRender
 Select Case SearchFormIndex
 Case 0
 Me.ToggleSearchForm.Text = "Advanced Search"
 Case Else
 Me.ToggleSearchForm.Text = "Simple Search"
 End Select
 End Sub

 '***
 ' ReportFramework Virtual Member Overrides
 '***
 Protected Overrides Function SearchFormFileName() As String
 Select Case Me.SearchFormIndex
 Case 0
 Return "~/SearchForms/CustomerSimple.ascx"
 Case Else
 Return "~/SearchForms/CustomerAdvanced.ascx"
 End Select
 End Function

 '***
 Protected Overrides Function PaginationFormFileName() As String
 Return "~/PaginationForms/PagingControl.ascx"
 End Function

 '***
 Protected Overrides Function ConnectionStringKey() As String
 Return "Northwind"
 End Function

 '***
 Protected Overrides Function ItemsPerPage() As Integer
 Return 10
 End Function

 '***
 Protected Overrides Function ReportGrid() As GridView
 Return MyReportGrid
 End Function

 '***
 Protected Overrides Function SearchFormPH() As PlaceHolder
 Return MyReportPlaceHolder
 End Function

6293_ch09.fm Page 431 Monday, November 14, 2005 12:55 PM

432 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

 '***
 Protected Overrides Function PaginationFormPH() As PlaceHolder
 Return MyPagingControls
 End Function

 '***
 Protected Overrides Sub SetSortOrder(ByVal queryObj As SqlQuery, _
 ByVal sortColumn As String)

 Select Case sortExpression
 Case "CompanyName"
 queryObj.OrderBy.Add("CompanyName")
 queryObj.OrderBy.Add("ContactName")
 Case "ContactName"
 queryObj.OrderBy.Add("ContactName")
 Case "ContactTitle"
 queryObj.OrderBy.Add("ContactTitle")
 queryObj.OrderBy.Add("ContactName")
 Case "Phone"
 queryObj.OrderBy.Add("Phone")
 Case Else
 queryObj.OrderBy.Add("CustomerID")
 End Select
 End Sub

End Class

■Tip If you are using the Visual Studio IDE, make sure you type Inherits ReportFramework and
then press the Enter key. The IDE automatically creates definitions for all the virtual members in the
ReportFramework abstract class. You can then fill them out.

There are two distinct sections in the code-behind file. The first section deals with the
ToggleSearchForm LinkButton control and toggling the ISearchControl component between
the simple and advanced mode. The second section contains all the overridden virtual
methods defined in the ReportFramework abstract class.

Toggling Between ISearchControl Components

Creating the togging functionality is a fairly simple process. You already know there
is a LinkButton named ToggleSearchForm on the Report Page. When the user clicks this
LinkButton, the Report Page posts backs and executes the ToggleSearchForm_Click method.
This method changes the SearchFormIndex from 0 to 1, or from 1 to 0, depending on the current
value of SearchFormIndex. You’ll see how the Report Page uses the SearchFormIndex to deter-
mine which ISearchControl component to load when we discuss the overridden

6293_ch09.fm Page 432 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 433

SearchFormFileName method. For reference, when the SearchFormIndex is set to 0, the page
displays the simple form. When it is 1, the page displays the advanced form. After setting the
SearchFormIndex, the method calls LoadSearchForm because the SearchFormIndex changed and
the ReportFramework needs to load the new ISearchControl component into the page.

The Pre_Render method looks at the SearchFormIndex value and assigns Toggle➥

SearchForm.Text a value describing the opposite search form. If the page is displaying the
simple form, then the ToggleSearchForm.Text contains "Advanced Search"; if the advanced
form is shown, then ToggleSearchForm.Text contains "Simple Search". This allows the user to
either fill out the current form or click on the appropriately named LinkButton to take them to
the other form.

Overriding ReportFramework’s Virtual Members

Overriding the virtual members from ReportFramework is a fairly painless process because the
Visual Studio IDE creates the member definitions for you. On top of that, many of the members
only require one line of code, so you can begin to appreciate how easy it is to create reports
using a reporting framework.

The first overridden method is SearchFormFileName. This method returns the file name of
the ISearchControl component to the LoadSearchForm method in the ReportFramework class.
Remember, the LoadSearchForm method uses the file name provided by SearchFormFileName to
load the search form into the Report Page. You can see that SearchFormFileName uses the
SearchFormIndex to determine which ISearchControl component file name to return. If the
SearchFormIndex is 0, it returns the file name for the simple search form. Otherwise, it returns
the file name for the advanced search form. This, along with the toggling functionality used to
set the SearchFormIndex, is all you need to toggle between ISearchControl components.

The next six overridden methods are all one-liners that return a specific value or control
reference.

PaginationFormFileName returns a string containing the file name of the IPagination➥

Control to load into the page. If you want to allow your users to select a different paging navi-
gation form based on a profile setting or some other value, then you’ll need to account for that
setting in this method.

SearchFormPH returns a reference to the PlaceHolder control where you want to display
your ISearchControl component. If you do not want to use an ISearchControl component on
the Report Page, then return Nothing as the value of this method. Also remember to override
the GetSqlQuery method because it relies on the ISearchControl component to acquire the
search query for the report.

PaginationFormPH returns a reference to the PlaceHolder control where you want to
display your IPaginationControl component. If you do not want to use pagination, then return
Nothing as the value of this method and the ReportFramework will not use pagination.

ReportGrid returns a reference to the GridView control where the ReportFramework outputs
the report data. This is a required control. Returning Nothing as the value of this method causes
an exception to be thrown.

ConnectionStringKey returns the key associated with the connection string that you want
to use to connect the Report Page to the database. If the key is invalid, or the key points to an
invalid connection string, it causes an exception to be thrown.

6293_ch09.fm Page 433 Monday, November 14, 2005 12:55 PM

434 C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K

ItemsPerPage returns an Integer defining how many items should be shown per page. This
is only applicable for reports using pagination. If each page should contain 10 items, then
return 10. If each page should contain 20 items, then return 20.

The last method, SetSortExpression, accepts a SqlQuery object and a sort expression. Its
job is to set up the appropriate ORDER BY clause for the SqlQuery object. It doesn’t need to worry
about reversing the sort order based on the sort direction because ReportFramework handles
that automatically. The easiest way to set up the ORDER BY clause is to use a SELECT CASE state-
ment to determine the CASE of the incoming sortExpression and to set the ORDER BY clause
accordingly. You can see in the preceding code that each case has its own unique ORDER BY
clause. Also, you should always include a default CASE in the event the sortExpression is an
invalid value. In the preceding example, the query uses the sort order in the default case when
a user clicks on the CustomerID column because the CustomerID column’s sort expression is not
handled by any other Case statements.

Running the Report Page
Now you have a working Report Page, so go ahead and run it so you can play around with the
different pieces of functionality. The simple search form appears by default, but you can toggle
between the simple and advanced search forms by using the link button that appears under
the search form.

Click on the Search button. The results of the search are displayed in sets of 10 on the
Report Page. Use the paging navigation to move to the next page, the previous page, and to a
page in the middle. You can enter criteria in the search form to filter the search. Make sure to
take a look at the total number of records being displayed and the page count information as
you update the query.

You should also click on a couple of column headings to see the sorting capabilities. Make
sure you click on a column heading twice to see the report sort by the column in ascending and
descending order. You may also want to view the page source and look at the ViewState size.
Notice that it does have some data, but it remains fairly manageable as you navigate through
the report.

If you happen to have a utility that shows the total number of database requests being
processed, then you can see how overriding the BindInPreLoad property can help database
performance. Run a search and make sure you navigate through each page of data. Take note
of how many database requests were processed. Then override the BindInPreLoad property
and make sure it returns False. Execute the same search and navigate through each page of
data. Compare the number of database requests.

Summary
In this chapter, you learned that developing against a reporting framework helps you make
reports quicker, more accurately, and with more consistency. You learned how to make search
forms and how to toggle between a simple and advanced search form using the reporting
framework. You also built a reusable paging component that is far superior to the built-in
paging component available on the GridView control. Plus, you explored the performance to
functionality trade-offs regarding data binding in the PreLoad versus the PreRender method,
and you saw how to allow for either scenario using the BindInPreLoad property.

6293_ch09.fm Page 434 Monday, November 14, 2005 12:55 PM

C H A P T E R 9 ■ B U I L D I N G A R E U S A B L E R E P O R T I N G F R A M E W O R K 435

Creating a reusable reporting framework takes a lot of time, effort, and thought, but it defi-
nitely pays off in the long run. No doubt, you’ll continue to create search pages reports, so you
might as well not reinvent the wheel each time you do. This chapter has given you a better
understanding of the thought process and design considerations that go into building reusable
components and frameworks for reporting.

6293_ch09.fm Page 435 Monday, November 14, 2005 12:55 PM

6293_ch09.fm Page 436 Monday, November 14, 2005 12:55 PM

437

■ ■ ■

C H A P T E R 1 0

Web-Based Wizards: Avoiding
Duplicate Data Entry

C

omplete disarray. People in the injury compensation department for a large fulfillment
company had been entering employee information for years with no process in place to avoid
data duplication. A claim for Beth Smith is sent in, for example, and she is added to the system.
All the information relating to her claim, injury information, eyewitness accounts, and insur-
ance data are all captured in the system. Later on, more information comes in regarding the
incident, but this time the name on the form is Elizabeth Smith. You can see where this is
going. Someone looks for Elizabeth Smith, doesn’t find her, and creates a new record even
though Beth Smith is already in the system. The new information is entered into a new record,
so the old record has no new data, and the new record has no old data. To make matters worse,
sometimes information would come in and users would simply enter it as new without ever
even trying to determine whether or not it had previously been entered. As a result of the dupli-
cated data and duplicated effort, their systems and processes were inefficient, ineffective, and
in complete disarray.

Data entry will be a part of just about any business application you develop, so you must
consider how you’ll keep people from unnecessarily entering data. Many developers create
search pages that allow users to check for a record before entering it into the system; however,
those search pages are not an integral part of the record-adding process. Users are supposed to
go and check for the record, but the responsibility for doing so rests entirely on the user. As
such, the step is often skipped when the user is in a hurry.

ASP.NET 2.0 features a new web-based

Wizard

 control that allows you to guide a user
through a well-defined, step-by-step process. You can use wizards for just about anything that
you want, including searching, reporting, and displaying information. This chapter shows you
how to use a web-based wizard that forces users to search for duplicates as part of the adding
process. Here’s what you can expect in this chapter:

•

Wizard Control Overview:

 Gives a basic description of the

Wizard

 control, features, prop-
erties, and how to work with one in the IDE.

•

Phonetic Searching:

 Exact match searching isn’t very effective when trying to avoid data
duplication because it assumes the user know exactly how to spell someone’s name and
that an alternate spelling isn’t being used. SQL soundex functions allow you to search for
close matches based on the phonetics of a word instead of the exact spelling and can be
very useful in avoiding data duplication.

6293_ch10.fm Page 437 Monday, November 14, 2005 1:41 PM

438

C H A P T E R 1 0

■

 W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

•

Creating the Add Employee Wizard:

 Demonstrates how to use web-based wizards and
SQL soundex searching functionality to create a step-by-step process for adding
employees to a system and avoid data duplication.

Let’s start by taking a quick look at the new

Wizard

 control.

Wizard Control Overview

Over the past few years, wizards have gained in popularity because they provide a simple step-
by-step interface for walking users through detailed processes. Most users are familiar and
comfortable with wizards, so it should come as no surprise that wizards have made their way
into the web-based world to help walk users through web-based processes. Creating wizards in
ASP.NET 1.x either took multiple pages or complex page logic to sequence items on a single
page. ASP.NET 2.0 ships with a new user control called the

Wizard,

 which simplifies the
creation of web-based wizards on a single page.

You can find the

Wizard

 control near the bottom of the

Standard

 tab in the Visual Studio
IDE’s toolbox. Adding a

Wizard

 to your page is easy; just drag the control from the toolbox to
the location where you want the

Wizard

 on your page. By default, the IDE creates a

Wizard

control with two steps, as shown in Listing 10-1.

Listing 10-1.

 Default Wizard Control Definition

<asp:Wizard ID="Wizard1" runat="server">
 <WizardSteps>
 <asp:WizardStep ID="WizardStep1" runat="server" Title="Step 1">
 </asp:WizardStep>
 <asp:WizardStep ID="WizardStep2" runat="server" Title="Step 2">
 </asp:WizardStep>
 </WizardSteps>
</asp:Wizard>

Before we get into how to create and modify steps in the wizard, let’s take a moment to
look at the layout of the

Wizard

 control and pieces that make it up.

Layout and Parts of a Wizard Control

Wizard

 controls are responsible for displaying the number of steps in the wizard, handling
navigation between those steps, and displaying the actual step content. As such, there are
three distinct sections to a

Wizard

 control. Figure 10-1 shows the layout and appearance of all
three steps in a three-step wizard. You can see how each section of the wizard appears
throughout the various steps.

6293_ch10.fm Page 438 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0

■

 W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

439

Figure 10-1.

 Displays the layout and appearance of all three steps in a three-step wizard

■

Note

BasicWizard.aspx

 in the example application for this chapter (in the Source Code area of the
Apress website at

http://www.apress.com

) contains the markup for

Wizard

 shown in Figure 10-1. For

now, we are only focusing on the visual layout of a wizard.

The first section is the sidebar, which appears on the left side of the wizard. The sidebar is
responsible for displaying a list of steps in the wizard and identifying which step the user is
currently on. Users can click on a step name in the sidebar to jump to that step. Of course,
events in the

Wizard

 control allow you to stop users from jumping to a step prematurely or
returning to a step after it has been completed. You can use the default sidebar template or
create a custom template for the sidebar by editing the

SideBarTemplate

 in the control.
The second section of a wizard is the actual step content. It appears in the upper-right

section of the wizard and is normally the largest section in the control. You can enter content
for a step directly in the IDE by selecting the appropriate step in the sidebar and then selecting
the content area in the

Wizard

 control. You can drag ASP.NET controls into that section or enter
any HTML you desire. The content you place in the step appears between the

<asp:Wizard-
Step>

 and

</asp:WizardStep>

 elements inside the <

WizardSteps/>

 section of a

Wizard

 control
(see Listing 10-1).

The last section of a wizard is the navigation section. This section displays navigational
buttons allowing the user to move to the next and previous steps in the wizard, and a

Finish

button to finish out the wizard on the last step. It can also display a

Cancel

button to exit the
wizard without finishing. You can modify the appearance of the navigation section by editing
the

StartNavigationTemplate

,

StepNavigationTemplate

, and the

FinishNavigationTemplate

.

6293_ch10.fm Page 439 Monday, November 14, 2005 1:41 PM

440

C H A P T E R 1 0

■

 W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

There are three navigation templates because there are three different types of steps in a
wizard all requiring different navigation options. The

StartNavigationTemplate

 only displays
on the first step of a wizard. It shows a

Next

 button but no

Previous

 button because no
previous step exists on the first step. The

StepNavigationTemplate

 displays on all middle steps
of a wizard and shows both a

Next

 and a

Previous

 button. The

FinishNavigationTemplate

displays on the last step of the wizard and shows a

Previous

 button and a

Finish

 button.

Important Wizard Properties and Events

You can control the appearance and behavior of a wizard by modifying any of its 75-plus prop-
erties. Many of the properties you’ve already seen—such as the

EnableViewState

,

TabIndex

,
and

Visible

 properties—so they don’t require discussion. The Table 10-1 outlines the most
pertinent properties and gives a description as to their purpose.

There are 24 wizard properties that deal specifically with button appearance in the various
navigation templates. Their names and descriptions are highly repetitive, so they aren’t listed
here in their entirety; however, they are important, and you need to know how to use them.
The properties appear in the form

<ButtonName><Property>

. A total of six different buttons
are exposed by templates in the wizard and each of the buttons has four properties (6 buttons

Table 10-1.

 Important Wizard Properties

Property Name Type Description

ActiveStep ActiveStepBase

(Read-only)

Gives you a reference to the

ActiveStepBase

 object,
which represents the current step displayed in the
wizard. You use the

ActiveStepBase

 object to get or set
step-specific properties.

ActiveStepIndex Integer

Identifies the active wizard step. This is a zero-based
index.

CancelDestination

➥

PageUrl
String

URL where the user is redirected when the Cancel button
is clicked.

DisplayCancelButton Boolean

Determines whether to display a Cancel button in the
navigation section.

DisplaySideBar Boolean

Determines whether or not to display the sidebar.

FinishDestination

➥

PageUrl
String

URL where the user is redirected after the wizard
completes.

NavigationStyle TableItemStyle

Defines various style elements dictating the visual
appearance of the navigation section.

SideBarStyle TableItemStyle

Defines various style elements dictating the visual
appearance of the sidebar section.

StepStyle TableItemStyle

Defines various style elements dictating the visual
appearance of the step section (that is, the main content
area of the wizard).

WizardSteps WizardStepCollection

Maintains an ordered listing of the various steps in the
wizard as a collection of

WizardStepBase

 objects.

6293_ch10.fm Page 440 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0

■

 W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

441

* 4 properties = 24 total properties). Tables 10-2 and 10-3 outline the different button names
and properties.

Each of these buttons listed in Table 10-2 has four different properties as shown in Table 10-3.

So, if you combine the button name from Table 10-2 with a property name from Table
10-3, then you end up with a property name on the

Wizard

 control. The

StepNextButtonType

property, for instance, defines the button type of the

Next

 button that appears in the

Step

➥

NavigationTemplate

. The

FinishCompleteText

 property defines the text that appears on the

Finish

 button in the

FinishNavigationTemplate

, and so on.

Wizard

 controls also expose a number of events that allow you to respond to certain user
actions and programmatic changes to the control. Most of the events revolve around naviga-
tion because the wizard is really a means of navigating a user through a predefined series of
steps. Table 10-4 contains a listing of the events the

Wizard

 control raises.

Table 10-2.

The Six Buttons Exposed by Templates in the Wizard

Button Property Prefix Description

CancelButton

Cancel button that may appear on all templates in the wizard

FinishCompleteButton

Finish button that appears in the

FinishNavigationTemplate

FinishPreviousButton

Previous button that appears in the

FinishNavigationTemplate

StartNextButton

Next button that appears in the

StartNavigationTemplate

StepNextButton

Next button that appears in the

StepNavigationTemplate

StepPreviousButton

Previous button that appears in the

StepNavigationTemplate

Table 10-3.

 Button Properties

Property Name Type Description

Type ButtonType

Defines whether the button appears as a button, link, or image

Text String

Defines the text that appears on the button when it is a button or
a link

ImageUrl String

URL of the image displayed when the button is an image

Style Style

Defines various style elements dictating the visual appearance
of the button

6293_ch10.fm Page 441 Monday, November 14, 2005 6:14 PM

442

C H A P T E R 1 0

■

 W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

As you move from one step to another in the Wizard, the events listed in the preceding
table fire in the following sequence. First, one of the

NextButtonClick

,

PreviousButtonClick

, or

SideBarButtonClick

 events occur (only one). After the click event has been processed, the

Deactivate

 event of the old step fires, followed by the

Activate

 event of the new step. Lastly,
the

ActiveStepChanged

 event fires indicating that the new step has been activated successfully.
If you click on the

Cancel

 or

Finish

 buttons, the

CancelButtonClick

 or the

FinishButtonClick

events fire, but none of the other events are ever raised (not even the deactivate events). As
mentioned before, most of the events exposed by the wizard are useful for controlling naviga-
tion. You’ll learn about that after we discuss how to actually add steps to a wizard.

Adding Steps to the Wizard

Your first task when making a wizard is determining how you want to lead your users through
the task at hand. This requires that you think through which screens to make available and the
sequence in which those screens should be displayed. After you have determined how many
steps you want and where they should be, you need to add them to the wizard.

There are two ways you can add steps to a

Wizard

 control. The easiest way is to use the

WizardStep

 collection editor. It provides you with an intuitive interface for creating and
rearranging steps. You can access the collection editor by clicking on the ellipsis next to the

Table 10-4.

 Wizard Events

Event Name Description

ActiveStepChanged

Fires when the user navigates to another step in the wizard.

CancelButtonClick

Fires when a user clicks on the Cancel button. This signifies that the user
wants to exit the wizard.

FinishButtonClick

Fires when the user clicks the Finish button. This signifies that the user
has completed the wizard, and you can run any code that you need to
run to finalize the wizard process.

NextButtonClick

Fires when the user clicks the Next button. You can use this event to
manage the way users navigate forward through the wizard.

PreviousButtonClick

Fires when the user clicks the Previous button. You can use this event to
manage the way users navigate backwards through the wizard.

SideBarButtonClick

Fires when the user clicks on a step link in the sidebar. You can use this
event to manage the way users navigate through the wizard.

*

Activate

Fires after the wizard deactivates the last step. You can use this event to
set up resources that are required by the step and to implement step-
skipping logic.

Deactivate

Fires when the user navigates away from a step. You can use this event to
release resources that are no longer required and to run validation logic
on the step.

* These events are attached to each

WizardStep

 in the

Wizard.

6293_ch10.fm Page 442 Monday, November 14, 2005 6:14 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 443

WizardSteps property in the property editor, by right-clicking on the Wizard control and
selecting Add/Remove Wizard Steps from the context menu, or by choosing Wizard Tasks ➤
Add/Remove Wizard Steps. You can see an example of the WizardStep Collection Editor in
Figure 10-2.

Figure 10-2. WizardStep Collection Editor

Using the WizardStep Collection Editor should be fairly intuitive. You can add new
WizardStep items by clicking the Add button, and you can remove the selected WizardStep item
by clicking the Remove button. The arrows to the right of the WizardStep listing allow you to
rearrange the steps by moving the selected item up and down. On the right side of the collec-
tion editor, you’ll see the properties for the selected WizardStep. The WizardStep properties are
shown in Table 10-5, and the WizardStepType descriptions are given in Table 10-6.

Table 10-5. WizardStep Properties

Property Name Type Description

Title String Descriptive title of the step. This text is displayed in the sidebar
along with the titles of all the other steps.

AllowReturn Boolean Defines whether or not the user may return to this step from
subsequent steps or from the sidebar. Setting this value to
False causes subsequent steps to hide the Previous button and
renders the sidebar link useless (although it’s still clickable), so
the user can’t navigate back to the step. The user can navigate
forward to the step if they can somehow get to a previous step
in the sequence. If you want to avoid this, simply set the
AllowReturn value for all the steps to False.

StepType WizardStepType This property determines which navigation to display for the
step. There are five different WizardStepType enumerations:
Start, Step, Finish, Complete, and Auto.

6293_ch10.fm Page 443 Monday, November 14, 2005 1:41 PM

444 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

■Caution You should always specify a title for your wizard steps. If you fail to provide a title, the wizard
uses the ID of the template as its name in the sidebar. If you fail to provide both a title and an ID, then the
wizard does not display anything in the sidebar, but displays the step when users click on the Next or Back
buttons. This can be very confusing, so make sure you always specify a title.

When you’re finished adding, editing, and removing steps from the wizard, click the OK
button to save your changes. The HTML in the page is updated to reflect your changes. You can
also opt to manually add a WizardStep by adding a new <asp:WizardStep> element under the
<WizardSteps> element as shown in Listing 10-2.

Listing 10-2. WizardStep Elements in the UI

<asp:Wizard ID="Wizard1" runat="server" ActiveStepIndex="0">
 <WizardSteps>
 <asp:WizardStep ID="WizardStep1" runat="server" Title="Step 1">
 <!-- Step 1 Html and ASP.NET Controls -->
 </asp:WizardStep>
 <asp:WizardStep ID="WizardStep2" runat="server" Title="Step 2">
 <!-- Step 2 Html and ASP.NET Controls -->
 </asp:WizardStep>
 <asp:WizardStep ID="WizardStep3" runat="server" Title="Step 3">
 <!-- Step 3 Html and ASP.NET Controls -->

Table 10-6. WizardStepType Properties

WizardStepType Description

Start Identifies the step as the starting step. The wizard displays the StartNavigation➥
Template in the navigation section.

Step Identifies the step as a middle step. The wizard displays the StepNavigation➥
Template in the navigation section.

Finish Identifies the step as the final step before completing the wizard. The wizard
displays the FinishNavigationTemplate in the navigation section.

Complete Identifies the step as the wizard completing step. When the user has completed
the wizard, you can opt to send the user to another location using the
FinishDestinationPageUrl, or you can allow the Wizard to display the
“Complete” step. The Complete step is a means by which you can display a
message to the user indicating the success of the wizard, provide links to other
locations, or otherwise give the user some direction as to what to do now that
the wizard is complete. When displaying the Complete step, the wizard does not
display navigation buttons in the navigation section.

Auto When a step is set to Auto, the control determines which navigation template
to use based on the position of the step in the step sequence. If it’s the first
step in the sequence, then the control displays the StartNavigationTemplate.
If it’s the last step in the sequence, the control displays the
FinishNavigationTemplate. If it’s anything else, the control displays the
StepNavigationTemplate.

6293_ch10.fm Page 444 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 445

 </asp:WizardStep>
 </WizardSteps>
</asp:Wizard>

After adding a WizardStep to the page, you can add content for the WizardStep visually in
the IDE or manually in the HTML. To switch between steps in the IDE, click on the step links in
the sidebar of the wizard. Clicking these links changes the ActiveStepIndex property of the
Wizard control and displays the selected step in the IDE. You can also manually set the
ActiveStepIndex in the property editor.

■Tip Whatever step is shown in the IDE will be shown when the page displays to the user. You may want to
set the ActiveStepIndex to 0 when the page first loads to avoid accidentally displaying the wrong starting step.

Any content you add to the step appears between the <asp:WizardStep> and
</asp:WizardStep> elements of that particular step, as denoted in Listing 10-2. You can
also manually edit the HTML in the section if you so desire. Now that you know how to
create steps, let’s take a look at how to control navigation between those steps.

Controlling Wizard Navigation
Navigation is a central theme in Wizard controls because they exist to intelligently guide people
through a task. You have complete control over how users may navigate through the steps in
your wizard. Your wizard can require users to go through the wizard one step at a time, restrict
users from going backwards after they have completed a step, or allow your users to jump
forwards and backwards at will.

You control wizard navigation by responding to the navigation events exposed by the Wizard
control. The navigation events include the FinishButtonClick, NextButtonClick, Previous➥

ButtonClick, and SideBarButtonClick events. All these events have a WizardNavigationEventArgs
parameter, which is, by default, named e. This parameter identifies the index of the current step
via e.CurrentStepIndex and the index of the step to which the user is attempting to move via
e.NextStepIndex. It may help to think of e.NextStepIndex as the requested index because it could
be the next step, a previous step, or a couple of steps backward or forward in the sequence. You
can also use the e parameter to cancel navigation by setting e.Cancel to True or change the step to
be shown by setting e.ActiveStepIndex to the required step. The Activate and Deactivate events
also play a key role in running validation for specific steps.

The following couple sections describe various navigation scenarios that you may
encounter and how to code for those scenarios.

Only Allow Users to Move Forward One Step at a Time or Back to Any Step

Users are limited to moving one step at a time from the Next and Previous buttons. The only
location from which a user can jump forward multiple steps is from the sidebar links. You have
a couple of options for dealing with this issue. The first option is to set the DisplaySideBar
property to False, which takes away the user’s ability to see and use the sidebar. This effectively
solves the problem, but the sidebar is very useful for users who want to know where they are in
the process and how many steps remain.

6293_ch10.fm Page 445 Monday, November 14, 2005 1:41 PM

446 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

Another option is to add code to the SideBarButtonClick that keeps the user from moving
forward more than one step at a time as shown in Listing 10-3.

Listing 10-3. Only Allow Users to Move Forward One Step at a Time

'***
Protected Sub SideBarButtonClick(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
 Handles Wizard1.SideBarButtonClick

 If e.NextStepIndex > e.CurrentStepIndex + 1 Then e.Cancel = True

End Sub

This code checks to see if the NextStepIndex is more than one step away and, if so, cancels
navigation. You could also just move the user ahead one step, but that may be confusing if the
user clicks on one step and gets another. Users can still navigate back to any step in the step
sequence using this code because all previous step indexes will be less than the
CurrentStepIndex.

Skip an Unnecessary Step When the User Clicks the Next Button

You can skip an unnecessary step by placing skip code in the NextButtonClick event handler.
The code should determine the step to which the user is attempting to navigate and then
whether or not to skip the step. In Listing 10-4, Step 2 is skipped when the chkSkipStep2 check
box is checked.

Listing 10-4. Skipping an Unncessary Step

'***
Protected Sub Wizard1_NextButtonClick(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
 Handles Wizard1.NextButtonClick

 'Remember, step indexes are zero-based so index 1 represents step 2
 Select Case e.NextStepIndex
 Case 1 'Skip logic for step #2
 If Me.chkSkipStep2.Checked Then Wizard1.ActiveStepIndex = 2
 Case 2 'Skip logic for step #3
 Case 3 'Skip logic for step #4
 End Select

End Sub

This code uses a Select Case statement to determine which step the user is requesting,
and then runs step-skipping logic for each step in the individual Case statements. You can see
that when chkSkipStep2 is checked, the event handler sets the ActiveStepIndex to 2, which
represents step 3 in the sequence. Notice that you don’t set e.Cancel = True when you change
the index to which the user should navigate. Setting e.Cancel cancels all navigation, even if you
set the ActiveStepIndex in code.

6293_ch10.fm Page 446 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 447

Skip an Unnecessary Step When the User Clicks the Previous Button

If you implement logic to skip steps in the NextButtonClick event handler, it seems like you
would also have to implement similar logic to skip steps in the PreviousButtonClick event
handler. But such isn’t the case because the Wizard control actually maintains a list of the steps
the user has visited and automatically routes the user to the last visited step. Therefore, if a step
was skipped going forward, it’s also skipped going backward, without any additional coding
required.

Of course, this can also be very awkward if you allow your users to jump all over the place
using the sidebar. Let’s say a user visits Step 1, then Step 5, then Step 8, then Step 3, and lastly
Step 6. From Step 6, the user clicks the previous button trying to get back to Step 5. Instead of
being taken to Step 6, the user will actually be taken to Step 3, then Step 8, and then Step 5,
because that’s the order in which the user originally visited the pages. This brings us to our next
navigation scenario.

■Note You can acquire an ICollection object containing the listing of previously visited steps using the
GetHistory() function of the Wizard control.

Removing an Unnecessary Step Completely

One problem with placing step-skipping logic in the NextButtonClick event handler is that
users can still access the skipped step from the sidebar. At times, you’ll want users to be able to
get back to skipped steps, but sometimes you’ll want to completely remove a step even from
the sidebar.

Removing a step in its entirety is very easy because the steps exist as a collection exposed
from the WizardSteps property of the Wizard control. To remove an item, you simply use the
collection’s Remove function and pass in the appropriate WizardStep object. Listing 10-5 shows
you how to remove a step from the Wizard control.

Listing 10-5. Completely Removing Steps from the Wizard

'***
Protected Sub Wizard1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Wizard1.Load

 If Me.chkRemoveStep2.Checked Then
 Wizard1.WizardSteps.Remove(WizardStep2)
 Me.chkSkipStep2.Checked = False
 End If

End Sub

Inside the event handler for the wizard’s load event, the code checks to see if the
chkRemoveStep2 check box is checked. If so, then the method removes WizardStep2 from the

6293_ch10.fm Page 447 Monday, November 14, 2005 1:41 PM

448 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

WizardSteps collection. When the Wizard control renders, Step 2 no longer appears in the
sidebar, and users can’t reach it using the navigation buttons.

Always Navigate to the Previous Step in the Step Sequence Using the Previous Button

If you want to avoid the awkwardness of jumping around using the step history, you can force
the Previous button to always move to the previous step in the sequence. To do this, explicitly
set the ActiveStepIndex to e.CurrentStepIndex - 1 as shown in Listing 10-6.

Listing 10-6. Force Previous Button to Return User to Previous Step in the Sequence

'***
Protected Sub Wizard1_PreviousButtonClick(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
 Handles Wizard1.PreviousButtonClick

 Wizard1.ActiveStepIndex = e.CurrentStepIndex - 1

End Sub

This forces the ActiveStepIndex to be one less than the CurrentStepIndex, which effec-
tively displays the previous step in the sequence.

Remain on a Step If the Step Contains Invalid Data

First, you should always try to validate data on the client side if at all possible. Of course, there
are times when client-side validation isn’t an option, such as when you need to check data in a
database. In these situations, you can use the Deactivate event of a step to validate data and
force the user back to the step if the data is invalid (see Listing 10-7).

Listing 10-7. Validating Data in Wizard Step

'***
Protected Sub WizardStep1_Deactivate(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles WizardStep1.Deactivate

 If Not chkStep1IsValid.Checked Then
 Wizard1.ActiveStepIndex = Wizard1.WizardSteps.IndexOf(WizardStep1)
 End If

End Sub

This code determines the validity of Step 1 by checking whether or not the
chkStep1IsValid check box has been checked. Obviously, your code will have more compli-
cated logic to determine whether or not the input is valid. If the data isn’t valid, the step

6293_ch10.fm Page 448 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 449

acquires its step index by passing itself into the WizardSteps.IndexOf method, then assigns that
step index back to the Wizard1.ActiveStepIndex property, forcing the wizard to redisplay the
step where the invalid data was entered. In this situation, you would also want to display a
message to the user indicating which data is invalid and how to change it.

■Note If you’re using client-side validation, you should also use Page.IsValid to confirm the user input
is valid before allowing navigation events to occur.

Determining Which Button Was Clicked in the ActiveStepChanged Event

Although the need should be rare, you may find occasions when it’s helpful to know which
navigation button was clicked in the ActiveStepChanged event. Unfortunately the Active➥

StepChanged event does not contain any arguments identifying which button the user clicked,
the current step or the next step. But there is nothing stopping you from setting page-level vari-
ables to help you with that determination. Listing 10-8 shows how you can store information
during the Click events for later use in the ActiveStepChanged event.

Listing 10-8. Validating Data in Wizard Step

'***
Private NextButtonClicked = false
Private PrevButtonClicked = false
Private SideBarClicked = false
Private MyEventArgs As WizardNavigationEventArgs

'***
Protected Sub Wizard1_NextButtonClick(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
 Handles Wizard1.NextButtonClick

 NextButtonClicked = true
 MyEventArgs = e

End Sub

'***
Protected Sub SideBarButtonClick(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
 Handles Wizard1.SideBarButtonClick

 PrevButtonClicked = true
 MyEventArgs = e

End Sub

6293_ch10.fm Page 449 Monday, November 14, 2005 1:41 PM

450 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

'***
Protected Sub Wizard1_PreviousButtonClick(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
 Handles Wizard1.PreviousButtonClick

 SideBarClicked = true
 MyEventArgs = e

End Sub

'***
Protected Sub AddWizard_ActiveStepChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles AddWizard.ActiveStepChanged

 'You can use NextButtonClicked, PrevButtonClicked, SideBarClicked, and
 'EventArgs from this method (or any other method) to help determine
 'navigational requirements

End Sub

By now you should have a fairly good understanding of how to control navigation in a
Wizard control. Next, you’ll learn about creating custom content using templates.

Working with Templates
The Wizard is one of the many controls in ASP.NET 2.0 that supports templates (see the
“Templated Controls” section in Chapter 5). Templates allow you to alter the visual layout of a
control while still retaining the control’s built-in functionality. Basically, a control expects
certain types of child controls with specific names to be present inside a template, but allows
you to place those controls anywhere in the template that you want. This gives you a great
degree of visual flexibility and allows you to respond to events to which you would normally
not have access.

Here is the scenario for this example. You want to add a title to the sidebar section of the
wizard because you think it will make the wizard look more professional. Because there are
no properties on the wizard allowing you to define a title bar, you have to manually edit the
SideBarTemplate to create it. You have also received complaints from some users who say it’s
confusing for the sidebar to displays links to future steps if you can’t navigate to those future
steps by clicking on the links. Currently, you allow users to move forward using the Next button
and back using the Previous button or the links on the sidebar. You want to make the sidebar
navigation more intuitive for the user by only showing links for the current and previous items.
Future items should be displayed in the sidebar but not as links.

First, create a new Wizard control by dragging the control from the toolbox onto a page.
Add six or seven steps to the control and give them descriptive titles. You can also take this time
to familiarize yourself with creating content for the steps. When you’re finished adding steps
and step content, right-click on either the sidebar or the navigation section of the wizard to
display the control context menu. Near the bottom of the context menu, you’ll see a section
specifically for the Wizard control. There are four Convert to Template menu options. These

6293_ch10.fm Page 450 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 451

menu items convert the control’s default output for a template into an editable format that you
can use as a base for creating a template. Click the Convert to SideBarTemplate menu item as
shown in Figure 10-3.

Figure 10-3. Converting a template from the control’s context menu

After you click the menu item, the IDE acquires the Wizard control’s default output for the
SideBarTemplate and places the template in your control. The code it adds looks like Listing 10-9.

Listing 10-9. Converted SideBarTemplate (Appears in the Wizard Control Definition)

<SideBarTemplate>
 <asp:DataList ID="SideBarList" runat="server"
 OnItemDataBound="SideBarListBound">
 <SelectedItemStyle Font-Bold="True" />
 <ItemTemplate>
 <asp:LinkButton ID="SideBarButton" runat="server" />
 </ItemTemplate>
 </asp:DataList>
</SideBarTemplate>

Notice that the template contains a single ASP.NET DataList named SideBarList, and that
SideBarList has a LinkButton child control named SideBarButton. Behind the scenes, the
Wizard control binds its WizardSteps collection to the DataList and sets the Text property of the
LinkButton to the WizardStep object’s Title property. It also sets the CommandName property of
the LinkButton to identify which step the user clicks.

Now that you have a SideBarTemplate, you can edit it directly in the IDE or in the source.
To edit a template in the IDE, right-click on the Wizard control to display the control’s context
menu. Locate the Edit Template menu item and move your mouse over it. Allow it to display
its submenu, and then click on the SideBarTemplate menu item in the submenu as shown in
Figure 10-4.

Figure 10-4. Navigating to the SideBarTemplate context menu item

6293_ch10.fm Page 451 Monday, November 14, 2005 1:41 PM

452 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

This displays the SideBarTemplate in the IDE where you can edit it. Of course, the only
item in the SideBarTemplate is a DataList with a blank button, so the SideBarTemplate looks a
bit empty when you first see it (see Figure 10-5).

Figure 10-5. Editing the SideBarTemplate in the IDE

At this point, you can add the sidebar title to the SideBarTemplate using the graphical
template editor just as you would normally in the Visual Studio IDE. The title should be a <div>
tag with a 100% width, Gainsboro background, and bold text that reads Wizard Steps. After you
create it, it should look like Figure 10-6 in the template editor.

Figure 10-6. Adding a sidebar title in the IDE

While you have the template open, go ahead and set the event handler for the Item➥

DataBound event to SideBarListBound. You’ll be using this momentarily to manipulate the links
displayed in the sidebar. To set the ItemDataBound event handler in the IDE, select the DataList
in the template. In the property window, click on the Events button (with the lightning bolt)
near the top of the window. This displays a list of control events and allows you to define event
handlers for the events. Double-click the ItemDataBound event. The IDE automatically creates
a method stub for the event named SideBarList_ItemDataBound with the appropriate event
arguments (see Figure 10-7).

6293_ch10.fm Page 452 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 453

Figure 10-7. Setting the event handler for the ItemDataBound event to SideBarListBound

When you’re done editing the template, right-click on the template and select End
Template Editing from the context menu. This allows the control to redisplay using the
updated template.

Before moving on to dealing with the links in the sidebar, let me reiterate that you can also
manually edit the templates in the page source. In fact, it can sometimes be easier to work with
the source than the template in the IDE. Following, you’ll find the SideBarTemplate source. If
you have already edited the SideBarTemplate in the IDE, make sure your source matches up
with what is shown. Or you can manually enter the text shown in Listing 10-10 into the
SideBarTemplate.

Listing 10-10. Modified Sidebar Template (Appears in the Wizard Control Definition)

<SideBarTemplate>
 <div style="width:100%; background-color:Gainsboro;padding:5px;
 color:Black;font-weight:bold;">Wizard Steps</div>
 <asp:DataList ID="SideBarList" runat="server"
 OnItemDataBound="SideBarListBound">
 <SelectedItemStyle Font-Bold="True" />
 <ItemTemplate>
 <asp:LinkButton ID="SideBarButton" runat="server"/>
 </ItemTemplate>
 </asp:DataList>
</SideBarTemplate>

Now let’s focus on disabling future step links in the sidebar. You can see in Listing 10-10
that the SideBarList_ItemDataBound method handles the ItemDataBound event of the DataList
in the sidebar. You just need to code the method in such a way that it disables any links for
steps that are greater than the current step. Listing 10-11 provides the code for the method.

6293_ch10.fm Page 453 Monday, November 14, 2005 1:41 PM

454 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

Listing 10-11. Modifying Links in the Sidebar

'***
 Protected Sub SideBarList_ItemDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.DataListItemEventArgs)

 If e.Item.ItemType = ListItemType.Item Or _
 e.Item.ItemType = ListItemType.AlternatingItem Then

 Dim btnLink As LinkButton = _
 DirectCast(e.Item.FindControl("SideBarButton"), LinkButton)

 Dim linkStepIndex As Integer
 linkStepIndex = Wizard1.WizardSteps.IndexOf(e.Item.DataItem)

 If linkStepIndex > Wizard1.ActiveStepIndex Then
 btnLink.Enabled = False
 End If

 End If

End Sub

SideBarListBound accepts a DataListItemEventArg object named e that contains impor-
tant information about the DataListItem being created, such as its type and the data item
being bound. The function begins by using an If statement on e.Item.ItemType to ensure the
link disabling code only runs when an Item or AlternatingItem type is created.

Next, the function uses e.Item.FindControl("SideBarButton") to locate the LinkButton
control where the step title is output. The Wizard control binds the DataList to the WizardSteps
collection, so e.Item.DataItem points to a single WizardStep object from that collection. The
function determines the exact index of the item in the WizardSteps collection using the IndexOf
method and stores the index in the linkStepIndex variable. Finally, SideBarListBound
compares linkStepIndex to the ActiveStepIndex of the wizard. If linkStepIndex is greater than
the ActiveStepIndex, then the function disabled the link button. The link text still appears
when a LinkButton is disabled, but users can’t click the link. This alleviates user frustration
with clicking on links only to find out they don’t work.

By now, you should have a fairly good understanding of the Wizard control. Next, you’ll
learn about SQL soundex functions, which play a big role in reducing duplicate information
entry.

Phonetic Searching
One of the most important aspects of reducing data duplication is intelligent searching function-
ality. Searching is often the first line of defense against data duplication because users are
expected to check to see if data exists before entering it into a system. The problem is that most

6293_ch10.fm Page 454 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 455

searches use exact-match searches. This can be detrimental in terms of data duplication because
it requires the user to enter search criteria exactly as they appear in the database, which is prob-
lematic because data can have alternate spellings, abbreviated forms, or be entered incorrectly.

SQL soundex functions allow you to search using phonetics instead of exact spelling. In
other words, you can use soundex functions to search for words that sound like the word
entered. For example, say you have a database full of U.S. presidents. One of your users is
searching for Harry Truman in the database. Because the user is a horrible speller, they are
actually searching for Hairy Trueman. If your system uses exact-match searching, then the
search won’t turn up any results. If your system uses phonetic searching with the SQL soundex
functions, then a search for Hairy Trueman will match on Harry Truman because Hairy and
Harry are phonetic matches, and Trueman and Truman are also phonetic matches.

You should become familiar with two SQL soundex functions if you want to use phonetic
searching. One is the Soundex function, and the other is the Difference function. They are
covered next.

Phonetic Codes and the Soundex Function
Phonetic searching actually uses exact-match searching, but the exact match is based on the
phonetic code of a string instead of the string itself. You can acquire the phonetic code of a
string by passing the string into the Soundex function. The Soundex function processes the
string and returns a four-digit alphanumeric code identifying the phonetics of the string.
Strings that match phonetically return the same phonetic code. For example,
Soundex('Harry') and Soundex('Hairy') both return the phonetic code H600.

The phonetic code generated by the Soundex function always consists of the uppercased
version of the first letter of the string, followed by three digits. When calculating the digits, the
Soundex function disregards all vowels, double letters, and the consonants Y and H (unless the
letter is the first letter of the word). Thus, Hairy and Harry are reduced to Hr and Hr, respec-
tively, before the Soundex function generates their phonetic code.

You can use the Soundex function anywhere you could normally use a function in SQL, but
it mostly appears in the WHERE clause. Following is an example that selects ‘Phonetic Match’ if
the two Soundex functions return the same phonetic code:

SELECT 'Phonetic Match' WHERE Soundex('Hairy') = Soundex('Harry');

You can also learn a lot about the phonetic codes returned from the Soundex function by
thinking of random words and seeing what phonetic code they generate:

SELECT Soundex('Pie'), Soundex('Fly'), Soundex('Rye')

As you look at different words, you’ll quickly find that exact matching with phonetic codes
suffers from similar problems to exact-match searching. For example, Larry and Harry are
closely related phonetic words, but their phonetic codes will never match because the words
start with different letters. The phonetic code for Larry is L600 and the phonetic code for Harry
is H600. They are close to one another, but definitely not an exact match.

Phonetic Proximity Matching with the Difference Function
Knowing that exact matching on phonetic codes has its limitations, SQL Server also includes
the Difference function. The Difference function accepts two strings whose phonetic codes

6293_ch10.fm Page 455 Monday, November 14, 2005 1:41 PM

456 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

you want to compare, acquires the phonetic codes for each string, runs a comparison on the
two codes, and returns a value between 0 and 4 indicating how closely the phonetic codes
match. Table 10-7 outlines the various return codes and what they mean.

Obviously, the Difference function is by no means foolproof. You can see from the
preceding examples that the function returns 0 when comparing Elizabeth and Beth even
though Beth is a substring that appears in Elizabeth. Remember, it only works with phonetics
when doing its comparisons.

You can use the Difference function in your WHERE clause to return approximate phonetic
matches. You should only return values where the Difference function returns 3 or 4, and you
should also order your results by the Difference value as well so more likely matches appear at
the top of the results. Anything less than that and you could be returning some pretty sketchy
results. Following is an example SQL statement using the Difference function:

SELECT 'Phonetic Match' WHERE Difference('Mike','Michael') >= 3;

Now that you have an understanding of phonetic searching and wizards, you can apply
that knowledge to build the Add Employee Wizard.

Creating the Add Employee Wizard
In a perfect world, users would always use the search page in an application to check whether
or not the data they are about to enter already exists. In the real world, users to tend to skip
nonrequired steps because it saves time and energy, at least in the short term. As a developer,
you need to understand that no amount of training or threats from supervisors will change
human behavior, so your applications need to enforce proper data-entry techniques. You can
use web-based wizards to assist you in this endeavor.

In the example that follows, you’ll learn how to create a web-based wizard that guides
users through adding an employee. Instead of seeing one massive employee entry screen, the
employee information is filled out in sections as the wizard progresses. Part of the process also
includes an automatic search for existing information using phonetic searching. The user is
shown a list of possible matches and given the option of backing out of the add process if the
information already exists.

This example uses the Northwind database. You’ll be adding employee records to the
Employee table. All the source code for the example can be found in the Chapter 10 sample

Table 10-7. Difference Return Value Meanings

Value Meaning Example

0 Not a Phonetic Match Difference('Elizabeth', 'Beth')

1 Highly Unlikely Phonetic Match Difference('Raquel', 'Bob')

2 Unlikely Phonetic Match Difference('Steve', 'Sam')

3 Possible Phonetic Match Difference('Mike', 'Michael')

4 Perfect or Near Perfect Phonetic Match Difference('Rachael', 'Raquel')

6293_ch10.fm Page 456 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 457

application in the Source Code area of the Apress website. Business objects can be found in the
App_Code folder in the website, AddEmployee.aspx contains the actual wizard, and the database
can be found in the App_Data folder. Let’s begin by taking a look at the business objects that
handle searching and writing employee data to the database.

■Note Make sure the Northwind connection string entry in the <connectionStrings> section of the
Web.config points to the Northwind.mdf file in the App_Data folder of the sample application. For more
information about connection strings, see Chapter 1.

Business Objects and Utility Functions
As you look through the Add Employee Wizard, you’ll encounter two business classes that
help the wizard interact with employee data from the database: the Employee class and
the EmployeeCollection class. You’ll also encounter the Data class, which contains a number
of database-related utility functions used by both business objects to acquire a database
connection and handle various types of data.

In the sections that follow, you’ll look at the code for these classes and gain a bit of insight
as to what each one does. Make sure you pay careful attention to the GetEmployeeMatches func-
tion in the EmployeeCollection because it uses phonetic searching on employee names to
locate possible duplicates.

Data Class

The Data class is responsible for holding common database access functions shared by the
Employee and EmployeeCollection classes. Most of the functions in the class only have one or
two lines of code, so it should be fairly easy to determine their purpose, but I’ll briefly describe
what each function does after Listing 10-12.

Listing 10-12. Data Class

Imports System.Data.SqlClient
Imports system.Web.Configuration.WebConfigurationManager

Public Class Data

 '***
 Public Shared Function GetConnectionString() As String
 Return ConnectionStrings("Northwind").ConnectionString
 End Function

 '***
 Public Shared Function GetOpenConnection() As SqlConnection
 Dim conn As New SqlConnection(GetConnectionString)
 conn.Open()
 Return conn
 End Function

6293_ch10.fm Page 457 Monday, November 14, 2005 1:41 PM

458 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

 '***
 Public Shared Function SQLEncode(ByVal sqlString As String) As String
 Return sqlString.Replace("'", "''")
 End Function

 '***
 Public Shared Function GetInteger(ByVal obj As Object) As Integer
 If IsDBNull(obj) Then Return 0 Else Return CInt(obj)
 End Function

 '***
 Public Shared Function GetDate(ByVal obj As Object) As Date
 If IsDBNull(obj) Then Return Nothing Else Return CDate(obj)
 End Function

 '***
 Public Shared Function GetString(ByVal obj As Object) As String
 If IsDBNull(obj) Then Return String.Empty Else Return CStr(obj)
 End Function

 '***
 Public Shared Function StringToDate(ByVal dateString As String) As Date
 If IsDate(dateString) Then Return CDate(dateString)
 Return Nothing
 End Function

 '***
 Public Shared Function NullableDate(ByVal dateIn As Date) As String
 If dateIn = Nothing Then
 Return "null"
 Else
 Return "'" & Format(dateIn, "MM/dd/yyyy") & "'"
 End If
 End Function

End Class

The first function in the class, GetConnectionString, is responsible for acquiring the
Northwind database connection string from Web.config. For more information on acquiring
connection strings from Web.config, see Chapter 2.

GetOpenConnection, the next function in the class, uses the GetConnectionString function
to create a new connection to the database. It creates and opens a new SqlConnection before
returning it so the connection is ready to be used immediately.

SQLEncode replaces all the apostrophes in a string with double apostrophes. In SQL, you
need to escape an apostrophe with double apostrophes because SQL uses apostrophes as its
string delimiter. You should use SQLEncode any time you’re placing a user-entered string into a
SQL statement to help avoid SQL injection attacks.

6293_ch10.fm Page 458 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 459

You can use GetInteger, GetDate, and GetString to ensure a null database value does not
cause your application to thrown an exception. These functions return an appropriate value
for their respective data types upon encountering a null database value. If the value isn’t null,
it returns the value acquired from the database.

StringToDate converts a date-based-string value into an actual date value. You can use
this to convert string-based dates entered into text boxes into actual dates used by the date
properties in the Employee class. If the string is empty or invalid, the function simply returns
nothing (an empty date).

Lastly, NullableDate assists in the insertion of null date values into the database. If the
date provided to the function is nothing, it returns the string null. If the date is valid, then it
returns the date string surrounded by apostrophes, for example, '7/21/2001'.

Employee Class

The Employee class is an object representation of the Employees table in the Northwind data-
base. The class has a number of properties that map to fields in the table and contains all the
logic for adding a record to the database.

All 15 properties in the class are standard property definitions and would only serve to take
up space in this text. For the sake of brevity, I’ve taken the property definitions and their
respective fields out of the code listing. You can review Table 10-8 to see all the properties in
the Employee class or check out the source code in the sample application in the Source Code
area of the Apress website.

Table 10-8. Employee Properties (Properties Are Not Shown in the Listing)

Property Name Type Description

EmployeeID Integer Number that uniquely identifies the employee (this is auto-
generated by the database)

LastName String Last name

FirstName String First name

Title String Business title (for example, Sales Manager, Assistant, and so on)

TitleOfCourtesy String Courtesy title (for example, Mr., Mrs., Ms., Dr., and so on)

BirthDate Date Date employee was born

HireDate Date Date employee was hired

Address String Street name and number of the employee’s home address

City String City of the employee’s home address

Region String State (or Region) of the employee’s home address

PostalCode String Zip code of the employee’s home address

Country String Country of the employee’s home address

HomePhone String Phone number where employee may be reached at home

Extension String Extension where employee may be reached at work

Notes String Additional information about the employee

6293_ch10.fm Page 459 Monday, November 14, 2005 1:41 PM

460 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

With the properties excluded, only two functions are left in the class as shown in Listing 10-13.

Listing 10-13. Employee Class

Imports System.Data.SqlClient
Imports System.Data.SqlDbType
Imports Data

Public Class Employee

 '***
 ' Fields and property definitions for EmployeeID, LastName, FirstName,
 ' Title, TitleOfCourtesy, BirthDate, HireDate, Address, City, Region,
 ' PostalCode, Country, HomePhone, Extension, and Notes have been
 ' omitted to save space. Please review the sample code for full listing.

 '***
 Public Sub PopulateObject(ByVal DR As SqlDataReader)
 EmployeeID = GetInteger(DR("EmployeeID"))
 LastName = GetString(DR("LastName"))
 FirstName = GetString(DR("FirstName"))
 Title = GetString(DR("Title"))
 TitleOfCourtesy = GetString(DR("TitleOfCourtesy"))
 BirthDate = GetDate(DR("BirthDate"))
 HireDate = GetDate(DR("HireDate"))
 Address = GetString(DR("Address"))
 City = GetString(DR("City"))
 Region = GetString(DR("Region"))
 PostalCode = GetString(DR("PostalCode"))
 Country = GetString(DR("Country"))
 HomePhone = GetString(DR("HomePhone"))
 Extension = GetString(DR("Extension"))
 Notes = GetString(DR("Notes"))
 End Sub

 '***
 Public Function Add() As Boolean

 Dim SQL As String

 SQL = "INSERT INTO [Employees] (" & _
 " LastName, FirstName, Title, " & _
 " TitleOfCourtesy, BirthDate, HireDate, Address, " & _
 " City, Region, PostalCode, Country, HomePhone, " & _
 " Extension, Notes) " & _
 " VALUES (" & _
 " @LastName, @FirstName, @Title, " & _

6293_ch10.fm Page 460 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 461

 " @TitleOfCourtesy, @BirthDate, @HireDate, @Address, " & _
 " @City, @Region, @PostalCode, @Country, @HomePhone, " & _
 " @Extension, @Notes)"

 Dim conn As SqlConnection = GetOpenConnection()

 Dim cmd As New SqlCommand(SQL, conn)
 cmd.Parameters.Add("@LastName", VarChar).Value = LastName
 cmd.Parameters.Add("@FirstName", VarChar).Value = FirstName
 cmd.Parameters.Add("@Title", VarChar).Value = Title
 cmd.Parameters.Add("@TitleOfCourtesy", VarChar).Value = TitleOfCourtesy
 cmd.Parameters.Add("@BirthDate", DateTime).Value = BirthDate
 cmd.Parameters.Add("@HireDate", DateTime).Value = HireDate
 cmd.Parameters.Add("@Address", VarChar).Value = Address
 cmd.Parameters.Add("@City", VarChar).Value = City
 cmd.Parameters.Add("@Region", VarChar).Value = Region
 cmd.Parameters.Add("@PostalCode", VarChar).Value = PostalCode
 cmd.Parameters.Add("@Country", VarChar).Value = Country
 cmd.Parameters.Add("@HomePhone", VarChar).Value = HomePhone
 cmd.Parameters.Add("@Extension", VarChar).Value = Extension
 cmd.Parameters.Add("@Notes", VarChar).Value = Notes

 cmd.ExecuteNonQuery()
 cmd.CommandText = "SELECT @@IDENTITY;"
 Me.EmployeeID = CInt(cmd.ExecuteScalar())
 conn.Close()

 End Function

End Class

Both of the methods shown here accomplish relatively simple things. PopulateObject
pulls database field information out of a SqlDataReader and places that information into the
appropriate Employee properties. Notice that it uses the GetInteger, GetString, and GetDate
functions defined in the Data class to ensure that the properties are populated correctly even
if a null database value is encountered. You’ll see the PopulateObject method used in the
EmployeeCollection class.

Add is responsible, you may have guessed, for adding an employee record to the database.
It builds out a parameterized INSERT statement containing the database field names and their
respective value parameters. After creating the INSERT statement, the Add function opens up a
connection to the database using the GetOpenConnection method from the Data class. It then
sets up a SqlCommand object using the parameterized INSERT statement in the SQL variable, adds
the appropriate parameters to the command object, and executes a command to add the
record. After inserting the record, the function immediately reuses the command object to
acquire the auto-generated EmployeeID from the database. The statement SELECT @@IDENTITY;
selects the latest auto-generated number, and the ExecuteScalar() command bypasses the
DataReader and just returns the EmployeeID value directly from the function. The value
returned is an object, so it must be cast to the correct type, an integer, using CInt.

6293_ch10.fm Page 461 Monday, November 14, 2005 1:41 PM

462 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

Up next, we have the EmployeeCollection class.

EmployeeCollection Class

EmployeeCollection is a strongly typed collection class responsible for maintaining a collection of
Employee objects and loading collections from the database. It also exposes the GetEmployeeMatches
function, which uses phonetic searching to locate possible duplicates based on an employee’s
name. Listing 10-14 is the code for the class, followed by some brief commentary on its methods.

Listing 10-14. EmployeeCollection Class

Imports System.Data.SqlClient
Imports System.Data.SqlDbType
Imports Data

Public Class EmployeeCollection
 Inherits CollectionBase

 '***
 Default Public Property Item(ByVal index As Integer) As Employee
 Get
 Return DirectCast(List.Item(index), Employee)
 End Get
 Set(ByVal value As Employee)
 List.Item(index) = value
 End Set
 End Property

 '***
 Public Function Add(ByVal item As Employee) As Integer
 Return List.Add(item)
 End Function

 '***
 Private Shared Function PopulateCollection(ByVal SQL As String) _
 As EmployeeCollection

 Dim EmployeeCol As New EmployeeCollection
 Dim EmployeeObj As Employee
 Dim conn As SqlConnection = GetOpenConnection()
 Dim cmd As New SqlCommand(SQL, conn)
 Dim dr As SqlDataReader = cmd.ExecuteReader()

 While dr.Read
 EmployeeObj = New Employee
 EmployeeObj.PopulateObject(dr)
 EmployeeCol.Add(EmployeeObj)
 End While

6293_ch10.fm Page 462 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 463

 conn.Close()

 Return EmployeeCol

 End Function

 '***
 Public Shared Function GetEmployeeMatches(ByVal LastName As String, _
 ByVal FirstName As String) As EmployeeCollection

 Dim SQL As String = String.Format(_
 "SELECT * FROM [Employees] " & _
 " WHERE (DIFFERENCE(LastName, '{0}') >= 3 " & _
 " OR LastName LIKE '%{0}%' " & _
 " OR '{0}' LIKE '%' + LastName + '%')" & _
 " AND (DIFFERENCE(FirstName,'{1}') >= 3 " & _
 " OR FirstName LIKE '%{1}%' " & _
 " OR '{1}' LIKE '%' + FirstName + '%')" & _
 " ORDER BY DIFFERENCE(LastName, '{0}'), " & _
 " DIFFERENCE(FirstName,'{1}')", _
 SQLEncode(LastName), SQLEncode(FirstName))

 Return PopulateCollection(SQL)

 End Function

End Class

Employee Collection inherits most of its collection functionality from the CollectionBase
class. Both the Item and Add functions shown in the code are strongly-typed implementations
of the standard Item and Add functions associated with most collections.

PopulateCollection is responsible for executing a SELECT statement and populating
an EmployeeCollection with the results from the query. It is a Public Shared function so
you can use it without having to instantiate an EmployeeCollection object. The function begins
by creating a new EmployeeCollection object named EmployeeCol, which will ultimately
be returned as the result of the function. It also defines an Employee object named EmployeeObj,
which helps populate the EmployeeCollection with Employee objects. After that, Populate➥

Collection acquires an open SQL connection using the GetOpenConnection method and
creates a SqlCommand object named cmd to execute the query passed into the function via the SQL
parameter. The call to cmd.ExecuteReader() returns a SqlDataReader containing the results of
the query. PopulateCollection iterates through the SqlDataReader using a While loop. Inside
the loop, the function creates a new Employee object and passes the SqlDataReader into the
object’s PopulateObject method. Remember, this method populates the properties of the
object from the data in the SqlDataReader. The function then adds the object to EmployeeCol. If
the SQL query does not return data, then no Employee objects are added to the EmployeeCol.
Finally, the function closes the database connection and returns EmployeeCol.

GetEmployeeMatches returns a collection of possible duplicates given a first name and a last
name. This function simply constructs a SQL statement, passes it to the PopulateCollection

6293_ch10.fm Page 463 Monday, November 14, 2005 1:41 PM

464 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

function, and returns the resulting EmployeeCollection. The big part of this function is the
actual SQL statement itself. One issue noted earlier with phonetic searching is that it can miss
substring matches. Remember, the names Elizabeth and Beth are not phonetic matches, but
they are obviously related because Beth is a substring of Elizabeth. Thus, the SQL statement in
the function uses both phonetic and substring searching to locate results. An example SQL
statement may look like Listing 10-15 when searching for Elizabeth Smith.

Listing 10-15. Example SQL Statement Used in GetEmployeeMatches

SELECT * FROM [Employees]

WHERE (DIFFERENCE(LastName, 'Smith') >= 3
 OR LastName LIKE '%Smith%'
 OR 'Smith' LIKE '%' + LastName + '%')
 AND
 (DIFFERENCE(FirstName,'Elizabeth') >= 3
 OR FirstName LIKE '%Elizabeth%'
 OR 'Elizabeth' LIKE '%' + FirstName + '%')

ORDER BY DIFFERENCE(LastName, 'Smith'),DIFFERENCE(FirstName,'Elizabeth')

Notice that the query uses four LIKE statements to search for substrings, two for each
name. This ensures that if either the search criteria or the database value is a substring of the
other, the result is returned. For example, if you have a Beth in the database and search for Eliz-
abeth, the first LIKE statement determines that Elizabeth isn’t a substring of Beth, however, the
second one determines that Beth is a substring of Elizabeth. It also tries to intelligently order
the duplicate listings using the return values from the DIFFERENCE functions.

■Tip You can also use the LIKE functions in the WHERE clause to help intelligently sort the results.

Add Employee Wizard
Before you build a wizard, you should sit down and think about which steps you want to
include in the wizard and how to guide the user through the task at hand. The Add Employee
Wizard has two objectives. First, it should force users to look at the list of existing employees
with similar names to the name being entered to avoid duplicate data entry. Second, it should
split up the data entry for an employee into logical sections over several screens.

Each of the properties in the Employee class fits into one of three logical categories:
personal information, business information, and notes. Personal information contains prop-
erties such as name, date of birth, address, and home phone number. Business information
contains information such as hire date, title, and extension. Notes is in a category by itself
because it could contain business or personal notes about the employee. Because of these
categories, the wizard needs to contain three different steps for data entry.

Of course, you don’t want users to enter a lot of employee information only to find out
after the fact that they are entering duplicate data. You want the existing record search to

6293_ch10.fm Page 464 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 465

happen first. Thus, the Add Employee Wizard will have an initial screen where the user can
enter an employee name followed by a screen that displays possible matches on that name. If
there are no matches, then the screen is skipped. The wizard then displays a step to enter
personal information, a step for business information, and a step for notes. Each of these steps
is outlined in more detail in the sections that follow.

Following you’ll find a brief summary of each step in the wizard as well as a screenshot
showing the layout of the screen. Refer to the sample application in the Source Code area of the
Apress website for more information about the visual design and styles used for the wizard
layout.

Step 1 – Enter an Employee Name

In the initial screen of the Add Employee Wizard, users can enter the first name and last name
of the employee they want to add to the system (see Figure 10-8). Both the first name and the
last name are required fields, so users will see an error message if they attempt to move to the
next step without entering either one.

Figure 10-8. Step 1—Enter an employee name

Step 2 – Check for Existing Data

In this step, the user can review existing employees whose names closely match the name of
the employee the user wants to enter (see Figure 10-9). By quickly scanning the list, users can
see if there are any possible duplicates. Optionally, users can click on the View link to get a more
detailed listing about a particular individual to help make an informed decision as to whether
or not the employee being entered is a duplicate. If there are no possible matches, then the
wizard skips this screen and the user is automatically taken to the data-entry screen.

6293_ch10.fm Page 465 Monday, November 14, 2005 1:41 PM

466 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

Figure 10-9. Step 2—Check for existing data

Step 3 – Enter Personal Information

At this point in the wizard, the user enters any known personal information about the
employee. Although it isn’t visible from Figure 10-10, there is a range validator on the Birth
Date field to ensure that the date entered is in an appropriate format. You should also note that
the First Name and Last Name text box values are automatically set to the values entered on
the first step of the process to help reduce data entry for the user.

Figure 10-10. Step 3—Enter personal information

Step 4 – Enter Business Information

This screen is very similar to the personal information screen, but it deals with business infor-
mation (see Figure 10-11). It exists to show how you can split out data entry into multiple
sections, which is very helpful when you have large items with many fields.

6293_ch10.fm Page 466 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 467

Figure 10-11. Step 4—Enter job information

Step 5 – Enter Notes

Finally, the notes screen allows the user to enter ad-hoc information about the employee (see
Figure 10-12). Because this is the last screen in the wizard, it displays the Finish button, which
the user can click to commit the operation and save the employee to the database.

Figure 10-12. Step 5—Enter employee notes

Add Employee Wizard Code

Next, you’ll find the code for the Add Employee Wizard (see Listing 10-16). Nothing in the code
should come as a shock to you because it is simply an implementation of what we have been
discussing throughout this entire chapter.

■Note You can find the markup for the Add Employee Wizard in AddEmployee.aspx in the sample appli-
cation in the Source Code area of the Apress website.

6293_ch10.fm Page 467 Monday, November 14, 2005 1:41 PM

468 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

Listing 10-16. Add Employee Wizard Code (AddEmployee.aspx)

Partial Class AddEmployee
 Inherits System.Web.UI.Page

 '***
 Private SideBarClicked As Boolean = False
 Private PrevButtonClicked As Boolean = False

 '***
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If Not IsPostBack Then
 AddWizard.ActiveStepIndex = 0
 End If

 End Sub

 '***
 Protected Sub WizardStep2_Activate(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles WizardStep2.Activate

 If PrevButtonClicked Then
 'Always return to step 1 if the previous button is clicked
 AddWizard.ActiveStepIndex = 0
 Else

 Dim EmployeeCol As EmployeeCollection
 EmployeeCol = EmployeeCollection.GetEmployeeMatches(_
 txtSearchLastName.Text, txtSearchFirstName.Text)

 If EmployeeCol.Count > 0 Then
 GridDuplicates.DataSource = EmployeeCol
 GridDuplicates.DataBind()

 Me.pnlHasResults.Visible = True
 Me.pnlNoResults.Visible = False

 Else
 If SideBarClicked Then
 Me.pnlHasResults.Visible = False
 Me.pnlNoResults.Visible = True
 Else
 'Skip the step
 AddWizard.ActiveStepIndex = 2
 End If

6293_ch10.fm Page 468 Monday, November 14, 2005 1:41 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 469

 End If

 End If

 End Sub

 '***
 Protected Sub WizardStep3_Activate(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles WizardStep3.Activate

 If Me.txtFirstName.Text = String.Empty Then _
 Me.txtFirstName.Text = Me.txtSearchFirstName.Text
 If Me.txtLastName.Text = String.Empty Then _
 Me.txtLastName.Text = Me.txtSearchLastName.Text

 End Sub

 '***
 Protected Sub AddWizard_PreviousButtonClick(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
 Handles AddWizard.PreviousButtonClick

 PrevButtonClicked = True
 Me.AddWizard.ActiveStepIndex = e.CurrentStepIndex - 1

 End Sub

 '***
 Protected Sub AddWizard_SideBarButtonClick(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
 Handles AddWizard.SideBarButtonClick

 SideBarClicked = True
 If e.CurrentStepIndex < 2 And e.NextStepIndex > e.CurrentStepIndex + 1 Then
 e.Cancel = True
 Page.ClientScript.RegisterStartupScript(Me.GetType, "noJump", _
 "alert(' You cannot jump over Step 2');", True)
 End If

 End Sub

6293_ch10.fm Page 469 Monday, November 14, 2005 1:41 PM

470

C H A P T E R 1 0

■

 W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

 '***
 Protected Sub AddWizard_FinishButtonClick(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.WizardNavigationEventArgs) _
 Handles AddWizard.FinishButtonClick

 Dim EmployeeObj As New Employee
 EmployeeObj.FirstName = txtFirstName.Text
 EmployeeObj.LastName = txtLastName.Text
 EmployeeObj.TitleOfCourtesy = ddlTitleOfCourtesy.SelectedValue
 EmployeeObj.BirthDate = Data.StringToDate(txtBirthDate.Text)
 EmployeeObj.Address = txtAddress.Text
 EmployeeObj.City = txtCity.Text
 EmployeeObj.Region = Me.txtCountry.Text
 EmployeeObj.PostalCode = Me.txtPostalCode.Text
 EmployeeObj.Country = Me.txtCountry.Text
 EmployeeObj.HomePhone = Me.txtHomePhone.Text

 EmployeeObj.HireDate = Data.StringToDate(txtHireDate.Text)
 EmployeeObj.Title = ddlJobTitle.SelectedValue
 EmployeeObj.Extension = txtExtension.Text

 EmployeeObj.Notes = txtNotes.Text

 If Not EmployeeObj.Add() Then
 e.Cancel = True
 ClientScript.RegisterStartupScript(Me.GetType, "AddFail", _
 "alert('Could not add employee to database');", True)
 End If

 End Sub

End Class

Private Members for Storing Button Click Flags

SideBarClicked

 and

PrevButtonClicked

 are

Boolean

 variable store flags indicating which navi-
gation button the user clicked. Storing these values makes it possible to determine which
button the user clicked from inside the

WizardStep2_Activate

 event. For more information on
this tactic, review the “Determining Which Button Was Clicked in the ActiveStepChanged
Event” section earlier in the chapter.

Page_Load: Resetting the ActiveStepIndex

When the page loads for the first time (for example, not on a postback), the

Page_Load

 event
sets the

ActiveStepIndex

 to

0

. When you edit the

Wizard

 control in the IDE, it automatically
sets the

ActiveStepIndex

 of the wizard to whatever step you’re currently editing. Setting it to

0

6293_ch10.fm Page 470 Monday, November 14, 2005 6:12 PM

C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y 471

in the Page_Load ensures that the user starts on the first step of the wizard even if you acciden-
tally leave the Wizard control on a different step in the IDE.

WizardStep2_Activate: Searching for Existing Records

When the user navigates to the second step, the WizardStep2_Activate method executes. This
method is responsible for populating a data grid with existing employees who matched the
employee name entered by the user. It is also responsible for skipping the step if no matches
were located, and the user is coming to the step via the Next button because there’s no point in
showing a list of no results. If the user is coming via the Previous button, then the step is
skipped because it’s highly likely the user is backing up to enter a different name. If the user
clicks on the sidebar navigation, the step is displayed. This allows curious or overly cautious
users to see a message that indicates they are in no danger of adding a duplicate.

The method begins by checking to see if the user came via the Previous button. If so, the
method sets the ActiveStepIndex to 0, which returns the user to the first step. This is the only
code that runs when users came to this step via the Previous button.

If they come from the Next button or the sidebar navigation, then the method acquires an
EmployeeCollection using the GetEmployeeMatches function and the first and last name of the
employee entered from Step 1. Next, the method determines whether or not the Employee➥

Collection contains any data. If so, it binds the GridView control to the EmployeeCollection,
displays the pnlHasResults panel, and hides the pnlNoResults panel. A message in pnlHasRe-
sults informs users to look through the results to ensure they don’t add a duplicate.

If the EmployeeCollection does not have any data, then the method checks to see if the
user came to the step via the SideBarButton. If so, it displays pnlNoResults, hides pnlHas➥

Results, and allows the step to be displayed. If a user is fearful of missing a step, the message
in pnlNoResult reassures that everything is fine and there is no danger of adding a duplicate
record. If the user arrived at the step via the Next button, then the method skips forward one
step, effectively skipping Step 2.

WizardStep3_Activate: Copying the Employee Name Values

When the user navigates to the third step, the WizardStep3_Activate method executes. It is
responsible for copying the first and last name of the user from Step 1 into Step 3 so the user
does not have to retype it. The method checks to see if the First Name or Last Name text boxes
in Step 3 are blank and, if so, copies the values from Step 1 into the text boxes.

AddWizard_PreviousButtonClick: Logical Backward Navigation

This method is responsible for setting the PrevButtonClicked flag so other methods know
which navigation button the user clicked to change steps. It also forces the wizard to navigate
backwards logically one step at a time instead of using the history.

AddWizard_SideBarButtonClick: Disallow Users Jumping over the Second Step

This method is responsible for setting the SideBarClicked flag so other methods know which
navigation button the user clicked to change steps. It also ensures that users cannot skip the
second step. If users attempt to skip the second step, the method registers a startup script that
displays a popup box stating that users cannot jump over Step 2.

6293_ch10.fm Page 471 Monday, November 14, 2005 1:41 PM

472 C H A P T E R 1 0 ■ W E B - B A S E D W I Z A R D S : A V O I D I N G D U P L I C A T E D A T A E N T R Y

AddWizard_FinishButtonClick: Saving the Employee Record

When the user clicks on the Finish button, the AddWizard_FinishButtonClick event fires, signi-
fying that the user wants to save the employee records to the database. The method proceeds
to create an employee object, populate that employee object with the various fields from the
wizard (the values have been stored in the ViewState until this point), and then saves the
Employee object using the Add method. If the Add method is unsuccessful, the method cancels
navigation and registers a startup script that displays a popup box telling the user that the save
failed.

If the employee record successfully saves to the database, then the user is redirected to the
URL in the FinishDestinationPageUrl. In the case of the sample application, the Finish➥

DestinationPageUrl is set to AddSucess.aspx page, which displays a message informing the
user that the add operation succeeded. If you don’t want to redirect the user to another page,
then you should add another step to the end of the wizard and set its StepType property to
Complete. You can then place your confirmation message in the step content and the wizard
will display it when the wizard finishes.

Trying It All Out
You can see the Add Employee Wizard in action by navigating to the AddEmployee.aspx page in
the sample application in the Source Code area of the Apress website. Try adding a couple of
similarly named employees to the database and see what kind of matches you get on them
using phonetic searching. You should quickly see that it does a great job of giving you some
wiggle room for typos and alternate spellings.

Summary
Web-based wizards are great for breaking down complicated tasks into smaller, more manage-
able chunks. They make it easy to display instructions, help enforce business processes, and
gather data in an appropriate sequence. Plus, most people are very familiar with wizards
because of their growing popularity over the past few years so they will feel right at home when
they see one in your web application.

6293_ch10.fm Page 472 Monday, November 14, 2005 1:41 PM

473

■ ■ ■

C H A P T E R 1 1

Uploading Files

B

usinesses generate millions of documents every day, so naturally business applications
need to work with files. Workflow systems allow people to upload supplemental documents
and reports to help in decision-making processes. Employee directories may use uploaded
images to help people put names with faces. Collaboration systems allow team members to
upload shared information to a centralized storage system. Even web-based email clients use
file uploads when working with attachments. Although not every web application allows file
uploads, many do, so it’s an important topic to understand.

One of my clients manages conference speakers and their presentations. Speakers show
up at events with presentation files on floppy disks, CDs, DVDs, thumb drives, flash cards, mini
discs, and any other obscure type of media you can imagine. Loading all the files into the
client’s system the day of the event was becoming a daunting task because of the sheer number
of speakers and files. I helped the client build a presentation-management system to expedite
the process by allowing speakers to upload their presentation files from home via the web.

During the design of the system, we struggled through a few questions that tend to come
up on every project involving uploaded files. How do you allow users to upload multiple files at
once? Should the system store files in a database or in the file system? And how do you allow
users to download files if they are in a database? In this chapter, you’ll explore all these topics:

•

Database vs. File System Debate:

 Discusses general guidelines for determining whether
or not to store files on the file system or in a database.

•

Uploading Files:

Describes the basics of file uploading in ASP.NET.

•

Uploading Multiple Files:

 Shows how to combine JavaScript and VB .NET to allow
multiple file uploads.

•

Storing Uploaded Files in a Database:

 Demonstrates how to save files directly to a data-
base instead of the file system.

•

Retrieving Uploaded Files from the Database:

 After you get data into a database, you
need to get it out again. This demonstrates how to retrieve uploaded files from the
database.

We’ll begin by taking a look at an ongoing debate between storing files in the file system or
in a database.

6293_ch11.fm Page 473 Monday, November 14, 2005 2:18 PM

474

C H A P T E R 1 1

■

 U P L O A D I N G F I L E S

Database vs. File System Debate

Should you store uploaded files in a database or on the file system? It’s a question that comes
up all the time when dealing with uploaded files and, unfortunately, there is no clear winner
one way or the other. One side claims that if you want to maintain atomicity, consistency,
isolation, and durability (ACID) principles, then you need to store files in a database. The other
side claims that if you want better performance, you should store files on the file system
because databases just add overhead. Each way has benefits and drawbacks, so you need to
make a case-by-case decision based on the situation at hand.

The sections that follow describe some of the distinguishing factors between both storage
options. Although not an exhaustive list, the discussion should help you make an informed
decision about which method to use in a particular situation. I default to storing files on the file
system unless there is an otherwise compelling reason to choose a database, but remember to
weigh the decision carefully in each situation.

Transactional Support

Many advocates of database file storage are quick to point out that databases support ACID
principles and the file system does not. The ACID acronym describes the principles of a trans-
action, so “supporting ACID principles” is really just a suave way of saying “databases support
transactions.” Transactional support is useful when saving multiple pieces of information
because the transaction saves all the data or none of the data; that is, there are no partial saves.

Say, for example, you need to save an employee record along with an image file of the
employee. Also say that the web server stores files on the file system and not in a database. You
enter the employee information on a web form, specify an image file, and send it off to the
server for processing. The server creates a new employee record in the

Employee

 table with the
information you entered in the form. One field in the employee record is a string identifying
the path to the employee image file the system is about to write to the file system (you have to
link the record to the file somehow). It successfully adds the record to the database, but, before
it can save the image file to the file system, a glitch kills the application. Now there is a record
in the database linking to a file that does not exist. Alternatively, you could wait until the image
file is successfully written before committing the employee record to the database, but then
you run the risk of having a file without a record. Both situations result in a partial save.

Now, say the server stores files in the database. Chances are that an employee image
would be stored directly in the

Employee

 table, but let’s say it gets stored in a separate table
named

EmployeeImages

 for the sake of the example. You submit the employee information and
image file. The server adds an employee record to the

Employee

 table, but encounters an error
adding the image file to the

EmployeeImages

 table. At this point, the transaction has failed, and
all changes in the transaction roll back. Therefore, the employee record is not committed to the
database, so you do not have a partial save problem.

Does transactional support justify always using the database to save files? Not really.
Applications are data driven, so the biggest issue that could arise from a partial save is when a
record is written to the database, but an associated file is not written to the file system. Why? In
such a scenario, the data driving the application is incorrect, so the application could try to use
nonexistent file references. You can avoid this by writing files to the file system before saving
records to the database. This ensures that the data driving the application is correct. If a partial
save does occur, then you have an orphaned file sitting out in a folder somewhere taking up

6293_ch11.fm Page 474 Monday, November 14, 2005 2:18 PM

C H A P T E R 1 1

■

 U P L O A D I N G F I L E S

475

some space but not doing any harm. And remember, if a partial save does occur, it’s due to an
exception. Thus, the user should be informed that the save did not work so the user can try it
again. This means that the orphaned file is likely to be overwritten and associated with a valid
record on the next attempt, or that an administrator will be looking at the problem if a user has
continued issues with adding a record.

Enforcing Referential Integrity and Avoiding Broken File Links

Enforcing referential integrity is one of the most compelling reasons to use database file
storage over file-system storage. You can think of referential integrity as the status of relation-
ships between two pieces of data. In the previous example, an employee record and an
employee image share a one-to-one relationship, meaning every employee record is required
to have an employee image. One should not exist without the other. If one does exist without
the other, then the data has lost its referential integrity.

Databases continually enforce relationships between related data in a database. The
relationships are maintained during inserts, updates, and deletes, so the relationships are
guaranteed to be protected at all times. If you attempt to insert, update, or delete an item that
would cause a referential integrity issue, the operation fails.

Such is not the case with the file system. If you have a record in a database that points to a
file on the file system, the database cannot enforce the relationship. There is nothing stopping
someone from moving the file to another location or deleting the file outright. Moving or
deleting the file results in a broken file link, meaning that the record no longer has a valid link
to the file.

Referential integrity is a compelling reason to use database file storage, but it does not win
hands down in every situation. You need to weigh the costs of having broken file links associ-
ated with the file system against the performance issues associated with database file storage.
If you are storing uploaded images for a gallery, then you may opt for performance and risk a
couple of broken file links. If you are storing files for compliance with the Sarbane Oxley Act,
then you may want to opt for enforced referential integrity so you don’t end up with a jail
sentence for missing documents.

Security Considerations

A proponent of database file storage offers this helpful advice: if your

file system

 is compro-
mised, then it’s a good idea to have your files in a

database.

 To which, I offer this reply: if your

database

 is compromised, then it’s a good idea to have your files in the

file system

. Sarcasm
aside, the reality is that databases do afford you an additional layer of protection.

People have become relatively comfortable with the file system. Navigating through
folders, searching for documents, opening files, moving files, copying files, and deleting files
are second nature to most. That means more people are capable of stealing or damaging files
on a file system. If an irate employee gains access to the file system, he knows just what he
needs to do to wreak havoc.

Files in a database, however, are much more difficult to manipulate. Writing file data from
the database to disk requires programmatic intervention. Modifying a file is nearly impossible
without writing it to disk, editing it, and sending it back to the database. Moving a file or
searching for a file is also unlikely without an understanding of SQL. Suffice it to say that a

6293_ch11.fm Page 475 Monday, November 14, 2005 2:18 PM

476

C H A P T E R 1 1

■

 U P L O A D I N G F I L E S

number of barriers prevent hackers from working with files stored in a database, which makes
them inherently more secure.

You can use database users, roles, and permissions to limit access to files stored in a data-
base. Similarly, you can use .NET authorization and NTFS file permissions to protect files in
the file system. Both are fairly comparable in terms of protection when configured appropri-
ately. Some people find it easier to maintain permissions solely in the database instead of
worrying about the database and the file system. You can define .NET authorization and NTFS
permissions on a file-by-file and folder-by-folder basis, however, which gives you much more
granular control over application security.

Performance

The file system was designed from the ground up for optimized file storage and retrieval. It’s
the whole reason the file system exists, so it should come as no surprise that the file system
outperforms a database when it comes to file storage and retrieval.

Databases are optimized for storing relatively small records, not large files. SQL Server, for
example, stores records in a structure known as a database page, which is approximately 8KB
in size. Most files, however, are significantly larger than 8KB, so SQL Server splits the file up
into 8KB chunks and stores the file over multiple pages. Thus, you incur a performance cost
when saving a file because the file has to be broken up, and you incur a performance cost when
retrieving a file because it has to be pieced back together. You also incur a performance cost
when SQL Server returns the data to the calling application because it uses the tabular data
stream (TDS) protocol, which is not as optimal as the native data transfer capabilities inherent
in the file system.

You also need to consider how storing files in a database will affect your database connec-
tions and database server load. Remember, if someone is downloading a 200MB file, then
you’ll need an open connection for the duration of the download. This can be problematic if
you have connection-based licensing for your SQL Server, and it can cause performance issues
if you end up with too many connections open at once.

Although the file system outperforms database file storage, some factors can narrow the
performance gap. If you are working with relatively small files, you’ll see less of a performance
hit. Smaller files use few database pages so they are easier to reassemble, and they won’t hold
database connections open as long as larger files. Infrequently accessed files also make for
better performance because the biggest hits you incur happen when files are saved and
retrieved. You can also always upgrade the hardware in your database server if you’re not
getting the kind of performance you desire.

Data Backup and Replication

Database backups automatically include files stored in the database because those files are
treated just like any other database data. This makes backing up files stored in a database
easier in the sense that you do not have to set up any additional routines to back up those files.
Of course, most backup applications can easily backup files on the file system as well, so it’s
not an overly compelling reason to choose one way or the other.

The same goes for database replication. Files in a database are automatically replicated
just like any other data in a database, but it isn’t too difficult to set up file replication between
two servers.

6293_ch11.fm Page 476 Monday, November 14, 2005 2:18 PM

C H A P T E R 1 1

■

 U P L O A D I N G F I L E S

477

Programmatic Complexity

Storing files in a database requires a bit more coding than just saving files directly to the file
system. You have to write more code to upload the file, and you have to write all the code to
retrieve the file from the database and send it back to the user. You may also find yourself
coding workarounds for database file storage because components naturally assume files are
stored on the file system. Programmatic complexity, although a bit more work, gives you
complete control over serving files. This means that you can create advanced security and
authorization schemes to control which users have access to what files.

Future Considerations

Microsoft has been developing a database-driven file system for inclusion in a future operating
system for quite some time. It was slated for released with Windows Vista but was pushed back
because the technology was not ready. Many proponents of database file storage see this as a
confirmation that database technology will close the performance gap and become the stan-
dard for storing files.

As such, you may hear some people saying that you should start putting files in a database
now so your application will be ready to take advantage of the new technology when it’s fully
ready. Although I agree that database technology will definitely close the performance gap, I
don’t think it’s a compelling enough reason by itself to choose database file storage. If you need
the additional referential integrity or security, then go ahead and use a database to store files.
But, it may be years before database technology outperforms the file system, and you never
know how compatible database file storage 5 or 10 years in the future will be with what you
write today. Chances are that you’ll have to rewrite parts of your application anyway and your
initial effort will be for naught.

By now, you should have a good understanding of the pros and cons associated with the
file system and database file storage. Next, you’ll see the various file upload implementations.
We’ll start with uploading files to the file system to get the fundamentals down, and then we’ll
move into multiple file uploads and storing files in a database.

Uploading Files

HTML forms support a variety of different input elements. You can enter text into a text box,
check a check box, select an option button, or choose an item from a drop-down list. HTML
forms also allow you to upload files using a file-input element, which appears in the browser as
a text box and a browse button, as shown in Figure 11-1.

Figure 11-1.

 File input control

Users can either type a file name directly into the text box or use the

Browse

 button to
select a file using a file-selection dialog box. When the user submits the form, the browser

6293_ch11.fm Page 477 Monday, November 14, 2005 2:18 PM

478

C H A P T E R 1 1

■

 U P L O A D I N G F I L E S

appends the contents of the specified file to the outgoing form data and sends it to the server
for processing. Prior to ASP.NET, working with file uploads was difficult because you had to
parse out the incoming file information, open a file, and write the data out to disk. ASP.NET,
however, shields you from most of the grunt work.

The FileUpload Control

One of the new controls in ASP.NET 2.0 is the

FileUpload

 control. In the same way that an
ASP.NET

TextBox

 control represents an HTML text input, the

FileUpload

 control represents an
HTML file input. The control exposes properties and methods that help take the guesswork out
of file uploads, and it allows you to save incoming files with merely a few lines of code.

■

Note

If you worked with file uploads in previous versions of ASP.NET, then you should feel fairly comfort-
able with the

FileUpload

 control because it is basically a server control version of the

HtmlInputFile

control from ASP.NET 1.x.

The

FileUpload

 control appears on the Standard tab of the toolbox in Visual Studio .NET
2005. To add a

FileUpload

 control to your web form, simply drag the item from the toolbox to
the location where you want it to appear on the form. Visual Studio automatically creates the
following control definition on your web form:

<asp:FileUpload ID="FileUpload1" runat="server" />

You can opt to change the

ID

 or set visual and stylistic properties of the

FileUpload

 control,
but aside from that, it requires no configuration to function. The control is ready to go the
moment you drop it on your form. Note, however, that the control does not have any auto
postback capabilities, so you need a submit button or some other means of submitting the
form.

■

Caution

Be careful about using controls that cause auto-postbacks when working with files. Auto-
postbacks cause the file input to upload its file, so a file dramatically reduces the responsiveness of the

application. The file will also

not

 be reuploaded on subsequent post backs.

The

FileUpload

 control exposes a number of properties and methods that make it easy to
work with an uploaded file in code (see Table 11-1).

Table 11-1.

 FileUpload Properties/Method

Name Type Description

FileBytes Byte()

Byte array containing the binary content of the uploaded file.

FileContent System.IO.Stream

Stream object that points to the uploaded file.

6293_ch11.fm Page 478 Monday, November 14, 2005 2:18 PM

C H A P T E R 1 1

■

 U P L O A D I N G F I L E S

479

As you work with file uploads, you’ll routinely encounter

HttpPostedFile

 objects that give
you access to information about a file the user has uploaded. The

PostedFile

 property of the

FileUpload

 control is one example. Table 11-2 outlines the various members of the

Http

➥

PostedFile

 class.

Now let’s actually get into some code and see how to save an uploaded file.

Saving Files with the FileUpload Control

Based on the fact that the

FileUpload

 control has a method called

SaveAs

, saving an uploaded file
seems a trivial process at best. Listing 11-1 assumes you have a web form with a

FileUpload

 control
named

FileUploader

 and a button named

btnUpload

 that the user clicks to submit the file.

FileName String

File name of the uploaded file. This does not include any extra-
neous path information from the client (for example, if

c:\directory\file.txt

 is uploaded, this returns

file.txt

).

HasFile Boolean

Specifies whether or not a file was uploaded. If the file input is
left blank on the form, then no file is sent with the request.

PostedFile HttpPostedFile

Gets a reference to the underlying

HttpPostedFile

 object from
which the

FileUpload

 control acquires its property information.
You can use this object to acquire additional information about
the uploaded file such as its length and its MIME (Multipurpose
Internet Mail Extension) type.

SaveAs(filename as
String)

method
Saves the uploaded file to the location specified by

filename

.

Table 11-1.

 FileUpload Properties/Method (Continued)

Name Type Description

Table 11-2.

HttpPostedFile

 Properties/Method

Name Type Description

ContentLength Integer

Size (in bytes) of the uploaded file.

ContentType String

MIME type of the uploaded file. This defines the type of file
being uploaded (for example,

text/html

,

 application/
msword

,

image/jpeg

, and so on).

FileName String

Raw file name from the client that includes client-path
information. Unlike the

FileName

 property on the

FileUpload

 control, you need to manually parse the file
name out of this property before you can use it.

InputStream Stream

Gives you direct access to the stream containing the
uploaded file data.

SaveAs(filename as
String)

method
Saves the uploaded file to the location specified by

filename

.

6293_ch11.fm Page 479 Monday, November 14, 2005 6:24 PM

480 C H A P T E R 1 1 ■ U P L O A D I N G F I L E S

Listing 11-1. Saving a File with the FileUpload Control

Imports System.IO

...

'***
Protected Sub btnUpload_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnUpload.Click

 If FileUploader.HasFile Then
 FileUploader.SaveAs(_
 Path.Combine(Server.MapPath("Files"), FileUploader.FileName))
 End If

End Sub

First, the code checks to make sure a file was actually submitted using the HasFile prop-
erty. If you attempt to save a nonexistent file, then the SaveAs method will throw an exception.
After checking to make sure the file exists, the code uses the SaveAs method to save the
file to the file’s folder of the web application using the file name of the uploaded file. The
Server.MapPath function converts the web-relative file’s path into a fully qualified path on the
file system (for example, c:\inetpub\wwwroot\application\files\), and the Path.Combine
method from the System.IO namespace combines the path with the file name and adds an
appropriate folder separator between the two if you do not already have one. Of course, you are
not required to use the name of the uploaded file when you save it. Many applications rename
incoming files using special naming conventions to make the files easier to identify and to
avoid accidentally overwriting other files. You can see this sample run by opening the
FileUpload.aspx page in the sample application in the Source Code area of the Apress
website (http://www.apress.com).

■Caution The SaveAs method automatically overwrites a file if the file already exists. If you don’t want to
overwrite existing files, then you must explicitly check for an existing file in your code and avoid calling the
SaveAs method.

So, saving a file using the FileUpload control is reduced to two steps. First, use the HasFile
property to ensure a file was actually uploaded and then use the SaveAs method to save the file
to disk. It really is that simple.

Uploading Multiple Files
Frequently, you’ll want users to upload multiple files to your application. The presentation-
management system discussed in the opening of this chapter is a great example. Presenters
who use the system upload anywhere from 5 to 10 documents per conference with the average

6293_ch11.fm Page 480 Monday, November 14, 2005 2:18 PM

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 481

file size hovering in the 1MB to 2MB range. Naturally, users prefer to upload all the files at once
instead of having to wait to upload one file, then the next, and then the next.

You have a variety of options when it comes to multiple file uploads from a single page.
The first option is to use a third-party control to handle the file uploads for you. There are
some pretty snazzy controls out there that include file-upload status bars and great file-
selection interfaces (check out ABCUpload from http://www.websupergoo.com or visit the
http://www.ASP.net control gallery). Of course, you may have to pay for some of them, and
others rely on technologies that are not supported by all browsers.

Another option involves adding multiple FileUpload controls to the page. HTML forms are
not limited to the number of files you can upload, so you can add as many file-input elements
on a page as you want (within reason). If you have five FileUpload controls on the page, then
the user can upload up to five files at a time. But, this still runs into the fundamental issue
arising from having a static number of file inputs on the page: what happens when the user has
one more file than there are file-input elements?

You could tackle the issue by asking the user upfront how many files will be uploaded and
then create a page with that many FileUpload controls. Although possible, it’s annoying to
force users to predetermine how many files they need to upload before they get to the upload
page. And what happens if they make a mistake and need to upload one or two more than they
had originally planned?

What you really need is to give the user the ability to dynamically add file inputs to the
form using client-side JavaScript. This ensures that users will always have enough input
elements because, if they don’t, they can always create another one by clicking on a button.
In the example that follows, you’ll learn how to dynamically vary the number of file-input
elements on the client side and how to handle those incoming files.

Multiple File Uploads on the Client Side
Adding file-input elements to a page requires two things: an HTML page with easily locatable
containers where the file inputs are to be added and the actual JavaScript that locates the
container and adds the file-input elements.

We’ll begin by examining the HTML page, because you need to know the HTML element
names before you can use them in the JavaScript code. Listing 11-2 is the relevant HTML for
this example.

Listing 11-2. HTML Definition for Dynamically Adding File Inputs

<div id=files>
 <input type=file name=fileUpload1 />

</div>
<input type=button value="Add File" onclick="AddFileInput();"/>
<asp:Button runat=server ID=btnUpload Text="Upload Files" />

In Listing 11-2, there are four important HTML elements. The first is the opening <div>
tag, which acts as the container for the file-input elements. Notice that the id attribute is set to
files, but there is no runat="server" element. You only ever need to access this container
using client-side JavaScript, so there’s no need for the server to even know that the <div> exists.

Inside the <div> container, you’ll see a single file input. Because this is an upload page, you can
assume that the user wants to upload at least a single file, so one input element has been predefined

6293_ch11.fm Page 481 Monday, November 14, 2005 2:18 PM

482 C H A P T E R 1 1 ■ U P L O A D I N G F I L E S

so it will appear when the page first loads. You can predefine more input elements if you think your
users would prefer to have more. Notice that each of these file-input elements are HTML elements,
not FileUpload server controls. All the files uploaded from the page end up in the Request.Files
collection, so the server doesn’t need to explicitly know about the file-input elements.

Under the <div> tag is the Add File input button. When the user clicks this button, the client-
side JavaScript AddFileInput() method executes in response to the onclick event. You’ll see
momentarily that the AddFileInput() method adds a new input file element to the <div> container.

And lastly, you have the Upload button. This is a server control used to submit all the files
the user wants to upload from the page. Now that you have seen the HTML, let’s take a look at
the JavaScript that manipulates it in Listing 11-3.

Listing 11-3. JavaScript for Dynamically Adding File Inputs to a Page

<script language=javascript>
<!--
 //
 var fileCount = 1;

 //
 function AddFileInput(){

 var fileSectionDiv = document.getElementById("files");
 var fileItemDiv = document.createElement("div");

 //Increment the file counter
 fileCount++;

 //Set up the HTML content
 var content = "<input type=file name=fileUpload" +
 fileCount + "> <a href='javascript:RemoveFile(" +
 fileCount + ");'>Remove"

 //Set up the fileItemDiv properties and append element
 fileItemDiv.id = "fileItemDiv" + fileCount;
 fileItemDiv.innerHTML = content;
 fileSectionDiv.appendChild(fileItemDiv);
 }

 //
 function RemoveFile(fileIndex){
 var fileSectionDiv = document.getElementById("files");
 var fileItemDiv = document.getElementById("fileItemDiv" + fileIndex);
 fileSectionDiv.removeChild(fileItemDiv);
 }
-->
</script>

6293_ch11.fm Page 482 Monday, November 14, 2005 2:18 PM

C H A P T E R 1 1

■

 U P L O A D I N G F I L E S

483

At the top of the script is the

fileCount

 variable declaration. This variable maintains
the total count of file-input elements in the

<div>

 container. Because the HTML has one pre-
defined file-input element, the variable starts out with a value of

1

. If you had five predefined
file-input elements, then you would want to start it out with a value of

5

. Although the variable
keeps a count of the number of file-input elements, the real point of the variable is to give new
file-input elements a unique name, a task for which the total count comes in handy.

Under the

fileCount

 declaration is the

AddFileInput

 method, which, is responsible for
adding a new file-input element to the page. Remember that the

id

 attribute of the

<div>

container that holds all the file-input is

files

. The method begins by acquiring an object refer-
ence to that

<div>

 container using

document.getElementById("files")

 and stores the resulting
reference in the

fileSectionDiv

 variable. The method needs this reference later on when
adding the file-input element to the page.

After that, the

AddFileInput

 method calls

document.createElement("div")

 to create a new

<div>

 element and stores a reference to that new element in the

fileItemDiv

 variable. Each
time a user adds a new file-input element, a couple of HTML elements are actually added to the
page: a file-input element, some spacing characters, and a

Remove

link so the user can get rid
of the file-input element if necessary. The newly created

<div>

 tag acts as a container for the
file-input and associated elements. If the user opts to remove the file-input element, the

<div>

container is removed, effectively clearing everything associated with the file-input element
and making for cleaner deletion code.

To ensure each file-input element and its surrounding

<div>

 container end up with a
unique

ID

, the method increments the

fileCount

 variable by one.
After the counter variable has been incremented, the content of the new

<div>

 element is
created—you can see that the HTML contains a definition for a file-input element, a spacing
character, and a

Remove

 link that executes the client-side JavaScript

RemoveFileInput

 function
when clicked. It looks something like this when output to the page:

<input type=file name=fileUpload2>
Remove

After creating the content for the new

<div>

 element,

fileDivItem

 is assigned a unique

ID

and the

innerHTML

 property is set to the content string that was created earlier.
Finally,

AddFileInput

 appends the

fileDivItem

 element to

fileSectionDiv

 using the

appendChild

 method. Appending the element places it at the bottom of any existing elements,
so the new file-input element appears at the bottom of the file-input list. Figure 11-2 shows
how everything looks after adding a few new file-input elements to the page.

Figure 11-2.

 Dynamically adding file-input elements to a page

6293_ch11.fm Page 483 Monday, November 14, 2005 6:25 PM

484

C H A P T E R 1 1

■

 U P L O A D I N G F I L E S

The final method in the script is the

RemoveFile

 method. This is called from the

Remove

 link,
passing in the

ID

 of the upload control to remove. An object reference to the

<div>

 container is
again acquired using

document.getElementById("files")

, as is a reference to the

<div>

element that you want to remove using the

fileIndex

 value that is passed into the method.
Finally,

RemoveFile

 removes the

fileDivItem

 element from

fileSectionDiv

 using the

removeChild

 method.
With this code in place, you should have a fully functional page on the client side. Now you

just need to get it to save files on the server side.

Saving Multiple Files on the Server Side

Allowing users to add multiple file-input elements on the client side gives them some serious
flexibility for file uploads, but it also means that you can’t use the

FileUpload

 control on the
server side. This may seem like a major setback at first, but ASP.NET has some great file-upload
handling functionality outside of the

FileUpload

 control. You do have to do a bit more work,
but not much. Listing 11-4 is the code that you’ll need to save multiple incoming files.

Listing 11-4.

 Multiple File Upload Code Behind

Partial Class MutlipleFileUpload
 Inherits System.Web.UI.Page

 '***
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Page.Form.Enctype = "multipart/form-data"
 End Sub

 '***
 Protected Sub btnUpload_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnUpload.Click

 For index As Integer = 0 To Request.Files.Count - 1
 If Request.Files(index).FileName <> String.Empty Then
 Request.Files(index).SaveAs(Server.MapPath("Files/") + _
 System.IO.Path.GetFileName(Request.Files(index).FileName))
 End If
 Next

 End Sub

End Class

■

Note

You can’t use a

For Each

 loop to iterate over the

HttPostedFiles

 in the

Request.Files

collection because it results in an exception.

6293_ch11.fm Page 484 Monday, November 14, 2005 6:25 PM

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 485

Any time you want to submit a file from a form, the form must have its EncType attribute set
to multipart/form-data. This attribute tells the form how to format the file information so the
server can process it. Without this attribute, the form will not send the file information to the
server correctly. One of the nice things about the FileUpload control is that it automatically takes
care of the EncType property behind the scenes. You are not using the FileUpload in this situation,
however, so you must manually set the Page.Form.Enctype property before the page renders (you
can do it in the PreLoad, Load, PreRender, directly in the <form> element of the markup, and so on).

Inside the Request object, you’ll find a property called Files. The Files property holds a
collection of HttpPostedFile objects representing all the files that were uploaded to the page.
If a user uploads 10 files, then there will be 10 objects in the collection. If there were no files
uploaded, there will be 0 files in the collection. As an added bonus, the HttpPostedFile object
supports a SaveAs method, once again making it relatively easy to save files to disk. You can see
inside the btnUpload_Click method that the code simply loops through each item in the collec-
tion and saves all the files to disk.

There are, however, two major differences between using the items in the file’s property
and a file in the FileUpload control. First, the HttpPostedFile object does not support a HasFile
property. To test whether or not the HttpPostedFile contains a file, you need to check the
FileName or ContentLength properties. Browsers do not let users upload nonexistent files. This
means that when the FileName property has a value, a file was uploaded. Users can, however,
upload zero-byte files. So you can use the ContentLength property to check for that if you would
prefer to keep empty files off your server. It’s up to you.

Saving files to disc is really easy because ASP.NET does most of the work for you. Up-
loading files to a database, however, takes a bit more effort on your part. We’ll take a look at
that next.

Storing Files in a Database
You’ve looked at the situation and determined that the benefits of using database file storage
outweigh the costs. Now you have to get those files into the database. Most developers are
comfortable with database-storage techniques involving numeric- and text-based data, but
the concept of cramming a data file into a database field is foreign to most. Where do you start?
What do you need? How do you do it?

Storing files in a database is a three-step process. First, define a database table with an
appropriate structure to hold the file. Second, get the file or files from the client to the server.
And third, create a byte array containing the content of the file and insert it into the table. It
may sound like a lot to do, but it’s really simple.

Creating a Database Table to Store Files
SQL Server has three fields capable of storing binary data: binary, varbinary, and the image
data types. The binary and varbinary data types are synonymous with the char and varchar
data types: binary stores a fixed-length byte array and varbinary stores a variable-length
binary array. Both data types also max out at 8,000 bytes, making them suitable for relatively
small files. The image data type can store up to a 2GB file, which should be sufficient for any
files with which you are working.

6293_ch11.fm Page 485 Monday, November 14, 2005 2:18 PM

486

C H A P T E R 1 1

■

 U P L O A D I N G F I L E S

■

Note

The image data type only stores data. When you save a “file” into a database, you are really just
saving the data in the file. Other information—such as the file name, file attributes, creator, last modified
date, and so on—is not saved with that data. If you need to retain this information, make sure you write it

to other fields in the database.

For the examples in this book, you’ll create a new table named

Files

 with three fields:

FileName

,

FileSize

, and

FileData

. Their names should be fairly descriptive of their purpose, so
I won’t go into much detail. Listing 11-5 is the SQL table and primary-key creation script.

Listing 11-5.

 Create Table SQL

CREATE TABLE [dbo].[Files] (
 [FileName] [varchar] (50) NOT NULL ,
 [FileSize] [int] NOT NULL ,
 [FileData] [image] NOT NULL
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

ALTER TABLE [dbo].[Files] ADD
 CONSTRAINT [PK_Files] PRIMARY KEY CLUSTERED
 (
 [FileName]
) ON [PRIMARY]

The sample application for Chapter 12 includes a sample database with the

Files

 table
precreated. Feel free to use that database or create your own using the table-creation script.

Getting Files from the Client to the Server

You don’t need to do anything differently on the client side to get files up to the server. Thus,
everything you learned about single and multiple file uploads from earlier in the chapter still
applies. If you want to allow a single file upload, then use the

FileUpload

 control. If you want to
allow multiple file uploads, then use JavaScript to dynamically create file-input elements.
Understand, of course, that the code-behind file will change dramatically because you can no
longer use the

SaveAs

 function on the

FileUpload

 control or the

HttpPostedFile

 object to save
your data, but we’ll take a look at what you do need to do next.

Saving a Single File to the Database

Whether you are saving a file to disk or to a database, you should use a

FileUpload

 control if
your users only need to upload a single file from a page. Listing 11-6 shows how to acquire the
content of the file from the

FileUpload

 control and how to add it to a database.

6293_ch11.fm Page 486 Monday, November 14, 2005 6:25 PM

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 487

Listing 11-6. Saving a Single File to the Database

Imports System.Data.SqlClient

Partial Class DatabaseFileUpload
 Inherits System.Web.UI.Page

 '***
 Protected Sub btnUpload_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnUpload.Click

 If FileUploader.HasFile Then

 'Create the database objects we need
 Dim dbConn As SqlConnection = Nothing
 Dim dbCmd As SqlCommand = Nothing

 'Open the connection and set up the SQL statement
 dbConn = Data.GetConnection()
 dbCmd = New SqlCommand(_
 "DELETE FROM [Files] WHERE [FileName]=@FileName;" & _
 "INSERT INTO [Files] VALUES (@FileName, @FileSize, @FileData);", _
 dbConn)

 'Add values using parameters
 dbCmd.Parameters.AddWithValue("@FileName", _
 System.IO.Path.GetFileName(FileUploader.FileName))
 dbCmd.Parameters.AddWithValue("@FileSize", _
 FileUploader.FileContent.Length)
 dbCmd.Parameters.AddWithValue("@FileData", FileUploader.FileBytes)
 'Execute and close
 dbConn.Open()
 dbCmd.ExecuteNonQuery()
 dbConn.Close()

 End If

 End Sub

End Class

When a user clicks on the Upload button, the btnUpload_Click event handler executes. Its
purpose is to save the file in the FileUploader control to the database. The method starts out by
checking the HasFile property of the FileUploader control to determine if the user uploaded a
file. If so, the method acquires a new database connection using the Data.GetConnection()
utility function. This function acquires a connection to a SQL database connection using the
“Database” connection string from the Web.config file. You can look at the source code for the
function in the sample application in the Source Code area of the Apress Web site.

6293_ch11.fm Page 487 Monday, November 14, 2005 2:18 PM

488 C H A P T E R 1 1 ■ U P L O A D I N G F I L E S

After it has established a database connection, the method creates a SQL command with
multiple statements. The first statement deletes existing file information, if any is present, and
the second inserts the new file information into the table using a simple INSERT statement.
Notice that the SQL statements contain three different parameters: @FileName, @FileSize, and
@FileData. Also notice that the @FileName parameter is used in two locations: once in the DELETE
statement and once in the INSERT statement.

After defining the parameterized command, the method adds parameters to the
command object using the Parameters.AddWithValue function. This function accepts the name
of the parameter and the parameter value; it automatically determines the data type based on
the incoming value. The @FileName parameter is fairly straightforward because it passes in a
string property on the FileUploader control. Next in line is the @FileSize parameter. You can
determine the file size using FileUploader.FileContent.Length. The FileContent property of
the FileUpload control returns a reference to the IO.Stream containing the file. You can safely
read properties from the FileContent property without flushing the file data from the stream.
Do not use FileUploader.FileBytes.Length to determine the file size.

■Caution The first time you access the FileBytes property, it flushes all the data from the FileContent
IO.Stream and returns a byte array containing the data. This leaves the FileContent IO.Stream in an
unusable state. Thus, after you access the FileBytes property, you can no longer rely on the FileBytes
property or the FileContent property to point to valid data. Also be wary about running your mouse over the
FileBytes property while debugging because it’s just like accessing the property in code and results in the
same unusable state.

And lastly, you have the @FileData parameter. You need to pass the content of the file into
this parameter. To do so, use the FileBytes property of the FileUpload control. FileBytes
returns a byte array containing the content of the file upload, and it maps to the image data
type (as well as the binary and varbinary types) in SQL.

Right before closing the database, the method calls the ExecuteNonQuery method on the
command object. This causes the command object to build out the actual command using the
parameterized command text and the parameter values you have provided. It then executes
the command against the database, which deletes any conflicting file and inserts your file and
its related information.

Saving Multiple Files to the Database
As was the case with a single file upload, you don’t need to change anything on the client side
to handle multiple uploads to a database. You can use the same JavaScript with the same
HTML so users are always guaranteed to have as many file-input elements as they need to
upload their files. In Listing 11-7, you’ll see how to save those files without resorting to the
FileUpload control.

6293_ch11.fm Page 488 Monday, November 14, 2005 2:18 PM

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 489

Listing 11-7. Saving Multiple Files to a Database

Imports System.Data
Imports System.Data.SqlClient

Partial Class DatabaseMultipleFileUpload
 Inherits System.Web.UI.Page

 '***
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Page.Form.Enctype = "multipart/form-data"
 End Sub

 '***
 Protected Sub btnUpload_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnUpload.Click

 For index As Integer = 0 To Request.Files.Count - 1

 Dim postedFile As HttpPostedFile = Request.Files(index)

 If Not postedFile.FileName = String.Empty Then

 Dim fileBytes(CInt(postedFile.InputStream.Length)) As Byte
 postedFile.InputStream.Read(fileBytes, 0, _
 CInt(postedFile.InputStream.Length))

 Dim dbConn As SqlConnection = Data.GetConnection()
 Dim dbCmd As SqlCommand = New SqlCommand(_
 "DELETE FROM [Files] WHERE [FileName]=@FileName;" & _
 "INSERT INTO [Files] VALUES (@FileName, @FileSize, " & _
 " @FileData);", dbConn)

 dbCmd.Parameters.AddWithValue("@FileName", _
 System.IO.Path.GetFileName(postedFile.FileName))
 dbCmd.Parameters.AddWithValue("@FileSize", fileBytes.Length)
 dbCmd.Parameters.AddWithValue("@FileData", fileBytes)

 dbConn.Open()
 dbCmd.ExecuteNonQuery()
 dbConn.Close()

 End If

 Next

 End Sub

End Class

6293_ch11.fm Page 489 Monday, November 14, 2005 2:18 PM

490 C H A P T E R 1 1 ■ U P L O A D I N G F I L E S

Any time you work with file uploads and you’re not using the FileUpload control, you need
to manually add the enctype attribute to the form containing the file-upload elements. Other-
wise, the form won’t know to send the files back to the server for processing. In Listing 11-7,
this is taken care of in the Page_Load method.

When the user clicks on the Upload button, the btnUpload_Click event handler executes.
This method is responsible for uploading files to the database without using the FileUpload
control. It begins with a For loop that iterates through each HttpPostedFile in the
Request.Files collection. Inside that loop, the method defines a variable named postedFile to
hold a reference to the HttpPostedFile currently being processed. This makes the code easier
to read because it’s harder to refer to the file as Request.Files(Index). Next, the method
checks to see if the postedFile actually has a file by checking its FileName property to see if it’s
empty. If the FileName property is empty, there is no file, and the method does not attempt to
add anything to the database.

After determining that the user actually uploaded a file, the method needs to create a byte
array containing file content. This is where you’ll see the most difference between saving a
single file to a database and saving multiple files to a database because the HttpPostedFile
object does not have a ByteArray property like the FileUpload control. Instead, it has an
InputStream property with a reference to the IO.Stream containing the file content.

You use InputStream to accomplish two things. First, you use it to determine how large the
file is using InputStream.Length. This allows you to redimension the fileBytes byte array so it’s
long enough to accommodate all the file data. You also use the InputStream.Read method to
transfer the file content from the IO.Stream into a buffer. In this case, the buffer is fileBytes.
You also need to pass in the start position and the read length into the Read method. The start
position is 0 because you want to start at the beginning of the file data, and the length is
InputStream.Length because you want to read the entire stream. After the Read method
executes, fileBytes contains all the file data.

After the byte array containing the file data has been acquired, the method acquires a
database connection using the Data.GetConnection() utility function. It then creates a param-
eterized SQL query to delete the file name if it already exists and insert the uploaded file into
the database. Next, the method adds the appropriate parameters and parameter values to the
command object, opens the database, executes the query, closes the database, and then moves
on to process the next file.

Retrieving Uploaded Files from the Database
Now that you can store files in a database, the question quickly turns to how can you get them
out again? IIS can’t natively serve files out of a database, so the answer lies in coding your own
file-download page.

Listing 11-8 allows users to request a file from the database by specifying the file name in
the FileName parameter of the query string. The page searches through the FileName field of the
database for a match on that file name. If the page locates a match, it returns the content of the
file and writes it back to the user. If the page cannot locate a match, it generates a 404-Not
Found error telling the user that the requested files does not exist.

6293_ch11.fm Page 490 Monday, November 14, 2005 2:18 PM

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 491

Listing 11-8. Downloading a File Stored in the Database

Imports System.Data.SqlClient

Partial Class GetDBFile
 Inherits System.Web.UI.Page

 '***
 Private ReadOnly Property FileName() As String
 Get
 Return Request.QueryString("FileName")
 End Get
 End Property

 '***
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Dim dbConn As SqlConnection
 Dim dbCmd As SqlCommand
 Dim fileData As Byte()

 'Acquire file data
 dbConn = Data.GetConnection()
 dbCmd = New SqlCommand(_
 "SELECT FileData FROM [Files] WHERE [FileName]=@FileName", dbConn)
 dbCmd.Parameters.AddWithValue("@FileName", FileName)
 dbConn.Open()
 fileData = DirectCast(dbCmd.ExecuteScalar(), Byte())
 dbConn.Close()

 If fileData Is Nothing Then
 Response.StatusCode = 404
 Else
 Response.AddHeader("Content-Disposition", _
 "attachment; filename= """ & FileName & """")
 Response.BinaryWrite(fileData)
 End If

 Response.End()

 End Sub

End Class

6293_ch11.fm Page 491 Monday, November 14, 2005 2:18 PM

492 C H A P T E R 1 1 ■ U P L O A D I N G F I L E S

■Caution This example is intended to demonstrate how to retrieve a file from the database. It does not,
however, take into account any security restrictions you may want to put on file access. You should always
check to make sure the user making the request has the appropriate permissions to access the file. You may
find the User.IsInRole method helpful for making this determination. For more on security, check out
Chapter 12.

At the top of the Listing 11-8, you’ll find the FileName property. This read-only property
makes it easy to reference the value for FileName passed to the page via the query string.

Whenever someone accesses the page to download a file, the Page_Load event handler
executes and connects to the database, locates the requested file, pulls back the file data, and
outputs that data so the user can download the file. And it really doesn’t take much to do it. The
method begins by acquiring an open connection to the database using the Data.GetConnection
utility function. After that, it sets up a command object with a very simple SQL SELECT state-
ment to acquire the data for the requested file:

SELECT FileData FROM [Files] WHERE [FileName]=@FileName

The only field returned by the query is the FileData field, which contains the file content,
and it’s only returned when the @FileName parameter matches a file in the database. Immedi-
ately after the command object declaration, the method passes in the FileName property as the
value for the @FileName parameter value. Then the method executes the database command
using the ExecuteScalar function. If the requested file was located, ExecuteScalar returns a
byte array containing the file content. If not, it returns nothing. Either way, the result is directly
cast into a byte array and stored in the fileData byte-array variable.

Next, the method determines whether or not fileData contains any data. If fileData does
not contain data, then the method sets the Response status code to 404, indicating that the file
was not found. If the file was found, then the page adds a Content-Disposition header to the
page indicating that the incoming data is an attachment meant to be saved or opened, not
displayed in the browser. It then uses Response.BinaryWrite to write the content of fileData
out to the user.

■Caution The Content-Disposition: attachment technique has a few drawbacks because it does not work
with all browsers, and it can misbehave in the ones that do support it. Check out Chapter 13, which covers
HTTP handlers, for file-download techniques that work across all browsers.

So now you can save files to the database and retrieve them too.

6293_ch11.fm Page 492 Monday, November 14, 2005 2:18 PM

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 493

Summary
From reports, spreadsheets, and documents to images, videos, and presentations, companies
routinely depend on files for business. Inevitably, you’ll work on a project where uploading
files is an important feature, and this chapter has prepared you for that encounter. You’ve
learned the pros and cons of storing files in the file system versus a database. You implemented
single-file and multiple-file upload pages. You also saw an example of how to serve files from a
database. There are countless reasons that you may need to upload files in an application, but
now you should be able to handle anything you come across.

6293_ch11.fm Page 493 Monday, November 14, 2005 2:18 PM

6293_ch11.fm Page 494 Monday, November 14, 2005 2:18 PM

495

■ ■ ■

C H A P T E R 1 2

Security and Encryption

I

 recently spoke with Craig Bell, owner of the networking services firm Momentium Technol-
ogies, about a new client engagement. The client, called Bravo Corp. for this discussion, had
just reviewed its security and data backup guidelines and determined that security was too lax,
and they were not making any backups of important company information. Bravo Corp. took
the right step in hiring Momentium to revamp its network security and to put the appropriate
data backup routines in place, but they did it about a week too late. Before Momentium got a
chance to even look at the network infrastructure, an irate ex-employee hacked into Bravo
Corp.’s systems and deleted their entire data repository. There’s an FBI investigation into the
incident, but even if they find the culprit, Bravo Corp. can’t recover its lost data.

The University of Texas Center for Research on Information Systems published a study
outlining the devastating impact of a catastrophic data loss. Only 6% of companies survive,
43% never reopen after the data loss, and 51% fail within two years. And that’s only data loss.
According to a study by ASIS International, PricewaterhouseCoopers, and the U.S. Chamber of
Commerce, data theft costs businesses in the United States upwards of $60 billion annually.
Imagine your company’s research and development, business plans, product pricing and
information, or customer lists in the hands of your competitors. Protecting your business
information from loss or theft is an absolute necessity when it comes to business viability.

Security, however, tends to be an afterthought in business application development, even
though many applications contain login information for important business systems. In the
rush to get functionality out to users, security is often forgotten, neglected, or slapped together
at the end. In reality, security needs to be part of the upfront design so it can be thought out
appropriately. This chapter covers some of the security topics that I’ve run across and ways to
address them. Here’s what you’ll find inside:

•

Basic Security Concepts:

 Defines basic terminology and security principles discussed
throughout the chapter.

•

ASP.NET Security Architecture Overview:

 Gives a high-level overview of how IIS and
ASP.NET handle security.

•

Encrypting Configuration Data:

 Shows how to use some of the new ASP.NET 2.0 config-
uration encryption features to secure configuration data.

•

Encrypting Application Data:

 Discusses how to create one- and two-way encryption
routines to protect data from unauthorized use.

6293_ch12.fm Page 495 Monday, November 14, 2005 7:03 PM

496

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

We’ll begin by taking a look at some of the basic concepts and terminology discussed in
the chapter.

Basic Security Concepts

Security in ASP.NET begins at the operating system level and hits a number of different
components and processes along the way. You’ll see as you read this chapter that IIS, ASP.NET,
the file system, network shares, enterprise services, and databases all have different security
measures in place, but most share some common concepts. This section is geared toward
getting you familiar with some of the terminology and concepts that you’ll see throughout this
chapter.

Security Terminology

Whenever you discuss Windows security and ASP.NET, you end up throwing around a security
phrases such as authentication, authorization, token, principal, identity, and ticket. If you
haven’t seen these terms before, they can be rather confusing. Table 12-1 contains a list of
terms and definitions that you’ll see throughout this chapter.

Table 12-1.

 Security Terms and Definitions

Term Definition

Account Represents a single person, service application, or computer system for
which security and access information is defined. Accounts contain iden-
tifying information about the entity (name and description),
authentication information (credentials), and information outlining any
roles to which the account belongs.

Security Principal Represents the identity and role information about an entity and is
usually referred to as just the

principal

. The .NET Framework contains the

IPrincipal

 interface that describes classes representing security princi-
pals. This term is interchangeable with the term

account

.

Roles Represents a logical grouping of accounts. Roles allow you to specify
security settings for the role, but apply those security settings to all the
accounts that are members of that role. For example, you may have 10
accounts that belong to managers in your company. You want to grant all
managers access to a specific folder on the network, so you create a
Manager role and create a security setting giving the Manager role access
to that folder. Then you make the 10 accounts members of the Manager
role. This effectively gives them access to the folder. An added benefit of
using roles is maintenance. If you create a new account and assign it to
the Manager role, that account will also have access to the folder without
you having to specifically set up access permissions for the account. Plus,
if you ever have to change access permissions for all the managers, then
you can make the change once in the Manager role instead of editing
permissions on each individual user account.

6293_ch12.fm Page 496 Tuesday, November 15, 2005 6:02 PM

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

497

Permissions Permissions allow you to specify whether a given account or role will be
granted or denied access to a specific resource. Different resources allow
different sets of permissions. The file system, for example, lets you to set
permissions allowing or denying users to read, write, modify, list, and
execute files. SQL Server lets you set permissions allowing or denying
users to create databases, create tables, edit rows of data, and so on.

Authentication Process by which an entity provides credentials as proof of its identity.
The system checks the credentials and determines whether the entity
really is who it says it is.

Credentials Information used for authentication purposes normally containing the
name of the account and some piece of information that only the account
holder should know or possess. Credentials are normally supplied as a
username/password pair, but may be certificate- or biometrically based.

Authorization Process by which the system determines whether an authenticated user
has permissions to access a specific resource.

Access Token After Windows authenticates an entity, the operating system creates an
object known as an

access token

 containing identification and role infor-
mation for the authenticated entity. Windows attaches a copy of the
access token to every running process to give the process a security
context under which to run.

Security Context Applications run under different accounts. Accounts have different secu-
rity permissions. As such, application permissions are dependent on the
account running the application. Security context simply refers to the
permissions the application is subject to based on the account running
the application.

Ticket You can think of this as an access token for web applications using Forms
Authentication. A Forms Authentication ticket contains user and role
information for an authenticated entity. An authenticated entity passes
the ticket along with every web request as a cookie or a parameter on the
query string. ASP.NET then uses that ticket to create an

IPrincipal

 object
identifying the entity and the roles to which the entity belongs so the web
request may be processed with an appropriate security context.

Impersonation Allows a process to access a resource using a different security context
than the one specified in the access token. In ASP.NET, you can opt for an
application to impersonate individual users as they access the applica-
tion, or you can opt for the entire application to impersonate one specific
user. By default, impersonation is disabled, and ASP.NET runs using the
ASPNET account in IIS 5 and the Network Service account in IIS 6. You’ll
learn about impersonation in more detail later in the chapter.

Delegation Delegation is a form of impersonation that works across a network. When
you want to impersonate an account on a network resource, the network
resource must be able to authenticate the credentials you’re trying to
impersonate. Delegation requires that you impersonate an account
whose credentials can authenticate on both machines.

Table 12-1.

 Security Terms and Definitions (Continued)

Term Definition

6293_ch12.fm Page 497 Tuesday, November 15, 2005 6:02 PM

498

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

Authentication vs. Authorization

There is a subtle but notable difference between authentication and authorization that you
need to fully understand before moving on. Authentication determines if you are in fact who
you say you are. Authorization determines if you have the appropriate permissions to
complete some action. Authentication occurs before authorization and is responsible for
ensuring that the system knows who is making the request. If a user cannot be authenticated,
then the user is considered anonymous.

Authorization occurs after authentication because the system needs to know who is
making a request before it can determine whether or not the request can be authorized. For
example, if Amy has access to a resource, but Robert does not, then the system needs to know
whether Amy or Robert is requesting the resource. If authorization fails, then the user is denied
access to the resource. Depending on how you have a web application set up, this may come in
the form of an HTTP 403 error (unauthorized) or by redirecting the user to a login page or an
access denied page.

Least Privileged Access

The concept of least privileged access means that you give roles and accounts enough permis-
sion to do their jobs, but no more. If a user needs the ability to read documents, then give the
user the ability to read documents, but not to create or modify documents. If the user needs to
create new documents, then give the user the ability to create new documents, but not to read
or modify existing documents. Also make sure to add accounts only to those groups to which
they belong. If someone needs to be in the Manager group, don’t add him or her to the Admin-
istrator group also.

Creating accounts and roles with least privileged access helps keep gaping holes from
developing in your security. I saw one inexperienced network administrator give his users
administrator level access to the entire network because they were having permissions issues
accessing a single network share. Instead of looking into and fixing a small problem, he created
a giant new one. He assumed it was okay to give everyone administrative rights because
everyone in the small company was trustworthy, but failed to realize if any of those accounts
were compromised by a hacker, the hacker would have free reign on the network. And you can
never rule out the possibility of an irate employee using an internal account to sabotage a
company resource before leaving.

So make sure that your security only allows users and accounts to do what they need to do,
nothing more. Next, let’s take a look at how ASP.NET handles security.

Processes, Threads, and Tokens

A process is the memory space in which an executable program runs. When you launch Word,
Visual Studio, or even Minesweeper, you’re running a process. Inside of a process, there may
be one or more threads of execution, or simply threads, running various tasks. IIS, for example,
is a single process running on a server, but it creates numerous threads inside that single
process to handle incoming requests.

An access token is a Windows security object containing the security context of an authen-
ticated account. Windows attaches an access token to each running process on the system to
give the application a security context under which to run. As the process accesses resources,
those resources use the security context in the access token for authorization purposes. This

6293_ch12.fm Page 498 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

499

ensures that the application can’t access any resources that the account does not normally
have privileges to access (see Figure 12-1).

Figure 12-1.

 Process and process level

Although processes run using an overall security context, each thread inside of a process
also has its own access token defining the security context under which that individual thread
may run. By default, a process creates a new thread, builds a copy of its process-level access
token, and then assigns that copied access token to the thread. Thus, most threads run using
the same security context as the process in which they run (see Figure 12-2).

Figure 12-2.

 Process with two threads, both of which contain copies of the process-level token

Processes may, alternatively, create threads that run using a different security context
than the process itself. ASP.NET uses this type of thread creation for impersonation. In this
scenario, the process authenticates an account using that account’s credentials, uses the
authenticated account to create a new access token, and associates the newly created access
token with a thread in the process. This allows that particular thread to access resources using
a different security context than the process itself and to access resources to which access
would otherwise be denied (see Figure 12-3).

6293_ch12.fm Page 499 Monday, November 14, 2005 7:03 PM

500

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

Figure 12-3.

 Three threads in a process and their associated access tokens

Figure 12-3 shows an example of a threaded process and the access tokens assigned at the
process and thread level. Notice that the process is running under the security context in
Token X. You can see from the diagram that the process has three threads running inside it,
and that the process created Thread A and Thread B in the default manner by copying Token X
to the individual threads. Thread C, however, runs under the security context of Token Z,
giving it different permissions than Threads A and B.

Whenever a process launches another process, the calling process copies its access token
to the new process. This ensures that the newly created process runs under the same security
context of the parent process. Like threads, the parent process has the capability to authenti-
cate an account and create a new access token for the new process. You should rarely be
creating an entirely new process from an ASP.NET application, but if you do, understand that
it runs using the same security context of the process or thread from which it was launched.

■

Tip

Executing processes from an ASP.NET application is usually indicative of bad design. Process execu-

tion is not very scalable, so think about redesigning the application to avoid calling external processes.

You can alter the security context for an ASP.NET applications or individual users by
implementing impersonation. A general overview of impersonation and delegation are given
next, and configuring impersonation and delegation are discussed later in the chapter.

Impersonation

Impersonation allows you to run a process or thread using the security context of a different
account instead of inheriting the security context from the current process or thread. This can
be very useful in ASP.NET because ASP.NET normally runs under the least privileged ASPNET
account in IIS 5 and Network Service in IIS 6, which has limited access to system resources.

6293_ch12.fm Page 500 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

501

ASP.NET supports application-level and user-level impersonation. Application-level
impersonation allows you to specify an account used to process requests for the application.
ASP.NET ensures that any thread used to process a request for that application has an access
token using the security context of that particular account.

User-level impersonation allows ASP.NET to authenticate the user, acquire an access
token with that user’s security context, and process the request using that individual user’s
security context. This means that ASP.NET can access any resources to which the user has
been granted access.

Delegation

Discussions on delegation and impersonation can sometimes be confusing because it seems
like impersonation and delegation are two different concepts even though they aren’t. Delega-
tion is a form of impersonation involving an account that can be authenticated on a remote
machine.

Here’s how it works. Impersonating an account requires that you provide credentials for
the account you want to impersonate. After successfully authenticating that account, Windows
associates an access token containing the security context of the account with the process or
thread on which you’re running the impersonation. Access tokens only contain the security
context for an authenticated account, so the security context remains valid on the local
machine and no further authentication is ever required.

The real question is what happens when that process or thread attempts to access a
resource on a remote machine? Remote machines don’t blindly accept access tokens from
other machines, so the remote machine wants to verify the credentials of the security context
contained in the access token. If you’re using an account that is only available on the local
machine, then the remote machine has no way of authenticating the request, and the account
can’t be used for delegation. When both the local and remote computers can authenticate the
credentials from an account, the account supports delegation, and the request may be
processed by the remote machine.

■

Note

Delegation requires appropriately configured accounts and authentication mechanisms, which are

discussed in further detail in the “Configuring Delegation” section.

Access Token and Impersonation Examples

You can see how impersonation and access tokens work using the

Run As

 feature in Windows
Explorer. For this example, you need to create two new user accounts on your system. Call one
Manager and the other Employee. Make sure you set their passwords to something you’ll
remember. Then create a folder named

Managers Only

 somewhere on your hard drive. Right-
click on the folder and click

Properties

 from the context menu to bring up the

Folder Proper-
ties

 dialog box. Locate the

Security

 tab on the dialog box.

6293_ch12.fm Page 501 Monday, November 14, 2005 7:03 PM

502

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

■

Note

If you don’t have a Security tab, then you may not be using NTFS or you may have Simple File
Sharing enabled. To disable Simple File Sharing, select

Tools

➤

Folder Options

 from the

Explorer

menu.
This brings up the

Folder Options

 dialog box. Click on the

View

 tab and scroll through the options. Disable

the

Use simple file sharing

 option at the end of the list.

Add the Manager account to the

Group or user names

 listing. Make sure all options in the

Permissions for Manager

 listing are set to

Allow

. Add the Employee account to the

Group or
user names

 listing. Make sure all options in the

Permissions for Employee

 are set to

Deny

(see

Figure 12-4).

Figure 12-4.

 Setting permissions on the

Managers Only

 folder

Create a text file in the

Managers Only

 folder and enter some text into it. Now, log in using
the Employee account, launch Notepad, and try to open the text file in the

Managers Only

folder. An Access Denied message appears informing that the Employee account is denied
access to the file because the files inherit permission settings from the folder, and Notepad is
running under the Employee security context.

6293_ch12.fm Page 502 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

503

■

Note

If you don’t grant a user access to a folder (for example,

c:\secure\

), but grant the user access to
a file in that folder (for example,

c:\secure\filename.txt

), the user can still access that file. It may be
difficult, however, as the user

cannot

 browse through the folder to locate the file because the user hasn’t been

given permission to access the folder.

Navigate to

C:\Windows\

. Locate

cmd.exe

 and right-click it to display the context menu.
Select the

Run As

 option from the context menu. This displays the

Run As

 dialog box, which
allows you to impersonate a different account without having to log in as someone else (see
Figure 12-5).

Figure 12-5.

 Running an application under a different account

Select the

The following user

 option button and enter

Manager

 and the password you set
up for the Manager account in the appropriate text boxes. Then click okay. You’ll see the
command prompt displayed, but the

CMD.EXE

 process has the Manager access token associated
with it instead of the Employee access token. You can confirm this by running Windows Task
Manager (by right-clicking on the taskbar and selecting the

Task Manager

 option) and looking
at the

Processes

 tab. Notice that the username associated with

CMD.EXE

 is Manager, not
Employee.

Next, type

Notepad.exe

 into the command prompt and press Enter. This launches
Notepad. Open the Task Manager again and look at the username associated with the

Notepad.exe

 process (see Figure 12-6).

6293_ch12.fm Page 503 Monday, November 14, 2005 7:03 PM

504

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

Figure 12-6.

 Notice that

cmd.exe

 and

notepad.exe

 are running under the Manager account,
whereas the other processes are running under the Employee account

Since you launched the

Notepad.exe

 process from the

CMD.EXE

 process, and the

CMD.EXE

process has a Manager access token, the

Notepad.exe

 process also has a Manager access token.
Use Notepad to open up the text file in the

Managers Only

 folder. Now you can access the folder
and file because Notepad is running under the appropriate security context.

ASP.NET Security Architecture Overview

Determining an appropriate security strategy for your application requires a basic understanding of
how the different components associated with ASP.NET work together and communicate security
information to one another. This section provides you with an overview of the security touch points
between the browser, IIS, ASP.NET, and various system resources such as the file system, databases,
and enterprise services. It also describes various internal security mechanisms in ASP.NET.

Because this discussion focuses on security interaction between various components, it
may help you to have a visual roadmap of those components. Figure 12-7 shows the items
involved in processing an ASP.NET request and the sequence in which the request passes
through those components.

6293_ch12.fm Page 504 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

505

Figure 12-7. Security between the browser, IIS, ASP.NET, and various system resources

6293_ch12.fm Page 505 Monday, November 14, 2005 7:03 PM

506 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Sending the Initial Request via the Browser
Browsers kick off the entire process by sending a request to IIS for a resource managed by
ASP.NET. Initially, the request only contains the URL of the requested resource and various
HTTP headers. No identifying information is sent in the initial request because browsers
attempt to connect to resources anonymously when possible. Because the request comes in
via a TCP/IP connection, IIS knows certain network information about the browser, such as
the IP address.

IIS Authorization Based on IP Address or Domain
IIS has the capability to allow or deny a request based on the IP address or domain from which
the request originated. Remember, the browser sends a request using the TCP/IP protocol, so
IIS inherently has access to the IP and domain information for each request. IIS generates a 403
Access Denied HTTP error whenever the request originates from a restricted IP address or
domain, effectively keeping users from accessing information on the server.

You can use IP address and domain name restrictions in a couple of ways. First, let’s say
that you have an internal application developed for a specific department or group. You can
use IP address restrictions to deny access to everyone in the company except the subset of IP’s
for the individuals who actually need access.

What does this do? Well, let’s say that you have an irate employee from the Sales depart-
ment who wants to steal information stored in the Research department’s knowledge
management application because it will help him land a job at a competitor. He acquires a
username and password from an unsuspecting Research department employee and runs back
to his desk to pull down as much information as he can before taking off. Without any IP
restrictions, he can easily gain access to the system from the comfort and safety of his own
office. With IP restrictions, however, the username and password cannot be used from the
computer in his office. At that point he may give up, or he may do something more likely to get
himself caught like access research information from a Research department computer, where
he is more likely to be noticed.

You can also use IP restrictions to deny access to a website or application if you notice an
unusually large amount of suspicious activity coming from a particular range of IP addresses.
Of course, they can always get around this by accessing your website from another location,
but anything you can do to make it more difficult for them the better.

IIS Authentication
ASP.NET may require a user to authenticate before allowing access to some resources. If you
have configured the ASP.NET application to use Forms Authentication, then the user is simply
redirected to a web-based login form where they can enter their credentials; ASP.NET disre-
gards IIS authentication information entirely. If, however, you have configured the ASP.NET
application to use Windows Authentication, then ASP.NET uses the IIS authentication infor-
mation to determine user information. IIS supports Anonymous, Basic, Digest, NTLM, and
Kerberos authentication, each of which are discussed later on in this chapter.

6293_ch12.fm Page 506 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 507

■Note IIS authentication settings are independent of your ASP.NET configuration. In other words, config-
uring ASP.NET to use Windows Authentication does not mean IIS automatically uses Windows Authentication.
Nor does using Forms Authentication mean IIS automatically uses Anonymous Authentication. You must
configure the ASP.NET application (via Web.config) and the IIS application (via the IIS console) to use appro-
priate authentication types.

IIS forces users to authenticate by denying anonymous requests with a 401 Unauthorized
HTTP error. Response headers returned with the error identify the type of authentication
mechanism the browser should use when communicating with IIS. The supported authentica-
tion mechanisms may change from resource to resource depending on how you have
configured individual applications in IIS. Upon receiving a 401 Unauthorized HTTP error,
browsers know to prompt the user for credentials and to retry the request with the appropriate
authentication data. Assuming the browser supports one of the authentication types specified,
it resends the request with the appropriate authentication data. If not, the browser should
inform the user that the authentication method is not supported.

Authentication data is normally acquired when the browser displays a username and
password dialog box, and the user enters the credentials. Internet Explorer, however, supports
an authentication mechanism called Integrated Windows Authentication (which ultimately
uses NTLM or Kerberos Authentication). Integrated Windows Authentication uses Internet
Explorer’s access token to provide IIS with authentication data. Assuming IIS can authenticate
that browser’s access token, which usually requires the user’s computer and the server to be in
the same internal network, this provides a dialogless login process for Internet Explorer users
that most people tend to appreciate. Otherwise, IIS rejects the credentials and Internet
Explorer prompts the user to enter a different username and password.

■Note Firefox supports Integrated Windows Authentication, but it displays a dialog box to the user.

After IIS receives the request with the appropriate authentication data, it verifies that
authentication data either against a local data store or Active Directory and either rejects or
accepts the authentication. If authentication fails, IIS generates another 401 Unauthorized
HTTP error and allows the browser to attempt authentication again. If authentication
succeeds, IIS creates an access token for the user.

■Note IIS always generates an access token for each request it passes to ASP.NET. If the user has not
explicitly authenticated with IIS (for example, Anonymous or Forms Authentication is in use), then IIS gener-
ates an access token using the anonymous account (normally IUSR_<machinename>) configured in the IIS
virtual directory settings.

6293_ch12.fm Page 507 Monday, November 14, 2005 7:03 PM

508 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

IIS then passes that access token and server information about the request to the ASP.NET
ISAPI extension (ASPNET_ISAPI.DLL, for reference), which in turns hands the request to the
ASP.NET worker process that actually fulfills the request.

The ASP.NET ISAPI Extension and the ASP.NET Worker Process
IIS is a web server geared toward serving static files, so it doesn’t inherently have the capability
to process dynamic ASP, ASP.NET, JSP, or PHP files. It does, however, support an extensible
framework called the Internet Server Application Programming Interface (ISAPI) that allows
for plug-ins that can handle dynamic files. IIS hosts various ISAPI extensions in its own
memory space and allows you to map certain file types to certain extensions. If a request for an
ASP 3.0 page comes through, IIS knows to send it to the ASP 3.0 ISAPI extension. If a request for
an ASP.NET page (or related resource) comes through, IIS knows to send it to the ASP.NET
ISAPI extension (see Figure 12-8).

Figure 12-8. ISAPI application mappings. Notice that .asp pages are sent to the asp.dll for
processing and .aspx pages are sent to the aspnet_isapi.dll for processing.

Most ISAPI extensions process their dynamic files directly from the ISAPI extension hosted
in the IIS process. This means that an exception in the ISAPI extension could extend into the IIS
process causing the entire process to crash, and ultimately cut off all access to the web server
until IIS can restart. This is bad. Microsoft designed ASP.NET to avoid crashing the IIS process
by running the core ASP.NET compilation and execution functionality in an entirely different

6293_ch12.fm Page 508 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 509

process outside of IIS and the ASP.NET ISAPI extension. The external process that actually
does all the processing work for an ASP.NET request is aptly named the ASP.NET worker
process.

The ASP.NET ISAPI extension is responsible for starting and monitoring the ASP.NET
worker process. At any given point in time, you can only have as many worker processes
running as you have processors on the system. If you have one processor, then you can only
have one worker process. If you have four processors, then you can have up to four worker
processes. If the worker process crashes, hangs, or hits predefined performance limits, then
the ASP.NET ISAPI extension simply kills the process and starts a new worker process in its
place.

■Note Technically, you could have more than one worker process running per processor because the ISAPI
extension attempts to allow the worker process to finish any remaining requests before it terminates the
process.

This allows IIS to continue running in the event an ASP.NET application has a serious
error. When the ASP.NET worker process starts up, the ASP.NET ISAPI extension uses configu-
ration settings from Machine.config to authenticate an account and give the worker process an
appropriate access token to define the security context under which it may run. By default,
ASP.NET runs under the least privileged ASPNET/Network Service account.

Notice that the ASP.NET ISAPI extension passes the request, server data, and the access
token IIS created for the request to the worker process using a named pipe. The server data
contain important information used to set up the Server, Request, and Response objects in
ASP.NET, and the access token defines the account IIS authenticated. The named pipe is used
because IIS and the ASP.NET worker process run in two separate processes. Processes can’t
directly communicate with one another because they are isolated by the operating system. The
isolation is what allows ASP.NET to crash without affecting IIS. Thus, communication between
the two processes must occur over a named pipe. Named pipes are operating system mecha-
nisms that allow two processes to pass information back and forth while still maintaining their
isolation.

At this point, the request resides in the ASP.NET worker process, and IIS waits for a
response from the worker process so it can fulfill the request. Now let’s take a look at how the
worker process handles a request.

Application Objects and the Security Context of the Request
After the ASP.NET worker process receives the request, it routes the request through a series of
objects known as the HTTP pipeline. All the objects in the HTTP pipeline are associated with
an HttpApplication object, so the first responsibility of the HTTP pipeline is to find an appro-
priate HttpApplication object to handle the request.

The first object in the HTTP pipeline is the Application Factory, represented by an Http➥

ApplicationFactory object. This object creates and maintains pools of HttpApplication
objects. When a request passes through the HttpApplicationFactory, the factory determines
which application the request is targeting and acquires an appropriate HttpApplication object

6293_ch12.fm Page 509 Monday, November 14, 2005 7:03 PM

510 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

for the request. The HttpApplication object may come from a pool, or the HttpApplication➥

Factory may need to create a new HttpApplication object if one isn’t already available.
After acquiring the appropriate HttpApplication object, ASP.NET can assign the thread

processing the request an appropriate security context. By default, the thread inherits the
same security context as the process in which it runs, meaning that the thread normally runs
using the same security context as the ASP.NET worker process. If you have impersonation
enabled, then the worker process assigns the thread a security context based on your configu-
ration settings in Web.config. If you’re using applicationwide impersonation, then ASP.NET
assigns the thread the security context of the account you have configured for the application.
If you’re using user-based impersonation, then ASP.NET assigns the thread a security context
using the access token it received from IIS.

Next, ASP.NET runs through all the modules for the HttpApplication object acquired from
the Application Factory. An HTTP module is a class that implements the IHttpModule interface.
In the next sections, you’ll learn about the Authentication, UrlAuthorization, and File➥

Authorization HTTP modules.

ASP.NET Authentication Modules
The ASP.NET authentication modules handle authentication details (if necessary) and load
user information into the context of the request. The context is a set of information that follows
the request through the HttpPipeline (you can access the context via the Context object in
ASP.NET). Each authentication type in ASP.NET uses a different mechanism to determine if a
user is authenticated. Regardless of the authentication mechanism used, however, the user
information must make its way into the User property of the Context object. There are three
authentication modules: the WindowsAuthentication module, FormsAuthentication module,
and the PassportAuthentication module (not covered).

First, we’ll look at the WindowsAuthentication module. Any time IIS hands off a request to
the ASP.NET worker process, it passes the worker process a token that identifies the user. If the
user connects anonymously, then IIS passes ASP.NET the anonymous user token, which gives
the user the permissions associated with the anonymous user account. If the user authenti-
cates against IIS, then IIS passes ASP.NET a token identifying the user and the user’s individual
permissions. Although ASP.NET can use this token for impersonation, it only does so if it has
been configured for user-level impersonation. Also understand that the ASP.NET worker
process associates the user token with the thread that handles the request before it sends the
requests through the HttpPipeline. When the request reaches the WindowsAuthentication
module, the module does not need to re-authenticate the user because it already has access to
the user token, meaning the user has already been authenticated. As such, the Windows➥

Authentication module just copies the user information from the token into the User property
of the Context object (more on the details of that in a second).

The FormsAuthentication module has a bit more work to do because it disregards the
token it receives from IIS (ASP.NET always receives a token from IIS). Forms Authentication
bases a user’s authentication status on the presence of a valid authentication ticket contained
within a cookie or URL. So the FormsAuthentication module checks for the authentication
ticket in the authentication cookie (normally, ASPXAUTH) and the URL. If no ticket is found, or
the ticket is found but is invalid or expired, then the module loads anonymous user informa-
tion (blank username) into the User property of the Context object and denotes that the user

6293_ch12.fm Page 510 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 511

isn’t authenticated. If the ticket is found, then the module loads the appropriate user informa-
tion into the User property.

Each authentication module is responsible for creating an IPrincipal object representing
the authenticated account and placing it in the User property of the Context object. The
Context object provides contextual information for a request, including user information,
session data, request specifics, and so on. An IPrincipal object is an interface for defining
principal objects in the .NET Framework. Various principal objects have varying degrees of
functionality. Windows Authentication, for example, results in a System.Security.➥

Principal.WindowsPrincipal object that exposes basic functionality for identifying an
authenticated account and checking role information. Forms Authentication results in a
System.Web.Security.RolePrincipal object capable of account identification, role checking,
and additional functions geared toward storing authentication data in a cookie or URL.

ASP.NET allows you to uses the IPrincipal object in the HttpContext for identity and role
checking in ASP.NET, but access to outside resources is still dictated by the security context
defined by the access token attached to the thread. In other words, ASP.NET authentication
has no effect on the security context of the thread. The resulting IPrincipal object from
ASP.NET authentication is, however, used in URL authorization.

URL Authorization Module
URL authorization gives you the ability to allow or deny access to certain directories for indi-
vidual users or roles. ASP.NET uses the IPrincipal object in the HttpContext to run identity
and role checks for URL authorization, so you can define access permissions based on
Windows accounts if you’re using Windows Authentication or non-Windows accounts if
you’re using Forms Authentication.

If an incoming request does not pass URL authorization, and the application is using
Windows Authentication, then ASP.NET generates a 401 Unauthorized HTTP error and returns
it to the client. If the application is configured for Forms Authentication, then ASP.NET redi-
rects the user to the login page specified in Web.config.

File Authorization Module
Configuring your ASP.NET application to use Windows Authentication (via Web.config) enables
the file authorization module. The file authorization module checks the NTFS file permissions to
determine whether or not the authenticated user has access to the requested resource.

NTFS permission checks are normally performed using the access token of the thread
requesting the file. When impersonation is disabled, however, the thread processing the
request runs under the security context of the ASPNET/Network Service account for every
single user, making it impossible to enforce user-level permissions on requested files. The file
authorization module alleviates this issue by using the access token generated by IIS to check
NTFS file permissions on the requested file. The IIS token is always representative of the
authenticated user, even when impersonation is disabled, making it possible to enforce user-
level file permissions.

Why not just enable impersonation? There may be performance issues with database
connection pooling that arise when using integrated SQL Server security and user-level
impersonation. Thus, the file authorization module allows you the benefit of user-level NTFS
permission checking without the performance issues associated with user-level impersonation.

6293_ch12.fm Page 511 Monday, November 14, 2005 7:03 PM

512 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Processing the Actual Request
Finally, after passing through all the modules in the HTTP pipeline, ASP.NET actually executes
the requested page. During execution, the page may access various resources, such as files, a
database, or enterprise services. Code execution runs under the security context of the thread,
so any external resource requests are made using the thread’s security context.

This can make for some interesting situations when using Windows Authentication.
Remember, the file authorization module uses the access token from IIS to check NTFS
permissions on the requested resource and only the requested resource. If the requested
resource is an ASP.NET page, that page may attempt to access other resources. At that point,
access to files is governed by the access token associated with the thread, not the access token
from IIS.

Here’s a situation in which this could be an issue. Let’s say that your application is config-
ured to use Windows Authentication without impersonation, and a user access an ASP.NET
page in that application, logging in as Joe Bloggs. The file authorization module checks the
NTFS permissions on the requested resource using the Joe Bloggs security context and allows
access to the file. ASP.NET then begins executing the page code. Code inside the page then
attempts to read from a file to which the Joe Bloggs security context is denied access according
to NTFS permissions. But the file is accessed using the ASPNET/Network Service security
context and this allows the file to be read. The contents of the file are then displayed to Joe
Bloggs even though Joe Bloggs is explicitly denied access to the file.

Of course, you can also use this behavior to your benefit. If, for instance, you wanted to
deny users the ability to view files over the network, but you wanted to grant them the ability to
view those files in a web application, then this behavior is great. You just need to be aware of
the various behaviors, how they work, and whether or not they will work for your particular
situation.

■Note Access to some resources, such as databases, may be governed by security that has nothing to do
with the access token associated with the thread. For instance, you may access a database using a connec-
tion string with embedded credentials, in which case, the access token has nothing to do with connecting to
the resource.

Now that you understand the overall security architecture of ASP.NET, let’s look at config-
uration examples.

Security Configuration
Your application’s first line of defense is a proper security configuration. IIS, ASP.NET, and
system resources all expose configuration options allowing you to tweak security settings to
suit your needs, you just need to know how and when to use them. This section guides you
through those decisions, showing you practical configuration settings and the scenarios in
which you should use them.

6293_ch12.fm Page 512 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 513

IIS Security Configuration
IIS allows you to configure authentication, IP and domain restrictions, application mappings,
and secure communications on an application-by-application basis. This gives you a great
deal of flexibility when deploying multiple applications because you can custom-tailor the
server security for each individual application.

Most of the security settings in IIS are available from the Directory Security tab in the
application properties dialog box. You can view the application properties by clicking on the
Internet Information Services icon in the Administrative Tools folder in the Control Panel.
Expand the navigation tree until you locate the folder that contains the application whose
properties you want to view. Right-click on the folder and select the Properties option from the
context menu. This opens the properties window. Select the Directory Security tab from the
tabs shown at the top of the window. Figure 12-9 shows the IIS window, expanded folders
listing, and the properties window for the Chapter 12 application.

Figure 12-9. IIS management console and the Chapter 12 Security Application Properties (Direc-
tory Security tab shown)

6293_ch12.fm Page 513 Monday, November 14, 2005 7:03 PM

514 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

IP and Domain Restrictions

You can choose to allow or deny access to an application based on the network address of the
requestor. To do so, click on the Edit button in the IP address and domain name restrictions
section of the Directory Security tab (visible in Figure 12-9). This displays the IP Address and
Domain Name Restriction dialog box shown in Figure 12-10.

■Note Only Windows NT and Windows Server 2003 allow you to specify IP and Domain Restrictions. You
can’t set up restrictions on Windows XP. If you view the Directory Security tab in Windows XP, the Edit
button for the IP and domain restrictions is disabled.

Figure 12-10. IP Address and Domain Name Restrictions dialog box

On the restrictions dialog box, you’ll see two option buttons allowing you to set the default
permission for the application. If you set the option to Granted access, then computers are
allowed to access the application unless they appear in the Except the following list. If you set
the option to Denied access, then computers are denied access to the application unless they
appear in the Except the following list.

To add an item to the Except the following list, click on the Add button. This displays the
Deny/Allow access dialog box where you can enter the network address of the system or
systems you want to add to the list. You can specify a single computer by using the Single
computer option button and entering the IP address of the computer as shown in Figure
12-11. If you need assistance determining the IP address of a particular system, you can use
the DNS Lookup button to resolve a computer name to its address.

6293_ch12.fm Page 514 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 515

Figure 12-11. Denying a single computer by IP address

You can specify a range of computers by selecting the Group of computers option button
and entering an IP address and a subnet mask as shown in Figure 12-12 (for example,
192.168.75.0 as the IP address and 255.255.255.0 as the subnet mask will include all machines
that have an IP address in the range 192.168.75.0 to 192.168.75.255).

Figure 12-12. Denying a group of computer by entering an IP address and subnet mask

Or you can specify a domain name as shown in Figure 12-13.

■Caution Specifying a domain name instead of an IP address or masked IP address requires IIS to do a
reverse DNS lookup on the incoming IP address to determine whether it is part of a restricted domain. This
takes time to process and may adversely affect performance.

6293_ch12.fm Page 515 Monday, November 14, 2005 7:03 PM

516 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Figure 12-13. Denying a group of computer by entering domain name

Authentication

As mentioned before, IIS supports Anonymous, Basic, Digest, and Integrated Windows
Authentication. Windows Authentication chooses between NTLM and Kerberos based on
availability (IIS uses Kerberos when available but reverts to NTLM if necessary). You can
configure the authentication settings for a particular application in IIS via the Authentication
Methods property window, which is accessible by clicking on the Edit button in the Authenti-
cation and access control section of the Directory Security tab (visible in Figure 12-9). Figure
12-14 shows the Authentication Methods property window.

You should choose an authentication mechanism based on the needs of your application
and the ASP.NET authentication type you plan to use. Below you’ll find more information each
authentication type and the situations in which you should use it (Passport authentication is
beyond the scope of this book).

Anonymous Authentication

At the top of the Authentication Methods dialog box (see Figure 12-14), you’ll see the Enable
anonymous access check box, which enables anonymous access to the application. Under the
check box, there are two text boxes where you may specify a username and password for the
anonymous user account. Remember, IIS always processes requests using the security context
of a Windows account. Whenever an anonymous user request a resource, IIS uses the security
context of the anonymous user account instead of making the user authenticate. By default,
the anonymous user account is called IUSR_<MACHINE> (where <MACHINE> is the name of your
system), and IIS manages the password for the anonymous account. You can opt to change the
account or manage the password manually, which is useful if you need to allow the anony-
mous account for delegation.

You should always enable anonymous access when you use Forms Authentication. The
whole point of Forms Authentication is that IIS allows requests to pass through anonymously
and lets ASP.NET authenticate those incoming requests using tickets. You should also enable
anonymous access when your application is configured using the None authentication option.

6293_ch12.fm Page 516 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 517

Figure 12-14. Authentication Methods property window

If your application uses Windows Authentication, you can still enable anonymous access,
but you may have to do a bit more work specifying NTFS file permissions for anonymous users.
Windows Authentication causes the file authorization module to become active, so you need
to create NTFS permission entries to allow read access for the anonymous user account. If your
application is using Windows Authentication and you’re not planning to allow anonymous
users to access the application, then you should disable anonymous access.

Anonymous access isn’t really a type of authentication as much as it is a lack of authenti-
cation. Thus, all browsers should support anonymous access so you should never have
compatibility issues between browsers when using it.

Basic Authentication

You can enable Basic Authentication in IIS by selecting the Basic authentication check box in
the Authenticated access section of the Authentication Methods dialog box (refer to Figure
12-14). You can also specify a default domain and a realm for basic authentication. By default,
IIS authenticates credentials against the domain to which the server belongs. If you want IIS to
authenticate users against a different domain, specify the domain in the Default domain text
box. The Realm text box allows you to specify text to display to the user when the browser
requests credentials; it is informational in nature and does not change the authentication
behavior in any way.

6293_ch12.fm Page 517 Monday, November 14, 2005 7:03 PM

518 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Basic Authentication was defined in HTML 1.0, so it has been around for a while and is the
most widely supported form of authentication. Users are prompted for their credentials (a
username and password), and those credentials are then encoded into a base64 string and sent
back to IIS where they can be authenticated.

The biggest issue with Basic Authentication is that the username and password are sent
over what amounts to clear text. Encoding and decoding a base64 string is very simple, so
anyone with a network scanner can easily capture the encoded string, decode it, and deter-
mine someone’s username and password. So, Basic Authentication isn’t a secure form of
authentication in and of itself. There is, of course, a caveat to that. Secure Sockets Layer (SSL)
can encrypt all communications between a browser and IIS, including the base64 encoded
string used in Basic Authentication. Using Basic Authentication with SSL provides a very
secure and widely supported authentication mechanism.

Basic Authentication is a good option when compatibility is an issue because most
browsers do support Basic Authentication. Basic Authentication also supports delegation, so
it’s useful in scenarios where you need to use delegation to access certain network resources.
You should always be aware that Basic Authentication is inherently insecure and strive to
secure the communication line between the browser and the server when using it.

Digest Authentication

Digest Authentication is a challenge/response authentication mechanism designed to avoid
the obvious problems with sending a clear-text password over a network. It’s a more recent
authentication mechanism than Basic Authentication, so some browsers may not support it.
You can enable Digest Authentication in IIS by selecting the Digest authentication for
Windows domain servers check box in the Authenticated access section of the Authentica-
tion Methods dialog box (refer to Figure 12-14). Digest Authentication is only available if
you’re running Active Directory.

In Digest Authentication, IIS creates a challenge string and sends it to the browser. The
browser then displays a dialog box where the user may enter the credentials, but it does not
send those credentials back to IIS unencrypted. Instead, it concatenates the password to the
end of the challenge string and hashes the concatenated string. This results in a set of charac-
ters known as a digest, which is sent back to IIS along with the username. IIS receives the digest
and the username from the client and retrieves the password for the username from Active
Directory. It then concatenates the password on the end of the challenge it sent the browser
and uses the same algorithm as the browser to create a digest of its own. If the digest sent back
from the browser and the digest created by IIS match, then the user is authenticated because
IIS can reasonably assume that the user entered the appropriate password.

This is more secure than Basic Authentication because the password isn’t sent over the
network; however, it comes with its own security risks. Hackers can use replay attacks to over-
come Digest Authentication. In a replay attack, hackers use a network scanner to capture a
challenge string and the resulting digest. They can then “replay” the captured response, and
IIS authenticates them. It takes a little more time and effort than stealing the password
outright, but it’s still effective.

Digest Authentication isn’t as widely supported as Basic Authentication, but is more
widely supported than Integrated Windows Authentication. It does not support delegation and
requires Active Directory to store account passwords using reversible encryption because IIS
needs the original unaltered password to validate the digest. One-way encryption is a more
secure password storage format, so you may find some network administrators resistant to the

6293_ch12.fm Page 518 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 519

idea of using reversible encryption. You should use Digest Authentication when you don’t
need to use delegation, and when compatibility is a concern but Basic Authentication is too
much of a security risk (for example, you can’t secure it with SSL).

Integrated Windows Authentication

Integrated Windows Authentication is a very secure challenge/response style authentication
mechanism that offers Internet Explorer users a seamless login experience. Instead of
prompting the user for credentials, Internet Explorer uses the logged-in user’s credentials to
attempt authentication. If authentication succeeds, the user never sees a login screen. If
authentication fails, Internet Explorer prompts the user for a different set of credentials. For
authentication to be seamless, both the client and server must have access to the same Active
Directory or have identical accounts defined on both machines (that is, accounts with the
same username and same password). You can enable Integrated Windows Authentication in
IIS by selecting the Integrated Windows authentication check box at the bottom of the
Authentication methods dialog box.

The biggest problem with Integrated Windows Authentication is that it is a Microsoft-
specific authentication mechanism designed to work in Internet Explorer, making browser
compatibility questionable. Firefox supports Integrated Windows Authentication, but it
displays a dialog box to the user instead of attempting automatic authentication. Other
browsers, such as Opera, simply display a message stating that the authentication type isn’t
supported. You should not use this authentication method if you need to support a variety of
browsers.

Integrated Windows Authentication is actually made up of two different authentication
mechanisms, Kerberos and NT LAN Manager (NTLM). By default, Windows 2000 and 2003
servers attempt to use Kerberos Authentication, but fall back on NTLM if the accounts involved
are not properly configured. IIS on Windows XP uses NTLM because Kerberos is dependent on
Active Directory. Kerberos Authentication may be delegated, but NTLM cannot be delegated,
so delegation is highly dependent on configuration. Unfortunately, configuring accounts to
use Kerberos Authentication in Active Directory domain controllers is beyond the scope of this
book.

Another notable issue is that Integrated Windows Authentication may not work through a
firewall when used over a proxy unless sent over a Virtual Private Network (VPN) using
Microsoft’s Point-to-Point Tunneling Protocol (PPTP).

Integrated Windows Authentication is the preferred authentication type for internal
intranet applications where client and servers have access to the same Active Directory, and it
can be reasonably assumed that everyone accessing the system uses Internet Explorer. It isn’t
intended for public-facing websites.

Mixing Authentication Methods

You’re not limited to using a single authentication or access method. You can enable anony-
mous access and support Basic, Digest, and Integrated Windows Authentication all at once. In
this type of situation, IIS first attempts to allow the request to occur anonymously. If the anon-
ymous request fails because authentication is required, IIS sends back a request for the
browser to authenticate using Integrated Windows, Digest, or Basic Authentication. The
browser looks as the authentication options and chooses the most secure one that it supports.

6293_ch12.fm Page 519 Monday, November 14, 2005 7:03 PM

520 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Opera, for instance, does not support Integrated Windows Authentication, so it falls back on
Digest Authentication because it’s more secure than Basic Authentication.

Application Mappings

As mentioned before, IIS supports an extensible framework to support the processing of
dynamic files. Part of that framework is the concept of application mappings. Application
mappings contain information that tells IIS which ISAPI extension to use to process certain
types of files. This is how IIS knows to process requests for .aspx pages using the ASP.NET
ISAPI extension.

Application mappings play a big role in ASP.NET security because ASP.NET can only
manage security for files mapped to the ASP.NET ISAPI extension. Otherwise, IIS handles the
entire request and never passes it off to ASP.NET for processing. If you’re using Integrated
Windows Authentication in IIS and Windows Authentication in ASP.NET, then you won’t
notice any problems due to application mappings. Both IIS and ASP.NET use the same account
and group information to make authentication and authorization decisions. If, however,
you’re using Anonymous Authentication in IIS and Forms Authentication in ASP.NET, then
you may experience some odd behavior for file extensions not mapped to ASP.NET.

Here’s a scenario that will help outline the problem. Let’s say that you have a web applica-
tion to help people track expenses. Employees can enter expenses into the system and
managers can see expense tracking reports generated from those entries. Your application
writes Excel files with the tracking information to a reports folder. An ASP.NET page in that
folder called ViewReports.aspx allows managers to easily search for reports. To ensure that
only managers can access the Excel reports in that folder, you create a Web.config file with an
<authorization> section allowing the Manager role to access the directory but denying access
to the Employee role. Unfortunately, Excel files are not mapped to the ASP.NET ISAPI exten-
sion. Now let’s see how this affects access to those files.

A user with manager-level access logs in to the application. ASP.NET authenticates the
user and creates a ticket identifying the user as a member of the Manager role. The user then
requests the ViewReport.aspx page. The ASP.NET authorization module knows that only users
in the Manager role may request files in the Reports folder, so it checks the role information
associated with the user. Because the user is in the Manager role, ASP.NET authorizes the
request and displays a list of reports to the user. The user clicks on a report to open it. The
request for the Excel file goes to IIS, but it isn’t routed to ASP.NET. Because IIS is using anony-
mous access, IIS checks the NTFS permissions on the file to determine if the anonymous user
account has access to the file. It does not. The user is denied access to the file even though the
user is logged in as a Manager in the ASP.NET application. A worse scenario occurs if the anon-
ymous user account has access to the files because IIS always serves the file, even to users who
should not have access.

You can avoid this issue by creating application mappings for file types you want managed
by ASP.NET security. This forces ASP.NET to process the requests and enforce security
constraints on the requested file. However, allowing ASP.NET to handle files will hinder perfor-
mance because of the extra steps involved in passing the request off to ASP.NET.

To create a new application mapping, open your application’s properties window. Click
on the Directory tab (this will be Home Directory, Virtual Directory, or simply Directory
depending upon what tpe of directory it is). Click on the Configuration button in the bottom-
right section of the window (shown in Figure 12-15).

6293_ch12.fm Page 520 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 521

Figure 12-15. Properties window showing the Configuration button

This displays the Application Configuration dialog box. Select the Mappings tab if it isn’t
already selected. You can see a listing of extensions, their respective ISAPI extension mappings
in this tab, and buttons allowing you to add, edit, or delete mappings (shown in Figure 12-16).

Figure 12-16. Mapping tab displaying all the file extension mappings in the application

6293_ch12.fm Page 521 Monday, November 14, 2005 7:03 PM

522 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Click the Add button to display the Add/Edit Application Extension Mapping dialog box
(shown in Figure 12-17). To add a mapping to ASP.NET, click the Browse button and locate
aspnet_isapi.dll. It is usually located in

C:\Windows\Microsoft.NET\Framework\<version>\aspnet_isapi.dll

You may then specify the extension of the file type you want to map to ASP.NET in the
Extension text box. The Verbs section allows you to specify the HTTP verbs for which the ISAPI
mapping is valid. Unless you have a compelling reason to do otherwise, use the default All
Verbs option. Leave the Script engine check box in its default, checked state. It deals with
execution permissions for the .DLL. The Check that file exists check box determines whether
IIS will check the file system for the requested file before handing the request off to the ISAPI
extension. This is helpful for virtual files that you want to generate using code but that don’t
actually exist on the file system. When you have entered the appropriate information, click on
the OK button. You’ll see your new mapping appear in the listing on the Mappings tab. Figure
12-17 shows the Add/Edit Application Extension Mapping dialog box.

Figure 12-17. Adding a new extension mapping

Securing Communications

IIS supports the HTTPS protocol for encrypting communicating between IIS and the browser.
It requires a valid server certificate, which can be obtained from a certificate authority such as
VeriSign. A complete discussion of certificate management and network security is beyond the
scope of this book, but know that this is the area where you may enable it.

Securing Files with NTFS Permissions
Microsoft created the New Technology File System (NTFS) to address security concerns
regarding users, groups, and access rights to files and folders. NTFS allows you to create file-
and folder-level permissions that define who can access files, list folder contents, and even
execute applications. Security in IIS and the file authorization module in ASP.NET rely on
NTFS permissions to determine whether or not to fulfill a request.

You can configure NTFS permissions by right-clicking on a file or folder in Windows
Explorer and selecting Properties from the context menu. This displays the file/folder proper-
ties dialog box. Select the Security tab to view the NTFS permissions, which are shown in
Figure 12-18.

6293_ch12.fm Page 522 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 523

Figure 12-18. NTFS permissions in the Security tab of the file/folder properties dialog box

On the Security tab, you’ll see two distinct areas. The top area displays a list of users and
groups for which permissions are defined. You can select an individual user or group by clicking
on the name of the item. When an item is selected, the security permissions for that user or group
appear below the user and group listing, showing whether the particular permissions is allowed
or denied. Permissions explicitly defined for the file/folder are shown as normal check boxes,
whereas any inherited permissions are shown as checked but grayed out check boxes. You can
use the permission check boxes to either allow or deny a user or group the ability to perform
certain actions, but you can’t change the inherited permissions. Table 12-2 lists the various
permissions and what it allows the user or group to do in regards to the file or folder.

Table 12-2. General NTFS Security Permissions

Permissions Description

Read Allows user or group to read the file, file attributes, extended attributes, and NTFS
permissions.

Read & Execute Allows the user or group all privileges associated with the Read permissions and
the ability to execute the file if it is an executable (WinWord.exe, Notepad.exe,
CMD.exe, and so on).

Write Write permission on a folder allows the user to create files and subfolders in the
folder and write attributes/extended attributes for folders. Write permission on a
file allows the user to append or overwrite data in the file and write attributes/
extended attributes for the file.

6293_ch12.fm Page 523 Monday, November 14, 2005 7:03 PM

524 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Adding Accounts or Groups to the Permissions List

You can add an account by clicking on the Add button under the user and groups listing. This
displays the Select Users or Groups dialog box shown in Figure 12-19. Notice the three entry
fields on the form. I’ll start with the last entry field on the form and work backwards from there.

Figure 12-19. Select Users or Groups dialog box

Near the bottom of the Select Users or Groups add dialog box, you’ll see a text entry area.
This area allows you to enter a single principal (user or group) or a semicolon delimited list of
principals. You can fully qualify the principal name, that is, domain\principal, or you can
enter a nonqualified principal, that is, principal, and the add process will qualify the principal
using the default location (which is defined in the second entry field). After you’ve entered all
the items you want to add, click on the Check Names button to verify the names you have
entered or click the OK button (which checks the names and submits changes). The Select
Users or Groups dialog then attempts to verify the principal names you have entered. If all the
names are located successfully, they appear in the text area with an underline. If not, you’ll see
a Name Not Found dialog box that allows you to correct the error or search for the appropriate
principal. You can also use the Advanced button to bring up a more fully featured search
mechanism by which to locate principal names.

Modify Allows the user or group all privileges associated with Read, Read & Execute, and
Write, as well as the ability to delete a file or folder.

Full Control Allows the user or group complete control over the file, including the ability to
change permissions for users or groups and to take ownership of the file.

List Folder Contents This is a folder specific permission that gives the user rights to view the files and
folders inside of a folder.

Special Permissions There are a total of 13 permission settings accessible from the Advanced button
that allow for a more granular control of permissions. If you set any special
permissions using these more detailed settings, then the Special Permissions
check boxes may be checked. This indicates that you must go to the Advanced
settings to view all the actual permissions.

Table 12-2. General NTFS Security Permissions (Continued)

Permissions Description

6293_ch12.fm Page 524 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 525

In the middle of the Select Users or Groups dialog box, you’ll see a From this location
entry field. This defines the default location against which unqualified names are checked.
Valid locations include your local machine’s account and groups and any domain servers to
which you have access. If you’re connected to a domain, then the location defaults to that
domain. Thus, you’ll need to fully qualify or change the location to your local machine when
creating permissions for local accounts (such as the ASPNET account).

At the top of the dialog box, you’ll see an entry area allowing you to specify the object types
you want to add. By default, you can add any type of object—users, groups or built-in security
principals. You can narrow this down to a specific type of object if you so desire. This may help
reduce the name verification process if you have a large number of users and groups through
which to search. It could also help if you make a mental mistake and enter a group name
instead of a user account name. Normally, however, you’ll just leave it at its default settings.

After you click the Add button, the verified principal names are added to the Group or user
names list on the Security tab of the file/folder properties dialog box.

Allowing, Implicitly Denying, and Explicitly Denying Permissions

Although there are check boxes for allowing and denying permissions, there are actually three
settings for NTFS permissions. You can explicitly allow a permission by checking the Allow
check box. You can explicitly deny a permission by checking the Deny box. Or you can implic-
itly deny a permission by not checking anything. When NTFS checks permissions, it does so by
first checking whether or not the permission is explicitly denied, then whether or not the
permission is explicitly allowed. If it is neither denied nor allowed, then it is implicitly denied
because it was not allowed.

Explicit denial has serious ramifications because account permissions are an aggregate of
the account permissions and any group permissions with which the account is associated. If
an account is explicitly allowed permission to access a certain file, but is part of a group that is
explicitly denied access to the file, then the user will be denied access to that file. This is why
Microsoft recommends that you use implicit denial instead of explicit denial unless you have a
compelling reason to do otherwise.

Permission Inheritance and Behavior

By default, files and folders inherit permissions from their parent folder. A folder that is 5 or 10
levels deep in the file system may be inheriting permissions from a root-level folder or drive. If
you don’t want a folder inheriting permissions from its parent, then you can disable inherit-
ance. You can do this via the Advanced Security Settings dialog box shown in Figure 12-20,
which you can bring up by clicking on the Advanced button in the Security tab of the file/
folder properties dialog box (refer to Figure 12-18).

The Inherit from parent... check box near the bottom of the Permissions tab allows you
to turn off inheritance. You’ll then be asked whether you want to Copy or Remove the inherited
permissions. Copying the permissions means that all the inherited permissions will now be
explicitly defined for the file or folder. Removing the inherited permissions simply clears any
inherited permissions on the file or folder.

6293_ch12.fm Page 525 Monday, November 14, 2005 7:03 PM

526 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Figure 12-20. Advanced Security Settings dialog box. Notice the Inherit from parent... check box
near the bottom of the screen.

■Tip Another useful feature of the Advanced Security Settings dialog box is the Effective Permissions
tab. This allows you to specify an account and see a permission listing for that account that includes permis-
sions from groups with which the account is associated. This can be helpful when trying to determine why a
particular account can’t access a specific resource.

Files and folders can have both inherited and explicitly defined permissions. So, you can
inherit a base set of permissions from a parent folder and then add additional permissions to
specific files and folders as you so choose.

Another interesting aspect of NTFS permissions is that you don’t need access to a parent folder
to have access to child folders or files. For example, let’s say you want to access a file named
C:\FolderA\FolderB\FolderC\Report.xls. Let’s say you’ve been denied read and write access to
FolderA, FolderB, and FolderC, but have been allowed read and write access to Report.xls. You can
actually open Report.xls as long as you know the full path to the file. You can’t browse for the file
because you’ll get an Access Denied error trying to browser through any of the folders.

Now that you’ve seen both IIS and NTFS configuration settings, lets take a look at the
various ways you can configure ASP.NET.

ASP.NET Security Configuration Settings
In the beginning of this chapter, you learned that ASP.NET has its own security mechanisms for
handling authentication and authorization. You also looked at impersonation and how the security

6293_ch12.fm Page 526 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 527

context of a process or thread dictates the security rights of an application. In this section, you’ll learn
how to configure authentication, authorization, and impersonation for an ASP.NET application.

Unless otherwise noted, you should assume that configuration setting discussed in the
following sections should be placed in Web.config located in the application’s root folder.

Configuring ASP.NET Authentication

As you know, ASP.NET supports Windows, Forms, Passport, and Anonymous (None) Authen-
tication. You learned about the benefits and drawbacks to each earlier on in this chapter, so I’ll
focus solely on configuration here. (I’ll not discuss Passport Authentication because it isn’t
something most developers will encounter.)

Anonymous Authentication

Anonymous Authentication is the easiest authentication mechanism to configure because it
requires very little ASP.NET configuration and no NTFS configuration. Listing 12-1 shows how
it looks in Web.config.

Listing 12-1. Configuring Anonymous Authentication in Web.config

<configuration>
 <system.web>
 <authentication mode="None" />
 </system.web>
</configuration>

You should configure IIS to allow anonymous access when using Anonymous Authentica-
tion in ASP.NET if you truly want the access to be anonymous. Otherwise, IIS will force the user
to authenticate before handing the request off to ASP.NET for processing, and the user still
shows up as anonymous in ASP.NET because none of the authentication modules which load
the user information into the context are enabled when the mode is set to None.

Windows Authentication

Windows Authentication also has a fairly simple ASP.NET configuration, but requires more
work configuring NTFS file permissions (see Listing 12-2). Remember, configuring your appli-
cation to use Windows Authentication also enables the file authorization module, discussed
earlier in this chapter, which enforces NTFS file permissions for the authenticated user.
ASP.NET uses Windows Authentication by default if no mode is specified in Web.config.

Listing 12-2. Configuring Windows Authentication in Web.config

<configuration>
 <system.web>
 <authentication mode="Windows" />
 </system.web>
</configuration>

You must configure IIS to authenticate the user when your application uses Windows Authen-
tication. Although it’s called Windows Authentication in ASP.NET, you’re not limited to Integrated
Windows Authentication in IIS. You can use Basic and/or Digest Authentication as well.

6293_ch12.fm Page 527 Monday, November 14, 2005 7:03 PM

528 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Forms Authentication

Forms Authentication has more configuration settings than Anonymous or Windows Authentica-
tion, but most of them are seldom used or can be automatically configured with the Web Site
Administration Tool. Listing 12-3 shows a basic Forms Authentication configuration in Web.config.

Listing 12-3. Configuring Forms Authentication in Web.config

<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms loginUrl="Login.aspx" defaultUrl="default.aspx" timeout="60"/>
 </authentication>
 </system.web>
</configuration>

You specify settings specific to Forms Authentication in the <forms> element, which is a
child of the <authentication> element. The <forms> element has a number of parameters, all of
which are optional, allowing you to custom-tailor Forms Authentication for your particular
application’s needs. Table 12-3 lists the various parameters, their purpose, and their default
values when left unspecified.

Table 12-3. <forms> Element Attribute Descriptions

Attribute Name Default Value Description

loginUrl login.aspx Defines the location relative to Web.config to which unauthorized
users are redirected when they attempt to access a protected
resource. When they are sent to this page, the redirection includes a
query string value indicating the page they were attempting to access
so they can be redirected there after logging in.

defaultUrl default.aspx Defines the default location to which users are redirected after
successfully logging in. If the user was directed to the login page while
trying to access a protected resource, then the user is returned to the
protected resource, not to the location defined by this attribute.

cookieless UseDeviceProfile Forms Authentication can store a user’s authentication data in a
cookie or as a query string value. The query string is widely
supported, but often results in authentication data being lost during
navigation. Cookies are more reliable, but security-conscious users
may disable cookie support. The cookieless attribute has four
settings that allow you to configure how Forms Authentication
should store authentication data as listed next.

cookieless Values Description

UseCookies Forms Authentication always uses cookies. If the browser does not
support cookies, or cookies have been disabled, the user isn’t allowed
to access the application.

UseUri Forms Authentication always stores authentication data in the query
string and does not attempt to use cookies. This is good if your target
users normally have cookies disabled or are using older browsers that
don’t support cookies.

6293_ch12.fm Page 528 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

529

AutoDetect

Browsers send information identifying the type and version of the
browser, and ASP.NET maintains a repository of browser types,
versions, and the features they support. If ASP.NET knows, based on
that repository, that the browser supports cookies, then ASP.NET
probes the browser to determine if cookies are enabled. If cookies are
enabled, then ASP.NET writes authentication data to the cookie.
Otherwise, ASP.NET writes data to the query string.

UseDeviceProfile

This works similarly to the

AutoDetect

, but the decision to use cookies
is solely based on ASP.NET’s browser feature repository. ASP.NET
does not probe to check whether cookies are enabled. If the browser
is known to support cookies, but the user has disabled cookies, the
user is unable to access the application.

Attribute Name Default Value Description

name .ASPXAUTH

Defines the name of the cookie that contains the user’s Forms
Authentication data. If you’re running multiple applications on a
single server and each one requires its own authentication cookie,
then you’ll need to change the name of this cookie for each indi-
vidual application to avoid issues with overwriting authentication
data.

timeout 30

Defines the length of time a cookie is valid (in minutes). Users who
are idle for more than this time period must log in to the application
again. The cookie timeout does not apply to permanent cookies.

sliding

➥

Expiration
False

Conventional logic dictates that cookie timeouts should be reset on
every request. Using the default 30-minute timeout as a guide, this
means that if a user accesses a page at 12:00 and then again at 12:10,
the timeout won’t occur until 12:40. Such isn’t the case because
ASP.NET is optimized to reduce cookie setting to lessen network
traffic and to avoid accosting users who have cookie alerts enabled.
By default, ASP.NET only resets the timeout when more than half of
the timeout time has passed. So, a user accessing a page at 12:00 and
then again at 12:10, is still subject to a timeout at 12:30. You can force
ASP.NET to reset the timeout on each request by setting the

slidingExpiration

 attribute to

True

.

domain

Defines the domain for which the cookie is valid. Before the browser
requests a page, it checks to see if any cookies match the domain and
path of the request. If so, it sends that cookie along with the request.

path /

Defines the path in your application past which authentication
cookies should be sent. For example, if you specify

/Protected/

 as
the path, then cookies are only sent to your application if the user
requests something in the

/Protected/

 folder or a subfolder of the

/Protected/

 folder. Be wary of using this setting because case-
sensitivity issues may result in a browser not sending the cookie.

protection All

Defines the protection placed on Forms Authentication cookies as
listed next.

cookieless Values Description

6293_ch12.fm Page 529 Tuesday, November 15, 2005 6:06 PM

530 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Forms Authentication also supports a <credentials> section that allows you to hard-code
users and passwords directly in Web.config. This was a quick and dirty way for developers to
create users for a Forms application without having to use a database. It was seldom used in
ASP.NET 1.1, and its use will continue to decline because of the built-in membership and role
providers in ASP.NET 2.0 (see Chapter 5). For the sake of completeness, however, Listing 12-4
shows an example of how to use the <credentials> element.

Listing 12-4. Configuringing Forms-Based Users with the <credentials> Element

<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms>
 <credentials passwordFormat="Clear">
 <user name="UserA" password="PasswordA"/>
 <user name="UserB" password="PasswordB"/>
 <user name="UserC" password="PasswordC"/>
 </credentials>
 </forms>

Protection Values Description

None Cookies are not validated or encrypted. This has a slight performance
benefit, but it means that malicious users could read and or alter
cookie information. Only consider using this option if your applica-
tion requires SSL (HTTPS) because cookies are encrypted along with
all other communications over SSL connections.

Validation Creates a MAC by hashing the cookie data using a validation key. The
resulting MAC hash is then appended to the cookie data. When
ASP.NET receives the cookie on a subsequent request, it hashes the
cookie data using the same validation key and checks the result
against the MAC hash in the cookie. If both items match, then the
data in the cookie has not been altered and the cookie is considered
valid.

Encryption Cookie data is encrypted using DES or Triple DES encryption and
stored in the cookie. On subsequent requests, ASP.NET decrypts the
cookie data. Validation isn’t used in this scenario, so the cookie may
be susceptible to attacks. You specify the encryption algorithm in the
<machineKey> element in Machine.config or Web.config.

All Applies both Validation and Encryption to the cookie. All is the most
secure option and is therefore both the recommended and default
option as well.

Attribute Name Default Value Description

requireSSL False Defines whether an SSL connection is required to send the authenti-
cation cookie. When set to True, ASP.NET informs the browser that
the cookie should only be sent over a secure connection.

6293_ch12.fm Page 530 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 531

 </authentication>
 </system.web>
</configuration>

You can store a user’s password in clear text format or as an MD5 or SHA1 hash. You can
specify the password format in the passwordFormat attribute of the <credentials> section
(Clear, MD5, or SHA1).

Configuring ASP.NET Authorization

Authorization in ASP.NET applications relies on the User property of the HttpContext associ-
ated with the request. You’ll remember from earlier in the chapter that each authentication
module in ASP.NET is responsible for populating the User property with an appropriate
IPrincipal object containing the identity and role information for the user. This allows
ASP.NET to run authorization-based account and group information from any location.

You define authorization settings in the <authorization> section of Web.config by creating
allow and deny entries for specific users, roles, or wildcards. Listing 12-5 is an example
<authorization> section showing you a number of different entries.

Listing 12-5. <authorization> Section Example

<configuration>
 <system.web>
 <authorization>
 <deny users="?"/>
 <deny users="Rob, Matt"/>
 <allow users="Kirk"/>
 <deny roles="NoReports"/>
 <allow roles="Manager, ReportViewer"/>
 <deny users="*"/>
 </authorization>
 </system.web>
</configuration>

ASP.NET runs through the authorization entries sequentially until it locates one appli-
cable to the requesting user, and then applies it, which means the order of the entries is very
important. Let’s take a look at how ASP.NET will interpret the preceding entries. Let’s assume
users are attempting to access a report page in a directory protected by this authorization
configuration.

The first entry contains the “?” wildcard, which represents anonymous users. This entry
forces ASP.NET to reject all anonymous requests for the report and redirects the users to the
loginUrl specified in the <forms> element so they can authenticate. The second entry is a
comma-separated list of usernames. If Rob or Matt attempts to access the report, then the
request is rejected. Kirk, however, is allowed access because of the third entry. Next, you see a
deny entry for the NoReports role. Users who are part of the No Reports role are denied access
to reports because of this entry. The next entry allows users who are part of the Manager or
RepoertViewer role to view the report. Understand, however, that if a user is a member of both
the No Reports role (from the last entry) and the Manager role (from this entry), then the user
will be denied authorization because of the last entry. Remember, order is very important.

6293_ch12.fm Page 531 Monday, November 14, 2005 7:03 PM

532 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Finally, all other users are denied access. You’ll want to put a catchall deny entry like this at the
bottom of your authorization section because, by default, users are granted access to
resources. Therefore, a user named Joe who is in an Employee role would have access to
reports if the catchall was not in place, unless of course Joe or the Employee role were specifi-
cally denied, but such isn’t the case in this example.

ASP.NET uses the authorization settings from Web.config file of the folder where the
requested resource exists to determine whether or not to authorize the request. If ASP.NET
can’t find a Web.config in the folder, it checks the parent folder. It continues checking parent
folders until it reaches the application root. This means that you can create authorization
settings on a folder-by-folder basis or let folders inherit authorization settings from a parent
folder.

■Tip You can also specify authorization rules for subfolders in the root Web.config using the <location>
element.

For example, let’s say that you have an application structure with three protected folders
and one public folder. You want to disable anonymous access to the protected folders, enable
access to the public folder, and do as little configuration as possible. To do this, you would
create a Web.config in the application’s root folder and a Web.config in the public folder. Figure
12-21 shows how it would appear.

Figure12-21. Multiple authorization settings in multiple Web.config files

You would then place the following <authorization> section in Web.config file of the applica-
tion’s root directory (see Listing 12-6).

Listing 12-6. Applicationwide Authorization Settings

<configuration>
 <system.web>
 <authorization>
 <deny users="?"/>
 </authorization>
 </system.web>
</configuration>

6293_ch12.fm Page 532 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 533

And you would place the following <authorization> section in Web.config file of the public
folder (see Listing 12-7).

Listing 12-7. Public Folder Authorization Settings

<configuration>
 <system.web>
 <authorization>
 <allow users="?"/>
 </authorization>
 </system.web>
</configuration>

If an anonymous user attempts to access a protected folder, ASP.NET ultimately uses
authorization settings from Web.config in the application’s root directory and denies the
request. If an anonymous user attempts to access the public folder, ASP.NET uses the authori-
zation settings from Web.config in the public folder and allows the request.

■Tip You can use the Web Site Administration Tool to configure authorization. The tool automatically
creates Web.config files and their authorization settings from a web-based interface so you don’t have to
manually code the configuration files yourself.

Configuring Application-Level Impersonation

Application-level impersonation forces all threads that process requests for your application
to run using a specific security context. You configure application-level by enabling imperson-
ation and specifying account credentials in the <identity> element as shown in Listing 12-8.

Listing 12-8. Application-Level Impersonation

<configuration>
 <system.web>
 <identity impersonate="true" userName="domain\username" password="Password"/>
 </system.web>
</configuration>

You must set the impersonate attribute to True to enable impersonation. Specifying a
userName and password without setting the impersonate attribute has no effect on the security
context of the application. In the userName attribute, you can specify a local account by speci-
fying the username (such as "username") or a domain account by specifying the domain and
username (such as "domain\username").

6293_ch12.fm Page 533 Monday, November 14, 2005 7:03 PM

534 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Configuring User-Level Impersonation

User-level impersonation forces the thread processing the request to run under the security
context of the authenticated user from IIS. User-level impersonation resembles application-
level impersonation, but you don’t need to specify account credentials because IIS provides
the account information for user-level impersonation (see Listing 12-9).

Listing 12-9. User-Level Impersonation

<configuration>
 <system.web>
 <identity impersonate="true" />
 </system.web>
</configuration>

Remember, user-level impersonation may cause database performance issues because it
can have an adverse effect on connection pooling.

Configuring Accounts for Delegation

Delegation involves impersonation on a local computer and authentication of the imperson-
ated account on a remote computer. Delegation requires two things: an authentication
mechanism that supports delegation and credentials that are valid on both the local and
remote computer. If you have an account that is valid on both computers, but was authenti-
cated using a nondelegable authentication mechanism, then delegation fails. If you have an
account that isn’t valid on both computers, then it won’t matter that the authentication mech-
anism supports delegation.

Basic- and Kerberos Authentication both support delegation. Delegation is also supported
when you enter credentials in a configuration file, as you do with application-level imperson-
ation. Digest- and NTLM Authentication don’t support delegation. If you need to use
delegation, you should use application-level impersonation or user-level impersonation with
IIS configured to use Basic- or Integrated Windows Authentication. Integrated Windows
Authentication attempts to use Kerberos Authentication when possible, but falls back on
NTLM if Kerberos isn’t supported. Kerberos Authentication must have the appropriate Active
Directory entries to allow delegation, but those configuration settings are beyond the scope of
this book.

You can create accounts that both the local and remote machine can understand in one of
two ways. The first method is to create identical local accounts. Identical local accounts are
two accounts on two separate machines, but both accounts have the same username and pass-
word. This allows both machines to independently verify the credentials and authenticate the
user. The second option is to use an Active Directory account and allow both the local and
remote computer to authenticate against the Active Directory. Because both machines are
authenticating the same credentials against the same source, authentication succeeds. Figure
12-22 shows how to and how not to configure accounts to support delegation.

6293_ch12.fm Page 534 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 535

Figure 12-22. Configuring accounts for delegation

6293_ch12.fm Page 535 Monday, November 14, 2005 7:03 PM

536 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Configuring the ASP.NET Worker Process Account

Microsoft recommends that you allow the ASP.NET worker process to run using the default
ASPNET account in IIS 5 or Network Service in IIS 6 because this account is preconfigured for
least-privileged access. If you need an application to run using a different security context, you
should use application-level impersonation. Of course, if you have a compelling reason to
change the worker process account, you may do so in the <processModel> element in the
Machine.config file as shown in Listing 12-10.

Listing 12-10. Configuring an Account to Run the ASP.NET Worker Process

<configuration>
 <system.web>
 <processModel userName="user" password="pwd" />
 </system.web>
</configuration>

Once again, don’t make changes to the Machine.config file lightly, and always make sure
you back up your changes in case something goes awry. Next, we’ll take a look at encryption
and how to protect secure information from prying eyes.

Encrypting Sensitive Information
Authentication and authorization are absolute necessities because they keeps people from
casually accessing data to which they should have no access. However, they are by no means a
complete solution. Determined individuals can steal credentials or find ways to attack a
system and bypass authentication and authorization controls. Actually, one of the easiest and
least risky ways to steal data is to approach a disgruntled employee and offer to pay them in
exchange for a copy of any data to which they have access. You should take a layered approach
to application security to ensure data isn’t compromised when one security layer is breached.
Encryption is simply another layer that can help protect your data.

Encryption allows you to make information unusable even if someone does happen to gain
access to it. For example, let’s say hackers attack your retail site so they can steal your customer
records and credit card numbers. They successfully access your system and pull down a copy of
your customer database, but they find out that it contains encrypted data. Even with the most
powerful computers on the planet, encryption is still very difficult and time consuming to break.
So, even though your data is in unauthorized hands, it does not do them much good.

Cryptography, which is the science of encrypting and decrypting messages, involves a lot
of complex mathematical principles and algorithms. Fortunately, ASP.NET abstracts you from
most of the complexities and offers an object-oriented model for protecting your data. In the
sections that follow, you’ll learn how to encrypt configuration settings to the Registry and look
at one way and two way encryption.

Securing Configuration Settings
Microsoft encourages you to store configuration settings and connection strings in the
Web.config file because it creates a central location for settings and helps you avoid hard-
coded references in your application. However, that opens up a huge security concern because

6293_ch12.fm Page 536 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 537

usernames and passwords for various systems are often stored as plain text in the configura-
tion file. Malicious users know exactly where to look for sensitive information and anyone with
read access on the file can open it up and look at its contents.

ASP.NET 2.0 allows you to encrypt sections in Web.config to protect sensitive data from
being read as plain text. More importantly, the configuration architecture has built-in support
for decrypting that configuration data. As long as you’re working with a configuration section
that has a valid configuration section handler (see Chapter 2), ASP.NET automatically decrypts
the data before sending it to your configuration handler. This means that you don’t have do to
any extra coding to work with a configuration section that has been encrypted.

Using the aspnet_regiis.exe Command-Line Utility

The easiest way to encrypt a configuration section is to use the aspnet_regiis.exe command-
line utility located in the ASP.NET Framework folder for your version of the framework
(normally C:\Windows\Microsoft.NET\Framework\<Framework Version>\aspnet_regiis.exe). It
creates all the necessary Web.config entries to configure encryption on a particular configura-
tion section, and it encrypts any data already present in that section.

The aspnet_regiis.exe utility configures a number of items related to IIS, so you have to
run the utility with specific parameters to tell it to encrypt a configuration section. Here is the
general syntax to encrypt a configuration section:

aspnet_regiis.exe –pe "sectionName" [–app "/application"] [-prov "provider"]

You’ll find an explanation of these command line parameters in Table 12-4.

Table 12-4. Command-Line Parameters for aspnet_regiis.exe

Parameter Description

-pe Informing the utility that it needs to encrypt a configuration section

"sectionName" Section name that should be encrypted (for example, connectionStrings,
appSettings, and so on). You must enter the section name exactly as it
appears in the configuration file as this item is case sensitive. You don’t
need to include surrounding < > brackets. To encrypt a section that is
nested within another section, use the / to separate sections.
For example, to encrypt the webServices element, you should use
system.web/webServices.

-app Informs the utility that it should encrypt the configuration file for a specific
application in IIS.

"/application" Identifies the application whose configuration section should be encrypted.
This must include the leading slash (/).

-prov Informs the utility that it should encrypt the configuration section using a
specific encryption provider.

"provider" Identifies the provider to be used. ASP.NET ships with two encryption
providers: the RsaProtectedConfigurationProvider, which is the default,
and the DpapiProtectionConfigurationProvider. Unless you have a compel-
ling reason to do otherwise, stick with the default provider.

6293_ch12.fm Page 537 Monday, November 14, 2005 7:03 PM

538 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

If, for instance, you want to encrypt the <connectionStrings> section in Web.config for an
application residing at http://localhost/MyApplication, using the default encryption
provider, then you would type the following in the command line:

aspnet_regiis.exe –pe "connectionStrings" –app "/MyApplication"

You can also decrypt a configuration section using the utility by specifying the -pd switch
instead of the -pe switch. To decrypt the section you just encrypted, you would simply specify
the following in the command line:

aspnet_regiis.exe –pd "connectionStrings" –app "/MyApplication"

This returns the configuration section back to its original plain-text state so you can make
changes to the configuration section using a standard text editor. After you finish updating the
file, however, remember to encrypt it again.

■Note You can only encrypt configuration files for applications hosted by IIS using the
aspnet_regiis.exe utility.

Giving ASP.NET Access to the Default RSA Encryption Container

By default, ASP.NET uses the RSAProtectedConfigurationProvider to encrypt and decrypt
configuration sections. The RSA provider maintains a set of keys that it uses in its encryption
algorithms, and users must have access to these keys before they can encrypt and decrypt
configuration sections. This keeps unauthorized users from decrypting a configuration section
using the same utility you used to encrypt it. Of course, it also means the security context
running the ASP.NET worker process must be given access to the key container or else
ASP.NET will error out trying to read the encrypted data.

You can give users access to the RSA provider keys using a different command-line param-
eter for the aspnet_regiis.exe utility. Here’s the syntax:

aspnet_regiis -pa "NetFrameworkConfigurationKey" "domain\user"

This gives the "domain\user" account access to the "NetFrameworkConfigurationKey"
container, which is the default RSA encryption container. If you’re setting up a local account,
you don’t need to include the domain for the user.

If you’re using IIS 5, you need to give the ASPNET account access to the container key,
using the following command:

aspnet_regiis -pa "NetFrameworkConfigurationKey" "ASPNET"

And if you're using IIS 6, you need to give the Network Service account access:

aspnet_regiis -pa "NetFrameworkConfigurationKey" "Network Service"

6293_ch12.fm Page 538 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 539

■Caution You must give the account running the ASP.NET worker process access to the NetFramework➥

ConfigurationKey container for ASP.NET to properly read encrypted configuration sections. If your applica-
tion is configured for user-level impersonation, this means that each individual user must be given access to
the key container. With that access, however, each user could run the aspnet_regiis.exe utility to decrypt
the section and read the data in plain text.

You can create additional key containers, export and import key containers, and configure
the encryption provider to use specific key containers, but that is beyond the scope of this
book. You may need more in-depth key management in a server farm or a hosting environ-
ment where you have a number of different applications and clients, but the default
encryption scheme should provide you with adequate protection in most circumstances.

Encrypted Configuration Sections in Web.config

After encrypting a configuration section, you’ll see a couple of changes to your configuration
file. The biggest change is, obviously, the encrypted configuration section that once contained
plain-text data. But there are a few other changes you should be aware of so you can still
manage the configuration file.

Let’s take a look at a configuration file as it appears before being encrypted, and then again
after running the aspnet_regiis.exe utility on it. For this example, we’ll say that you have a
Web.config file with a <connectionStrings> and an <appSettings> section. Listing 12-11 shows
what it looks like in plain text.

Listing 12-11. Unencrypted Web.config

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

 <connectionStrings>
 <add name="Database" connectionString="username=Usr;password=db_pwd;" />
 </connectionStrings>

 <appSettings>
 <add key="smtpServer" value="127.0.0.1"/>
 <add key="fileServerName" value="fileShareBox"/>
 </appSettings>

</configuration>

You want to encrypt the <connectionStrings> section because it contains database user-
names and passwords, but you want to leave the <appSettings> section alone because it does
not have any sensitive information. After running the aspnet_regiis.exe utility on the
<connectionString> section, your Web.config looks like Listing 12-12.

6293_ch12.fm Page 539 Monday, November 14, 2005 7:03 PM

540 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Listing 12-12. Unencrypted Web.config

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

 <protectedData>
 <protectedDataSections>
 <add name="connectionStrings" provider="RsaProtectedConfigurationProvider"
 inheritedByChildren="false" />
 </protectedDataSections>
 </protectedData>

 <connectionStrings>
 <EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"
 xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <EncryptedKey Recipient="" xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyName>Rsa Key</KeyName>
 </KeyInfo>
 <CipherData>
 <CipherValue>
 uYfTKol/aAdtizclKuVI0b85Gzd4IefKZE9WH4SMpasslJOzJrTINVec/1VuxbFUF1o
 Qkku4OGT+HDUOva0bBWhtZrAun3FEr5f3jH/VlmzD21X+quDApFXFYtA9zV9AiEIxvE
 dL5XuERwnk8vtHdDD7WCo/6fp8+jKiJGTr4nw=
 </CipherValue>
 </CipherData>
 </EncryptedKey>
 </KeyInfo>
 <CipherData>
 <CipherValue>
 dA+kmSeqkyJZhmp5ed9FCg6BlLT7VA5GStpPyb2FziuGWvi5QyTSOoQNYpfCmSg9bXtDOezx
 g4KnyLsqAaqJ5n2352qoVU5cIZ9aRSsTe6LjKpgGb5Z/qKAp3b23X+IE3SbvAjWp0FbOJjif
 NDvnf+9a/43z9Gh+JIK0L3YxRoI=
 </CipherValue>
 </CipherData>
 </EncryptedData>
 </connectionStrings>

 <appSettings>
 <add key="mailPassword" value="mail_pwd"/>
 <add key="networkPassword" value="net_pwd"/>
 </appSettings>

</configuration>

6293_ch12.fm Page 540 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 541

Notice at the top of the modified Web.config file, a new section named <protectedData>.
This section identifies which sections in the configuration file are encrypted and what encryp-
tion provider encrypted the data. ASP.NET uses this information to determine which sections
require encryption and decryption when reading and writing configuration values. You can see
that there is still a <connectionStrings> section, but it has been encrypted and can’t be read by
the naked eye. Also notice that the <appSettings> section still appears as plain text and has not
been altered in any way.

After you have encrypted a section, don’t try to modify the encrypted data in that section.
You’ll also want to avoid changing the security provider or removing the encrypted section
from the <protectedData> section. Otherwise, you’ll experience errors trying to access config-
uration data.

Modifying Encrypted Configuration Settings

In their plain-text format, configuration files allow you to quickly make changes to application
settings without too much effort. Encrypted configuration sections, however, can’t be modi-
fied with such ease. They have to be decrypted, edited, and then encrypted again. You can
always revert to the aspnet_regiis.exe utility to decrypt and encrypt files, but there are some
shortcuts that can help you out.

All the Microsoft configuration tools support automatic encryption and decryption of
configuration values. You can use the Web Site Administration Tool to add, edit, and delete
encrypted application settings from the <appSettings> section just as easily as you can
manage unencrypted settings. You can also use the configuration tools in IIS to manage the
<appSettings>, <connectionStrings>, and another other configuration sections supported by
the IIS tool without worrying about encryption (see Chapter 1 for more information on the new
IIS configuration tools for ASP.NET 2.0). If you have a custom configuration section, however,
you’ll probably need to revert to decrypting it with the aspnet_regiis.exe utility.

Hashing Data with One-Way Encryption
Most people think of encryption as a two-way process. You encrypt data and you decrypt data.
It goes two ways. Hashing is a form of encryption known as one-way encryption that creates an
encrypted value, called a hash value, which can’t be definitively decrypted. There is simply not
enough information in the hashed value to restore the original encrypted message.

Hashing is useful for communicating that you know something without actually commu-
nicating what you know. For example, you and a friend both claim to know the capital of Peru.
You think your friend is bluffing. Your friend thinks you’re bluffing. Neither of you want to say
the answer outright because it could give the answer away to your opponent. How can you
both determine whether or not you both know the capital without actually divulging the
answer? This is a situation where one-way encryption can help communicate that you know
something without actually communicating what you know. You tell your friend to hash the
value of the capital using a specific algorithm. You also hash the value of the capital using the
same algorithm. If both hashed values match up, then you can both reasonably assume you
know the answer.

Hashing is also used to encrypt passwords in databases. Users log in by entering their
plain-text password. That password is then hashed and checked against the hashed password
stored in the database. If the hashes match up, then the user is authenticated. This keeps
hackers and rouge database administrators from stealing passwords out of the database. They

6293_ch12.fm Page 541 Monday, November 14, 2005 7:03 PM

542 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

can only steal the password hashes, and password hashes are worthless because they can’t be
decrypted. So hashing protects user credentials in the event of a database break-in.

Hashing Algorithms

You generate hash values using a hashing algorithm. Hashing algorithms are responsible for
processing an input and producing a specific hash value for the input. In other words, if you
hash a specific value twice, then you get back the same hash value both times. Hashed values
are not unique, so you could receive the same hash value for two different inputs, although
that’s highly unlikely given today’s hashing algorithms.

Let’s take a look at a simple hashing algorithm so you can see how one works. Listing
12-13 shows a simple hashing algorithm that accepts a string and outputs an integer as the
hash value.

Listing 12-13. MyHashAlgorithm Example

'***
Private Function MyHashAlgorithm(ByVal input As String) As Integer

 Dim charArray() As Char = input.ToCharArray()
 Dim hashValue As Integer = 0

 For Each c As Char In charArray
 hashValue += Asc(UCase(c))
 Next
 Return hashValue

End Function

MyHashAlgorithm accepts the string variable input as its only parameter. The function
turns input into a character array and declares hashValue as an integer. It then iterates through
each character in the string, uppercases it, and adds up the ASCII code value of each character
in the hashValue variable. Finally, the function returns hashValue, which contains a summa-
tion of the character codes from the string.

Table 12-5 contains a list of input values and their corresponding hashed values as calcu-
lated by the MyHashAlgorithm.

Table 12-5. Input Values and Hashed Values from the MyHashAlgorithm

Input Value Hashed Value Calculation

A 65 65=65

B 66 66=66

AB 131 65+66=131

MITE 303 77+73+84+69=303

ITEM 303 73+84+69+77=303

FEAST 371 70+69+65+83+84=371

6293_ch12.fm Page 542 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2

■

 S E C U R I T Y A N D E N C R Y P T I O N

543

You can see from the hashed values that items don’t have unique hashed values.

ITEM

 and

MITE

 both have hashed values of 303 because they both have the same letters, and thus have the
same letter values. The letters just appear in different positions.

FEAST

 and

GREAT

 have the same
hash even though they have different letters because their letter values both happen to sum to
the same number. This also shows another important property of hash: you can’t conclusively
decrypt a hashed value because the hash value (

371

) could represent a variety of different char-
acter sequences (

FEAST

 or

GREAT

).
Obviously, the

MyHashAlgorithm

 is a weak hashing algorithm and you would not want to
use it to encrypt data. Instead, you can use any one of the six hashing algorithms that ships
with the .NET Framework: MD5, RIPEMD160, SHA1, SHA256, SHA384, SHA512. Each algo-
rithm produces a different sized hash: 128, 160, 160, 256, 384, and 512 bits, respectively. Larger
hashes are less likely to produce duplicate hash values and are therefore more secure, but take
longer to process. The MD5 or SHA1 algorithms should be sufficient for most applications.

Creating a Reusable Hashing Class

Hashing normally involves hashing a string and returning the hash value for the string.
Microsoft, however, designed the hashing algorithms so they could hash just about anything,
even binary files. As such, the hashing code revolves around byte arrays, not strings or other
data types, and requires a bit of code to implement. Instead of recoding hashing functionality
every time you need it, you should encapsulate it into a reusable class.

Microsoft implemented each hashing algorithm in a separate class, but all hashing algo-
rithms inherit from the

HashAlgorithm

 base class in the

System.Security.Cryptography

namespace. This makes it easy to create a generic hashing class from which you can access all
the hashing algorithms. Listing 12-14 shows the code for the

Hashing

 class, which resides in the

EcnryptionLibrary

 project of the sample application.

Listing 12-14.

Hashing

 Class

Imports System.Security.Cryptography
Imports System.Text

'***
Public Class Hashing

 'Algorithm Enermations
 Public Enum HashAlgorithmTypes
 MD5
 SHA1

GREAT 371

71+82+69+65+84=371

SOFTWARE 619

83+79+70+84+87+65+82+69

Table 12-5.

 Input Values and Hashed Values from the

MyHashAlgorithm

Input Value Hashed Value Calculation

6293_ch12.fm Page 543 Monday, November 14, 2005 7:41 PM

544 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

 SHA256
 SHA384
 SHA512
 End Enum

 '***
 Public Shared Function CreateHash(ByVal valueToHash As String, _
 ByVal algorithmType As HashAlgorithmTypes) As String

 'Set up variables
 Dim algorithm As System.Security.Cryptography.HashAlgorithm
 Dim encoder As ASCIIEncoding = New ASCIIEncoding()
 Dim valueByteArray As Byte() = encoder.GetBytes(valueToHash)
 Dim hashValue As String = ""
 Dim hashValueByteArray As Byte()

 'Acquire algorithm object
 Select Case algorithmType
 Case HashAlgorithmTypes.SHA1
 algorithm = New SHA1Managed()
 Case HashAlgorithmTypes.SHA256
 algorithm = New SHA256Managed()
 Case HashAlgorithmTypes.SHA384
 algorithm = New SHA384Managed()
 Case HashAlgorithmTypes.SHA512
 algorithm = New SHA512Managed()
 Case Else 'use MD5
 algorithm = New MD5CryptoServiceProvider
 End Select

 'Create binary hash
 hashValueByteArray = algorithm.ComputeHash(valueByteArray)

 'Convert binary hash to hex
 For Each b As Byte In hashValueByteArray
 hashValue &= String.Format("{0:x2}", b)
 Next

 Return hashValue

 End Function

End Class

At the top of the class, you’ll see an enumeration named HashAlgorithmType, which
outlines all the hash algorithms this class supports. This enumeration makes it easier to select
which algorithm you want to use to hash a value because IntelliSense displays a listing of the

6293_ch12.fm Page 544 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 545

various algorithms in the Visual Studio IDE when you use the CreateHash function. Notice that
you can use the MD5, SHA1, SHA256, SHA384, or SHA512 hashing algorithms.

CreateHash is a Shared function that accepts two parameters: the string value to be hashed,
and a HashAlgorithm enumeration value indicating which algorithm to use. CreateHash uses
five different variables to create a hash value:

• algorithm is a HashAlgorithm variable that can store a reference to any of the five
different algorithm classes.

• encoder is a an ASCIIEncoding object used to convert valueToHash into a byte-array.

• valueByteArray stores the byte-array representation of the valueToHash.

• hashValue is the temporary string value that stores the return value for the function.

• hashValueByteArray stores the byte-array representation of the hashValue string
variable.

After defining its variables, CreateHash uses the algorithmType to determine which hash
algorithm object to load into the algorithm variable. Because all hash algorithms derive from
the HashAlgorithm class, the algorithm variable can store a reference to any hash algorithm and
calls its hashing methods.

After a hash algorithm object has been acquired, the function calls the ComputeHash
method of the algorithm object, passing in the valueByteArray. ComputeHash runs the complex
hashing logic and returns a byte-array containing the hashed value. CreateHash then stores
that value in the hashValueByteArray variable.

Next, the function iterates over each byte in the hashValueByteArray, converts it into a
hexadecimal character, and then appends it to the hashValue string. And lastly, the function
returns the hashValue variable containing the string representation of the hashed value.

Using the Hash Class in Code

The Hash class contains a single shared method, so you don’t have to instantiate an object
before you use it. You just pass in a value to hash and the algorithm to use, and it returns a
hashed value as shown in Listing 12-15.

Listing 12-15. Hashing Examples

hashedValue1 = Hash.CreateHash("ASP.NET", MD5)
hashedValue2 = Hash.CreateHash("ASP.NET", SHA1)
hashedValue3 = Hash.CreateHash("ASP.NET", SHA256)
hashedValue4 = Hash.CreateHash("ASP.NET", SHA384)
hashedValue5 = Hash.CreateHash("ASP.NET", SHA512)

That’s all there is to it. You can use this feature to encrypt passwords in your user database
if you’re not using the built-in user management features that ship with ASP.NET, or whenever
you need to generate a hash value.

6293_ch12.fm Page 545 Monday, November 14, 2005 7:03 PM

546 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

■Note You can tell ASP.NET to automatically encrypt user passwords if you’re using the built-in user-
management features that ship with ASP.NET 2.0.

One-way encryption has a limited set of uses that mostly focuses around passwords and
authentication. If you actually need to decrypt data, then you need to use two-way encryption,
which is coming up next.

Encrypting and Decrypting Data with Two-Way Encryption
Most people are familiar with the concept of encryption and decryption. You take a value and
encrypt it using a specific encryption algorithm and key. The encryption algorithm produces
an encrypted value that can be stored in a database, file, or sent to a third party. Encrypted
information is useless without the key, so you don’t have to worry about the data being stolen.
Only those individuals or systems with access to the key can decrypt the message. Protecting
data therefore becomes a matter of keeping your encryption key safe.

Symmetric cryptography uses the same key to encrypt and decrypt a message. Asym-
metric cryptography, also known as Public Key Encryption, uses one key to encrypt a message
and another to decrypt the message. Asymmetric cryptography is outside of the scope of this
book. In this section, you’ll learn about the symmetric cryptography architecture in .NET and
how to use it to create your own encryption library.

Cryptography Architecture in .NET

Cryptography support in the .NET Framework comes from two different types of objects:
SymmetricAlgorithm objects and ICryptoTransform objects. Microsoft supports four different
encryption routines: DES, RC2, Triple DES, and the Rijndael algorithm. Each algorithm is
encapsulated in its own class, but all the classes ultimately derive from the SymmetricAlgorithm
class. SymmetricAlgorithm classes are responsible for setting up the key, mode, and initializa-
tion vector (which may be required depending on the mode) for the algorithm. The class can
then generate an ICryptoTransform object to encrypt or decrypt streams of data. Because the
ICryptoTransform object deals with streams, you need to convert any data you want encrypted
into a byte array for processing. Keys and initialization vectors are also stored as byte arrays.

As mentioned previously, Microsoft.NET supports four different encryption routines:
DES, RC2, Triple DES, and the Rijndael algorithms. The algorithms use a 64-bit, 128-bit, 192-
bit, and 256-bit key, respectively. Each algorithm also supports Cipher Block Chaining (CBC),
in which one block of data is encrypted using data from the previous block of data. This
ensures that identical blocks of data don’t result in identical encrypted values. CBC requires an
initialization vector to set up CBC to run on the first block of data. The initialization vectors is,
in effect, a secondary key that makes your data that much more secure. DES, Triple DES, and
the RC2 algorithms all use 64-bit initialization vectors, and the Rijndael algorithm uses a
128-bit initialization vector. If you don’t want the extra protection of CBC, you can opt to use
the Electronic Code Book (ECB) mode, which does not require an initialization vector.

6293_ch12.fm Page 546 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 547

Base64 Strings

Most applications store encryption keys and initialization vectors in text-based configuration
files. Byte arrays are more binary in nature than textual, so storing a byte array directly in a text
file is problematic. Base64 encoding, which is often used to transmit binary data via text-only
mediums on the Internet, can be used to create a string-based representation of a byte array
that can be easily stored in a configuration file. It does this by encoding 3 bytes of binary data
as 4 bytes of printable ASCII text that only uses the letters a-z, A-Z, 0-9, +, /, and =. Base64
encoding also allows for the easy conversion of a base64 string back into a byte array.

You can convert a byte array to a base64 string and a base64 string back into a byte array
using the static methods of the Convert class found in the System namespace.
Convert.ToBase64String() accepts a Byte array and returns a base64 String. Convert.➥

ToByteArray() accepts a base64 String and returns a Byte array.

Creating an Encryption Library

You have to write a little bit of code to encrypt and decrypt information in .NET because the
cryptography framework revolves around byte arrays and memory streams. Chances are that
you don’t want to have to rewrite encryption routines each time you need to encrypt some-
thing, so it makes sense to put it in a reusable encryption library.

Listing 12-16 shows the code for the Encryption class, which resides in the Ecnryption➥

Library project of the sample application in the Source Code area of the Apress website
(http://www.apress.com). This class allows you to easily choose between encryption algo-
rithms and encrypt and decrypt data in your application.

Listing 12-16. Encryption Class of the EncryptionLibrary Project

Imports System.Security.Cryptography
Imports System.Text
Imports System.IO

Public Class Encryption

 '***
 Public Enum EncryptionAlgorithmType
 DES
 RC2
 Rijndael
 TripleDES
 End Enum

 '***
 Public Enum CryptoDirection
 Encrypt
 Decrypt
 End Enum

6293_ch12.fm Page 547 Monday, November 14, 2005 7:03 PM

548 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

 '***
 Public Shared Function GetAlgorithm(_
 ByVal type As EncryptionAlgorithmType) As SymmetricAlgorithm

 'Determine the type and return the approrpiate Symmetric Algorithm Class
 Select Case type
 Case EncryptionAlgorithmType.DES
 Return New DESCryptoServiceProvider
 Case EncryptionAlgorithmType.RC2
 Return New RC2CryptoServiceProvider
 Case EncryptionAlgorithmType.Rijndael
 Return New RijndaelManaged
 Case EncryptionAlgorithmType.TripleDES
 Return New TripleDESCryptoServiceProvider
 Case Else
 Throw New ArgumentException("Invalid Algorithm Type")
 End Select

 End Function

 '***
 Public Shared Function GenerateKey(_
 ByVal type As EncryptionAlgorithmType) As Byte()

 Dim algorithm As SymmetricAlgorithm = GetAlgorithm(type)
 algorithm.GenerateKey()
 Return algorithm.Key()

 End Function

 '***
 Public Shared Function GenerateIV(_
 ByVal type As EncryptionAlgorithmType) As Byte()

 Dim algorithm As SymmetricAlgorithm = GetAlgorithm(type)
 algorithm.GenerateIV()
 Return algorithm.IV()

 End Function

 '***
 Private Shared Function GetCrytoTransfomer(_
 ByVal type As EncryptionAlgorithmType, _
 ByVal direction As CryptoDirection, ByRef key As Byte(), _
 ByRef IV As Byte()) As ICryptoTransform

 Dim algorithm As SymmetricAlgorithm = GetAlgorithm(type)
 algorithm.Mode = CipherMode.CBC

6293_ch12.fm Page 548 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 549

 'Give key to algorithm, or get auto-generated key from algorithm
 If key Is Nothing Then
 key = algorithm.Key 'Allow algorithm to generate key
 Else
 algorithm.Key = key 'Set key
 End If

 'Give IV to algorithm, or get auto-generated IV from algorithm
 If IV Is Nothing Then
 IV = algorithm.IV 'Allow algorithm to generate IV
 Else
 algorithm.IV = IV 'Set IV
 End If

 'Return the appropriate ICryptoTransformer for the Direction
 Select Case direction
 Case CryptoDirection.Decrypt
 Return algorithm.CreateDecryptor()
 Case CryptoDirection.Encrypt
 Return algorithm.CreateEncryptor()
 Case Else
 Throw New ArgumentException("Invalid Crypto Direction")
 End Select

 End Function

 '***
 Public Shared Function EncryptString(ByVal valueToEncrypt As String, _
 ByVal type As EncryptionAlgorithmType, ByRef key As Byte(), _
 ByRef IV As Byte()) As String

 Dim encoder As New ASCIIEncoding
 Dim value = encoder.GetBytes(valueToEncrypt)
 Dim encrypted = EncryptByteArray(value, type, key, IV)
 Return Convert.ToBase64String(encrypted)

 End Function

 '***
 Public Shared Function EncryptByteArray(ByVal byteArrayToEncrypt As Byte(), _
 ByVal type As EncryptionAlgorithmType, ByRef key As Byte(), _
 ByRef IV As Byte()) As Byte()

 Dim algorithm As ICryptoTransform
 algorithm = GetCrytoTransfomer(type, CryptoDirection.Encrypt, key, IV)

6293_ch12.fm Page 549 Monday, November 14, 2005 7:03 PM

550 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

 Dim buffer As New MemoryStream
 Dim encStream As New CryptoStream(buffer, algorithm, CryptoStreamMode.Write)

 'Write data to encryption stream which stores it in the buffer
 Try
 encStream.Write(byteArrayToEncrypt, 0, byteArrayToEncrypt.Length)
 encStream.FlushFinalBlock()
 Catch ex As Exception
 Throw New IOException("Could not encrypt data", ex)
 Finally
 encStream.Close()
 End Try

 Return buffer.ToArray()

 End Function

 '***
 Public Shared Function DecryptString(ByVal valueToDecrypt As String, _
 ByVal type As EncryptionAlgorithmType, ByRef key As Byte(), _
 ByRef IV As Byte()) As String

 Dim encoder As New ASCIIEncoding
 Dim value = Convert.FromBase64String(valueToDecrypt)
 Dim decrypted = DecryptByteArray(value, type, key, IV)
 Return encoder.GetString(decrypted)

 End Function

 '***
 Public Shared Function DecryptByteArray(ByVal byteArrayToEncrypt As Byte(), _
 ByVal type As EncryptionAlgorithmType, ByRef key As Byte(), _
 ByRef IV As Byte()) As Byte()

 Dim algorithm As ICryptoTransform
 algorithm = GetCrytoTransfomer(type, CryptoDirection.Decrypt, key, IV)

 Dim buffer As New MemoryStream
 Dim decStream As New CryptoStream(buffer, algorithm, CryptoStreamMode.Write)

 'Write data to encryption stream which stores it in the buffer
 Try
 decStream.Write(byteArrayToEncrypt, 0, byteArrayToEncrypt.Length)
 decStream.FlushFinalBlock()
 Catch ex As Exception
 Throw New IOException("Could not decrypt data", ex)
 Finally

6293_ch12.fm Page 550 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 551

 decStream.Close()
 End Try

 Return buffer.ToArray()

 End Function

End Class

Imports and Enumerations

The Encryption class uses a number of classes from the System.Security.Cryptography
namespace, the ASCIIEndoding object from the System.Text namespace, and the MemoryStream
class from the System.IO namespace. All the namespaces are imported at the top of the file to
keep the code succinct.

In the actual class itself, there are two enumerations. EncryptionAlgorithmType contains a
listing of all supported encryption algorithms in the .NET Framework. This enumeration
makes it easy to choose which algorithm you want to use to encrypt and decrypt information.
The Visual Studio IDE pops up a listing of the enumerations when you use encrypt and decrypt
functionality in the encryption library. CryptoDirection contains values that allow you to
define whether you want to return an encrypting or decrypting ICryptoTransform object from
the GetCrytoTransfomer method (discussed shortly).

Acquiring an Algorithm Object with the GetAlgorithm Function

Before you can encrypt or decrypt data, you need to have an object that exposes the encryption
algorithm you want to use. GetAlgorithm allows you to pass in an EncryptionAlgorithmType
enumeration named type identifying which algorithm you want to use. The function then uses
a SELECT statement to determine which type you requested and returns the appropriate
SymmetricAlgorithm object for that algorithm.

Generating Keys and Initialization Vectors with GenerateKey and GenerateIV

Each algorithm requires encryption keys and initialization vectors to be a certain size. The
GenerateKey and GenerateIV functions may be used to create randomly generated keys and
initialization vectors appropriately sized for the specified algorithm.

The function accepts an EncryptionAlgorithmType parameter named type identifying the
algorithm for which you want to create a key or initialization vector. Each function acquires an
appropriate algorithm object using the GetAlgorithm function, calls the GenerateKey or
GenerateIV method of that algorithm object, and then returns the key or initialization vector
that was generated.

You can use these functions to generate keys and initialization vectors for storage in your
application’s Web.config file. Simply create a trash page in your application and use the
GenerateKey and GenerateIV functions to create a key and an initialization vector. Make sure to
convert them to base64 strings using the Convert.ToBase64String function, and then store
them in Web.config in your application. Delete the trash page from your application and

6293_ch12.fm Page 551 Monday, November 14, 2005 7:03 PM

552 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

encrypt the Web.config section containing the key and initialization vector. Any time you need
the key or initialization vector, acquire it from Web.config, convert it from a base64 string to a
byte array using Convert.FromBase64String, and use it in the encryption library routines.

Getting a Cryptographic Transformer with the GetCryptoTransformer Function

Before you can encrypt or decrypt data, you need to acquire an ICryptoTransform object. This
object is responsible for encrypting or decrypting data as it is written to a memory stream.
GetCryptoTransfomer is responsible for providing the appropriate encryption or decryption
transformer from a specific algorithm and setting up default encryption keys and initialization
vectors if none are provided.

GetCryptoTransformer accepts four parameters:

• type is an EncryptionAlgorithmType defining the algorithm from which the transformer
should be acquired

• direction is a CryptoDirection defining whether to acquire an encryption or a decryp-
tion transformer

• key and IV are both byte arrays identifying the key and initialization vector the trans-
former should use during processing. Notice that the key and IV parameters are passed
ByRef because they could be given randomly generated values if they are passed into the
function without values (that is, Nothing).

The function begins by acquiring an appropriate algorithm object using the GetAlgorithm
function. It then sets the algorithm mode to CipherMode.CBC. If you don’t want to use an initial-
ization vector, then you can set the mode to CipherMode.ECB. Or, if you’re looking for even more
flexibility, you can define the mode as a parameter. I always use CBC for the extra protection it
provides. If you don’t specify a value, the mode defaults to CBC.

After setting the mode, the function checks to see if an encryption key was provided. If not,
it acquires a randomly generated key from the algorithm object. If so, it sets the Key property
on the algorithm object to the provided key. You can also see that the function runs the same
logic on the initialization vector. If the initialization vector isn’t provided, GetCrypto➥

Transformer sets it to a randomly generated one from the algorithm object. If it was provided,
it sets the IV property on the object to the provided initialization vector.

Lastly, the function checks the direction parameter to determine which type of trans-
former to return. It returns the transformer object from the algorithm’s CreateDecryptor
method if the direction parameter is set to Decrypt, or the transformer object from CreateEn-
cryptor if the direction parameter is set to Encrypt.

Encrypting a String with the EncryptString Function

Encryption in .NET centers on byte arrays, but encryption in your applications will likely
center around strings. This function converts a string into a byte array, calls the Encrypt➥

ByteArray function to encrypt the byte array, and returns the encrypted byte array as a base64
string.

EncryptString accepts four parameters: the value to encode, the algorithm type, the
encryption key, and the initialization vector. The key and IV parameters are both passed by

6293_ch12.fm Page 552 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 553

reference because they could be populated with data. EncryptString begins by creating an
ASCIIEncoding object named encoder. It then uses encoder to convert the incoming string into
a byte array and stores it in the value variable. EncryptString then passes values into the
EncryptByteArray function, which returns an encrypted byte array and stores this in the
encrypted variable. The function then converts the encrypted array into a base64 string and
returns that string as the value of the function.

■Note If you’re working with Unicode strings instead of ASCII strings, then you’ll want to use a
UnicodeEncoding object instead of an ASCIIEncoding object in the encryption library.

Encrypting a Byte Array with EncryptByteArray

Most of the real encryption work is done in the EncryptByteArray function. This function is
responsible for using a ICryptoTransform object to create an encrypted byte array.

EncryptByteArray accepts four parameters: the byte array to encode, the algorithm type,
the encryption key, and the initialization vector. The key and IV parameters are both passed by
reference because they could be populated with data. The function begins by acquiring a
transformer object using the GetCryptoTransfomer function. Because the objective of the func-
tion is to encrypt a byte array, the direction parameter of the GetCryptoTransformer call is set
to Encrypt. EncryptByteArray then creates a new memory stream named buffer. This memory
stream stores the encrypted byte array as it is being written. The function also declares a
CryptoStream named encStream under the buffer variable. Notice that encStream stream is
passed to both the buffer and the transformer object. When you pass the data into the
encStream, it uses the transformer object to encrypt the incoming data, and then stores the
encrypted data in the underlying buffer. So the encrypted data ends up in the buffer byte array.

Inside of the Try..Catch block, EncryptByteArray calls encStream.Write and passes in the
byte array that should be encrypted, the position at which writing should start, and the number
of bytes to write (it always writes the entire array). Inside the Write function, the byte array to
be encrypted passes through the transformer object. The transformer object uses the key
and initialization vector to encrypt the incoming data, and writes it out to buffer. Flush➥

FinalBlock() ensures that any remaining data in encStream is written to the buffer.
EncryptByteArray then closes encStream and returns the encrypted byte array stored in
the buffer variable.

Decrypting a String with the DecryptString Function

Decrypting a string is the reverse of encrypting a string. Instead of starting with a string and
ending up with an encrypted base64 string, it takes an encrypted base64 string and ends up
with a decrypted string. You can also see that it uses the DecryptByteArray function to do the
heavy decryption work.

6293_ch12.fm Page 553 Monday, November 14, 2005 7:03 PM

554 C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N

Decrypting a ByteArray with the DecryptByteArray Function

DecryptByteArray is identical to the EncryptByteArray function except for the CryptoDirection
parameter of the GetCryptoTransformer function call. It passes in Decrypt as the direction
instead of Encrypt. This acquires a decryption transformer instead of an encryption trans-
former. Inside the Write method of the encStream, the encrypted byte array passes through the
decryption transformer, which writes the decrypted byte array to the buffer variable. The
function then returns the decrypted byte array stored in buffer.

Using the Encryption Library
To use the encryption library, add a reference for the EncryptionLibrary assembly to your
project. Place an imports statement for the EncryptionLIbrary at the top of the page in which
you want to use the library, or include a global imports statement for the library in your project.

All the methods in the Encryption class are shared, so you don’t need to instantiate an
object to use them. Listing 12-17 shows an example of how to get a base64 key and initializa-
tion vector from Web.config, convert them into byte arrays, and use them to encrypt and
decrypt a string.

Listing 12-17. Encryption and Decryption Example

Imports EncryptionLibrary
Imports System.Configuration.ConfigurationManager
...

'Acquire Base64 strings from Web.config
Dim keyBase64 As String = AppSettings("TripleDESKey")
Dim IVBase64 As String = AppSettings("TripleDESIV")

'Convert to byte arrays
Dim key As Byte() = Convert.FromBase64String(keyBase64)
Dim IV As Byte() = Convert.FromBase64String(IVBase64)

Dim TextToEncrypt As String = "Please encrypt this text"

Dim EncryptedText As String = Encryption.EncryptString(TextToEncrypt, _
 Encryption.EncryptionAlgorithmType.TripleDES, key, IV)

Dim DecryptedText As String = Encryption.DecryptString(EncryptedText, _
 Encryption.EncryptionAlgorithmType.TripleDES, key, IV)

If DecryptedText = TextToEncrypt Then Success = True

This is a fairly straightforward example. First, it acquires the base64 string version of the
key and initialization vectors from Web.config and stores them in two variables. It then
converts those base64 keys back into their native Byte array format and declares text to
encrypt. Next, it encrypts the text using the TripleDES algorithm with the key and IV acquired
from Web.config and stores the text in the EncryptedText variable. It then decrypts the
EncryptedText variable using the same algorithm, key, and initialization vector. Lastly, it

6293_ch12.fm Page 554 Monday, November 14, 2005 7:03 PM

C H A P T E R 1 2 ■ S E C U R I T Y A N D E N C R Y P T I O N 555

checks to make sure the DecryptedText and the original TextToEncrypt are the same to prove
encryption and decryption succeeded.

So now you can encrypt just about anything you want, and it’s in an easily reusable library
that you can port from application to application.

Summary
Whether from external hackers trying to gain access to your data or a vengeful employee on the
inside, your business data is under constant threat of theft or loss. Protecting your information
is a constant battle, but with appropriately layered security, you can increase the changes of
thwarting an attack. In this chapter, you learned a great deal about the ASP.NET security
model, authentication, authorization, NTFS access permissions, and ways to protect informa-
tion using one-way and two-way encryption.

Security, of course, does not end with the ability to configure accounts and implement
encryption. You can also look into protecting your systems with firewalls, intrusion-detection
systems, and appropriate user training to make sure people know the value of not giving out or
writing down passwords. And never forget physical security, such as a lock on the sever room
door. There’s no point in spending thousands of dollars of encryption and network configura-
tion security when someone can hijack your server the old-fashioned way.

6293_ch12.fm Page 555 Monday, November 14, 2005 7:03 PM

6293_ch12.fm Page 556 Monday, November 14, 2005 7:03 PM

557

■ ■ ■

C H A P T E R 1 3

Using HTTP Handlers: Request
Processing, Image Generation,
and Content Management

S

cheduling systems require extensive reporting capabilities because they help drive many
other areas of business. Knowing how many people are going to be in which location at what
time helps managers determine preparation requirements, staffing needs, and inventory
control. As such, the scheduling project I was working on had its fair share of reports. Although
each was unique in its own way, they all shared two common requirements: they had to expose
an “export” feature allowing users to download the report data as an Excel file, and each Excel
file had to follow a specific naming convention based on the report type and creation date.

Exporting data to Excel is a fairly simple process because you can output the data as a
comma-separated value (CSV) file or as an HTML table. Excel can use both to create a spread-
sheet. Getting file names to follow a standard naming convention, however, is another story. In
theory, browsers support the

Content-Disposition

 HTTP Header, which allows you to specify
a file name using the following syntax:

Content-Disposition: attachment; filename="<filename.ext>"

In practice, however, not all browsers support the

Content-Disposition

 header so
the specified file name is often disregarded. Instead, the browser uses all or part of the page
name from which the report was generated. So, if you create the report from a page named

GenerateReport.aspx

, then the browser tries to save the generated file as

GenerateReport.aspx

or

even

<filename.ext>.aspx

. This was the crux of my problem.
Because the

Content-Disposition

 header was failing, I had to find some other way of
naming files that would work with all browsers. That’s when I turned to an HTTP Handler to
solve the issue. HTTP Handlers allow you to define how ASP.NET handles an HTTP request,
and they open up some creative options. In my case, the application uses an HTTP Handler to

6293_ch13.fm Page 557 Monday, November 14, 2005 4:28 PM

558

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

“handle” requests for Excel reports that do not actually exist on the file system. Instead of
trying to return an existing Excel file, the HTTP Handler generates the content for the Excel file
during the request. Because the file doesn’t really exist, the application can “name” the Excel
file by specifying the file name in a URL (for example, a link to

/XlsReports/ReportA.

➥

2005.08.19.xls

). When a user clicks on the link to the report, the browser thinks it is requesting
a static Excel file. Unbeknownst to the browser, the HTTP Handler intercepts the request
(because it handles all requests for

.XLS

 files), generates the Excel file content, and returns the
content to the browser. The browser then prompts the user to save the Excel file using the only
file name it has, the one from the link (for example,

ReportA.2005.08.19.xls

). And it works on
all browsers.

HTTP Handlers are a powerful tool to add to your development arsenal that will allow you
to create eloquent solutions in a number of complex scenarios. This chapter delves into the
architecture behind HTTP Handlers, what they are, how they work, and covers some of the
most common situations when HTTP Handlers are employed. Here’s a breakdown of what
you’ll find inside:

•

HTTP Handler Overview:

 Describes the basics of HTTP Handlers, including the

IHttpHandler

 interface, ASP.NET’s HTTP Pipeline, the concepts involved with building
custom request handlers, and the

Web.config

 settings needed to set them for specific file
types.

•

Processing Virtual Files with URL Rewriting:

 Discusses a number of URL rewriting topics
as you implement the cross-browser file-naming solution discussed in the opening
section of this chapter.

•

Thumbnail Image Generation with an HTTP Handler:

 Explains how to use an HTTP
Handler to manipulate graphics files to create thumbnails or other special effects.

•

Content Management Backend:

 Demonstrates how to use URL rewriting and a design
pattern called

front controller

 to create the backend for a small-scale content-
management system.

Let’s examine HTTP Handlers and the ASP.NET architecture behind them before we get in
too deep into the technicalities of their implementation.

HTTP Handler Overview

ASP.NET uses HTTP Handlers to process client requests for resources that are mapped to the
ASP.NET ISAPI handler. When a request is passed to ASP.NET, it looks at the resource type
being requested and instantiates an appropriate HTTP Handler for the given resource. The
HTTP Handler then processes the request and returns any content required by the request.
ASP.NET uses the

PageHandlerFactory

 HTTP Handler to process

.aspx

 files, the

Web

➥

ServiceHandlerFactory

 HTTP Handler to process

.asmx

 files, the

TraceHandler

 HTTP Handler

6293_ch13.fm Page 558 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

559

to process the

trace.axd

 file, and the

HttpForbiddenHandler

 to handle files that users should
not be allowed to access, such as

.vb

,

.ascx

,

.vbproj

,

.master

,

.skin

, and so on (the handler
generates a HTTP 403 Forbidden response code for these files). Microsoft designed the HTTP
Handler architecture to be highly extensible, so you can create your own custom HTTP
Handlers to process requests in any way you choose.

In this overview, you’ll be looking at the architecture behind HTTP Handlers and the
entire server-side programming model known as the HTTP Pipeline. You’ll learn about how
HTTP Handlers are being used in applications today, and then have a chance to implement
and configure a simple HTTP Handler example.

IIS and the ASP.NET HTTP Pipeline Process Model

Although ASP.NET is commonly thought of in terms of page processing, it actually exposes an
entire server-side programming model for processing requests that begins long before page
processing ever occurs. The programming model is known as the HTTP Pipeline, and it’s a
highly extensible framework for building your own server-side processing components
without having to face the complexities of creating an ISAPI component. The HTTP Pipeline is
so powerful, in fact, that the core features of ASP.NET—such as page processing, web services,
Forms Authentication, caching, and state management—are implemented as HTTP
components.

You should have at least a design-level understanding of how an HTTP Request is handled
and how the different components of the HTTP Pipeline fit into the overall server-side
programming model. Figure 13-1 shows the pipeline components involved in request
processing and where they fit in the overall model. In the sections that follow, you’ll take a
more detailed look at each component and the role each component plays after an HTTP
Request is received from the client.

6293_ch13.fm Page 559 Monday, November 14, 2005 4:28 PM

560

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

Figure 13-1.

 HTTP Request processing diagram

6293_ch13.fm Page 560 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

561

IIS and ISAPI Filters

IIS is a web server, and it natively supports the capability to fulfill requests for static items such
as HTML pages, text-based documents, and image files. Requests for dynamic resources—
such as ASPs, ASP.NET pages, or even Cold Fusion or Java Server Pages (JSP)—are handled by
deferring the request to an ISAPI filter. The ISAPI filter then becomes responsible for filling the
request and returning a static response to IIS. In turn, IIS then passes that response back to the
client. Next you’ll see what this process looks when a client requests an ASP.NET page.

ASP.NET ISAPI Filter

IIS uses the ASP.NET ISAPI filter to fulfill requests for ASP.NET resources, but the filter isn’t
actually responsible for executing any ASP.NET code. The filter is responsible for starting the
ASP.NET Worker Process (if it’s not already running), for passing requests to the Worker
Process using a named pipe, for receiving output from the Worker Process from a named pipe,
and for killing the Worker Process if it starts performing poorly or crashes.

Named Pipes

If you take a good look at Figure 13-1, you’ll notice that IIS and the ASP.NET Worker Process
run independently of one another in separate processes. Separating the processes means that
the Worker Process can be cleanly killed if a major error occurs, without decimating IIS. One of
the downsides of having separate processes is that they can’t natively share data because they
are in separate memory spaces.

One of the most effective methods for interprocess communication is through

named
pipes

, which allow information from one process to be piped into another without having to
use physical files. This is how the ASP.NET ISAPI filter and the ASP.NET Worker Process handle
back-and-forth communication.

ASP.NET Worker Process and the HTTP Pipeline

As you know from the previous sections, the ASP.NET Worker Process is created by the
ASP.NET ISAPI filter, runs in a separate process from IIS, and communicates with IIS via
named pipes. After the ASP.NET Worker Process has been created, it remains in memory to
continue processing requests. It isn’t re-created on each request.

The ASP.NET Worker Process is responsible for hosting the CLR and for sending the
incoming request into the HTTP Pipeline. The name HTTP Pipeline is just a term used to
describe the series of steps that occur inside the Worker Process during the processing of an
ASP.NET resource.

HTTP Runtime

When the Worker Process receives a request, its main task is to create an

HttpRuntime

 object
that is responsible for setting up a number of helper objects to fulfill the request. One of the
most important is the

HttpContext

 object, which contains request and response information
used by almost every component in the HTTP Pipeline. After the helper objects have been
created, the HTTP runtime needs an

HttpApplication

 object to continue processing the
request, so it uses the Application Factory to create the correct

HttpApplication

 object for the
application.

6293_ch13.fm Page 561 Monday, November 14, 2005 4:28 PM

562

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

Application Factory

Every ASP.NET application has a distinct

HttpApplication

 class, and the Application Factory
uses the URL of the request to determine the specific class that needs to be handed back to the

HttpRuntime

. It also maintains a pool of previously instantiated

HttpApplication

 objects to
speed processing response times. After the appropriate

HttpApplication

 class has been deter-
mined from the URL, the Application Factory checks to see if that type of

HttpApplication

object exists in the pool. If it does, the existing object is returned to the

HttpRuntime

. If not, an
appropriate

HttpApplication

 object is created and returned. The

HttpRuntime

 then passes the
processing of the request off to the

HttpApplication

 object.

■

Note

After a request is completed, the

HttpApplication

 object isn’t always discarded. It may be added

back into the Application Factory pool to be reused for a subsequent request.

HTTP Application

The

HttpApplication

 object exists to store application-level data, to store application event
handlers, and to process HTTP Modules and HTTP Handlers. As a developer, you can define
application-level variables and event handlers in

global.asax

, and you can configure addi-
tional HTTP Modules and HTTP Handlers in

Web.config

.
When processing a request, the

HttpApplication

 object first executes any necessary HTTP
Modules (covered in the next section). This allows the HTTP Modules to complete any
required preprocessing for the request. The

HttpApplication

 object then uses the Handler
Factory to determine which HTTP Handler should be used to process the request. The Handler
Factory returns the appropriate handler, and the

HttpApplication

 object then lets the appro-
priate handler process the request. When the request has been completely processed, the

HttpApplication

 object is returned to the Application Factory object pool.

HTTP Modules

Although this book does not specifically delve into HTTP Modules, they are an important part
of the ASP.NET framework. HTTP Modules are executed each time a request is made, so they
can be used to set up important information for use later during request processing, or they
can be used to inspect or alter the request or response objects. You can also set up event
handlers so HTTP Modules can respond to

Application

 events. Windows Authentication,
Forms Authentication, NTFS file authorization, URL authorization, caching, and state
management are just a few examples of functionality in ASP.NET implemented as HTTP
Modules.

Handler Factory

The Handler Factory uses the URL of the requested resource, along with HTTP Handler config-
uration data from

Machine.config

 and

Web.config

, to determine which

HttpHandler

 should be
used to process the request. It maintains a pool of previously instantiated

HttpHandler

 objects
to speed up processing times. After the appropriate

HttpHandler

class has been determined
from the URL, the Handler Factory checks to see if that type of

HttpHandler

 object exists in the

6293_ch13.fm Page 562 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

563

pool. If so, the existing object is returned to the

HttpApplication

. If not, an appropriate

HttpHandler object is created and then returned. The HttpApplication then passes the
processing of the request off to the HttpHandler object.

HTTP Handlers

Finally, we get to the component on which this chapter is based. HTTP Handlers are designed
to process a request for a specific type of resource. The key difference between HTTP Handlers
and HTTP Modules is that every HTTP Module will be called during a request, but only one
HTTP Handler will be called. The primary purpose of an HTTP Handler is to generate a
response to a request directly or defer the request to some other component that can generate
a response, such as a web form.

After the request has been processed, the HttpHandler object that fulfilled the request is
queried to determine the value of its IsReusable property. If the HttpHandler object is reusable, it is
returned to the Handler Factory object pool. If not, it is destroyed. The response generated by the
HttpHandler is passed from the ASP.NET Worker Process to the named pipe, then to the ISAPI filter,
then to IIS, and finally out to the client. And with the request fulfilled, that ends the HTTP Pipeline.

Common Uses for HTTP Handlers
Now that you know the basic architecture behind HTTP Handlers, and the whole server-side
processing model for that matter, it’s time to take a look at some more uses of HttpHandlers out
in the business world.

Transforming Existing Files

One prominent use of HTTP Handlers is in file transformation. As an ASP.NET developer, you
actually deal with file transformations every time you run a web form. You place a request for
a page, and that page is parsed, compiled, and executed, and the resulting content is returned
to the client. You can use HTTP Handlers in a similar fashion to transform data from one
format into another.

Processing Requests for Virtual Files

HTTP Handlers allow you to fulfill requests for files that do not exist (assuming the file type is
handled by ASP.NET) by generating content for the request before a 404 error is generated.
This is the mechanism employed to fix the file-naming issue described at the beginning of this
chapter, and it can be leveraged in a number of other scenarios such as creating reports or
pulling binary data out of a database.

You can easily see this type of HTTP Handler in action because ASP.NET uses one to fulfill
requests for the application trace log. When you have tracing enabled in your web application,
you can request the Trace.axd file from the root folder of your application. If you look at your root
folder, you’ll quickly notice the file does not exist, but when you request the file from the browser,
you’ll see an output of the trace log. When ASP.NET receives a request for the Trace.axd file, it
uses the System.Web.Handlers.TraceHandler to process and output tracing information.

6293_ch13.fm Page 563 Monday, November 14, 2005 4:28 PM

564 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

Generating Thumbnails

Another popular use of HTTP Handlers is for generating thumbnail images. This relies on
many of the same principles as fulfilling requests for virtual files, but it represents a very
specific task in which HTTP Handlers are routinely employed.

A thumbnail image is a smaller version of an image that allows you to decide whether or
not you want to look at the full image. They take anywhere from 30 seconds to a couple of
minutes to create depending on the imaging application being used, the size of the photo, and
your skill level with the software. That may not seem like a lot of time if you’re dealing with a
relatively limited number of images, but if you’re dealing with hundreds or thousands of
images, then you’re talking about days or hours of tedious, repetitive work.

HTTP Handlers can output binary data just as well as textual data, so they can be used to
automatically convert large images into thumbnails using the graphical routines available in
the .NET Framework. This can save a lot of time and energy that would otherwise be expended
on image processing.

Managing Content

Information on Web sites constantly needs to be updated, and often the individuals respon-
sible for updating content are not HTML savvy. There is a growing need for businesses in the
area of content management to allow lay users to easily update information without having to
bury themselves in the complexities of HTML.

HTTP Handlers can be used to implement basic content management using a design
pattern known as the front-controller pattern and a technique known as URL rewriting. In this
type of scenario, page definitions and content are stored in a database, not as physical files in the
web folder. The HTTP Handler captures incoming page requests and analyzes their URLs to
determine which page the client wants. The content for the requested page is then pulled out of
the database, assembled, and then returned to the client. An administration tool allows business
users to easily modify the content of the page without having to directly interact with the HTML.

Now that you know some of the most popular uses for HTTP Handlers, let’s take a look at
some of the more technical details.

Implementing the IHttpHandler Interface
All HTTP Handlers implement the IHttpHandler interface, which exposes one method and one
property. The ProcessRequest(ByVal context As HttpContext) method of the IHttpHandler
interface is called to process an incoming request. The request can either be processed entirely
by the handler, or the handler can pass the request off to another component and allow that
component to fulfill the request.

The IsReusable() property of the interface identifies whether or not the instantiated
HTTP Handler can be placed in a pool and reused for another request. If you’re creating a
handler that will be used often in your application, or requires a significant amount of time for
instantiation, then you’ll likely want to make it reusable. On the other hand, if your handler will
be used infrequently, then you may not want it taking up memory space in an object pool while
it’s lying dormant. If you do make it reusable, remember that the handler may still have
lingering values from a previous request.

Listing 13-1 is the code for a very simple Hello World HTTP Handler. This handler is designed
to output “Hello World” along with a short message about how it was created by an HTTP Handler.
Make sure you place this code in a class file, not in a generic handler page (.ashx file).

6293_ch13.fm Page 564 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 565

Listing 13-1. Basic HTTP Handler Example

Imports System.Web

Public Class HelloWorldHandler
 Implements IHttpHandler, SessionState.IRequiresSessionState

 '***
 Public Sub ProcessRequest(ByVal context As HttpContext) _
 Implements IHttpHandler.ProcessRequest

 context.Response.Write("<HTML><BODY><H1>Hello World!</H1><HR>" & _
 "This content was output by an HTTP Handler " & _
 "for the .hello file type.<BODY></HTML>")
 End Sub

 '***
 Public ReadOnly Property IsReusable() As Boolean _
 Implements IHttpHandler.IsReusable
 Get
 Return True
 End Get
 End Property

End Class

Because the HelloWorldHandler class is an HTTP Handler, it should come as no surprise
that it implements the IHttpHandler interface. But notice that it also implements the Session➥

State.IRequiresSessionState interface. IRequiresSessionState is a marker interface that does
not require any methods or properties to be implemented. It just lets ASP.NET know that the
HTTP Handler requires access to session-state information (that is, the Session object). If you
attempt to access the Session object in the handler without specifying IRequiresSessionState,
you’ll receive a null reference exception.

Actually, this Hello World example does not require access to state information. This was
simply a good time to introduce the IRequireSessionState interface.

■Caution If you need to access the Session object in your HTTP Handler class, then your class should
implement the System.Web.SessionState.IRequiresSessionState marker interface. Failure to do so
could result in null reference exceptions when the Session object is accessed.

You’ll see the first method in the class is the ProcessRequest method. This method has a
single parameter, context, through which the method has access to the Response, Request,
Server, Session (remember to implement IRequiresSessionState if you need the Session
object), and other standard web objects. The ProcessRequest method processes the request by
writing out an HTML message to the Response object. When a client sees the response in their
browser, it will look like any other normal HTML page.

6293_ch13.fm Page 565 Monday, November 14, 2005 4:28 PM

566 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

In the next section of the HelloWorldHanlder class, you’ll see the IsReusable property.
Remember that this property helps the Handler Factory determines whether or not to return
the handler to its object pool. Because the HelloWorldHandler is fairly lightweight and won’t
take up much memory in the object pool, this property returns True.

At this point, you have a fully functional HTTP Handler. Now you have to configure IIS to
map the request for the required extension (.hello) to ASP.NET and configure your applica-
tion to use the HTTP Handler by adding it to Web.config.

Mapping File Extensions in IIS
IIS maintains a mapping of file types to different ISAPI filters so it can determine how to process
those files. Because the .hello file isn’t exactly a mainstream file type, IIS does not have a precon-
figured mapping for it. So, you’ll need to map the file manually to the ASP.NET ISAPI filter.

Open the IIS management console and locate the folder for your application. Right-click
on the folder and select Properties from the context menu. You’ll see the properties dialog box
for your application. From the Directory tab (it may be Home Directory, Virtual Directory, or
just Directory), click the Configuration button located near the lower section of the screen.
This brings up the Application Configuration dialog box shown in Figure 13-2.

Figure 13-2. IIS Application Configuration dialog box

6293_ch13.fm Page 566 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 567

On the Mappings tab of the Application Configuration dialog box, you’ll see a list of file
extensions and their respective mappings. Notice that the files associated with ASP.NET are
mapped to aspnet_isapi.dll. You want to map the .hello file extension to aspnet_isapi.dll
as well so IIS will send requests for .hello files to ASP.NET. Click on the Add button to open the
Add/Edit Application Extension Mapping dialog box shown in Figure 13-3.

Figure 13-3. IIS Add/Edit Application Extension Mapping dialog box

The Add/Edit Application Extension Mapping dialog box allows you to enter the exten-
sion, the executable (ISAPI filter) that will handle the extension, HTTP verbs that help control
when the filter should be used, and whether or not IIS should confirm the existence of the file
before passing control over to the ISAPI filter.

To configure a new mapping, you first need to locate aspnet_isapi.dll. This file usually
resides in the <Windows>\Microsoft.NET\Framework\<version>\ folder. Use the Browse button
to locate and select the file. You can also determine the location of the .dll from one of the
standard ASP.NET mappings, such as the .aspx entry, from the application mapping list if you
prefer. Next, add the file extension .hello to the Extension field. You must specify the
preceding “.” for the file extension before you can add the mapping. Then you need to deter-
mine which verbs you want to allow for the mapping. You can either allow all verbs or limit the
verbs to a specific subset. Normally, you should use the same verb subset as an .aspx page, so
select the Limit to option and enter GET, POST, HEAD, DEBUG in the Limit to text box.
Finally, make sure the Script Engine check box is checked and the Check that file exists check
box is unchecked. Remember, the .hello file does not actually exist, so you don’t want IIS
checking for it before passing off the request to ASP.NET.

When you’re finished, click on the OK button and the new mapping is added to the list on
the Mapping tab of the Application Configuration dialog box. Click OK on all the dialog boxes
until you’re back at the IIS management console. At this point, your application is able to
respond to .hello requests.

6293_ch13.fm Page 567 Monday, November 14, 2005 4:28 PM

568

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

Configuring an HTTP Handler in ASP.NET

Application-level HTTP Handler settings are stored in

Web.config

, and machine-level HTTP
Handler settings are stored in

Machine.config

. On rare occasions, you’ll need to add an HTTP
Handler to

Machine.config

, but for the most part. you’ll be working with application-specific
HTTP Handlers in

Web.config

.

■

Caution

Do

not

 go poking around

Machine.config

 unless you know what you are getting yourself into.

You could inadvertently change important settings used in all applications on the machine.

Listing 13-2 shows the general syntax for configuring an HTTP Handler in both the

Web.config

 and

Machine.config

 files.

Listing 13-2.

 HTTP Handler Configuration in the

Web.config

and

 Machine.config

<configuration>
 ...
 <system.web>
 ...

 <httpHandlers>

 <

clear

/>
 <

remove verb

="*,GET,POST,<etc>"

path

="<dir>/<file>.<ext>"
 <

add verb

="*,GET,POST,<etc>"

path

="<dir>/<file>.<ext>"

type

="<type>,<assembly>"

validate

="True|False"/>

 </httpHandlers>

 ...
 <system.web>
</configuration>

HTTP Handler settings appear as

<add>

,

<remove>

, or

<clear>

 elements nested in the

<httpHandlers>

 element. By far,

<add>

 is the most popular. It is used to add an HTTP Handler
to your application so the handler can process requests. The

<add>

 element has four important
parameters as shown in Table 13.1.

6293_ch13.fm Page 568 Monday, November 14, 2005 7:35 PM

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

569

You probably won’t need to use the

<remove>

 or

<clear>

 elements very often when
working with HTTP Handlers, but they are included just in case. The

<remove>

 element can be
used to remove an existing HTTP Handler. It accepts two parameters, verb and path. The verb
and path must exactly match the verb and path of an existing handler. If a match is found, the
existing handler is removed. The

<clear>

 element has no parameters and clears out all existing
HTTP Handlers.

You may be thinking to yourself, why would you want to remove or clear a bunch of HTTP
Handlers that you just defined? Actually, you wouldn’t want to clear or remove ones that you
just defined, but you may want to clear or remove ones that your application has inherited
from

Machine.config

 or a parent application.
If you think back to the

HelloWorldHandler

 example, you’ll remember that it was intended
to handle files with the

.hello

 extension. Listing 13-3 shows the

Web.config

 settings necessary
to configure that

HelloWorldHandler

 example (we’ll accept the default

validate

 attribute
setting of

True

).

Listing 13-3.

 HTTP Handler Configuration for the

HelloWorldHandler

<configuration>
 <system.web>
 <httpHandlers>
 <add verb="*" path="*.hello" type="Handlers.HelloWorldHandler, Handlers" />
 </httpHandlers>
 </system.web>
</configuration>

Table 13-1.

 Parameters of the

<add>

 Element

Parameter Description

verb

Comma-separated list specifying the HTTP verbs to which the handler may respond.
You can use the wildcard character

*

 to indicate all verbs. This is commonly set to

"GET,
POST"

 or to

"*"

. As a rule of thumb, use

"*"

 unless you have a compelling reason to do
otherwise.

path

Specifies a path that an incoming request must match before the handler may respond.
You can use the wildcard character in the path string. This parameter allows you to
specify a handler for a specific file extension (

*.<ext>

), specific a file extension for a
specific folder

<folder>/*.<ext>

), a specific file (

<directory>/<file>.<ext>

), and count-
less other matching scenarios.

type

Identifies the type name and assembly where the type is located. You must specify both
the type name and the assembly. Because you won’t know the assembly name for the
compiled web application, place your handler class in a separate class library whose
name is known so it can be referenced appropriately in this parameter.

validate

Determines whether or not your HTTP Handler entry will be validated when the web
application starts. Setting this to

false

 can speed up start times, but it also allows invalid
configuration information to go unchecked until it is actually required. By default, vali-
date is

True

, but you can set it to

False

 if you’re confident of your configuration settings.

6293_ch13.fm Page 569 Monday, November 14, 2005 7:35 PM

570 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

You can see by the assembly name specified in the type parameter that the HelloWorld➥

Handler class is defined in a class library named Handlers. After you have specified these settings
in Web.config, ASP.NET is completely setup and ready to use your HTTP Handler. If you’re using
Visual Studio 2005, you can run the application on the ASP.NET development server, request any
.hello file, and see the handler in action. If you’re using IIS, however, you need to configure the
application mappings so IIS knows to pass requests for the .hello file off to ASP.NET.

■Note All requests coming into the development web server that ships with Visual Studio .NET 2005 are handled
by ASP.NET, so there’s no need to configure application mappings when using the development web server.

Processing Virtual Files with URL Rewriting
You’ve already seen one basic example an HTTP Handler, but this example goes into a bit more
detail and hands off request processing to another ASP.NET page, which is what URL rewriting
is all about. This example also demonstrates how you can implement cross-browser file-
naming conventions for generated reports, such as the solution mentioned in the opening of
this chapter.

Here is the hypothetical story behind this example. There are three ASP.NET pages
responsible for generating three different Excel files: ReportA.aspx, ReportB.aspx, and
ReportC.aspx. Each report receives a date and other report specific information in the URL and
outputs a report using that data. Each report also has a specific naming convention that must
be followed to ensure the downloaded file can be easily referenced.

The solution for this situation is implemented as an HTTP Handler named XlsReport➥

Handler that accepts requests for virtual Excel files, but fulfills those requests using actual
ASP.NET pages. The handler uses URL information to determine which reporting page should
process the request, and then hands processing of the request over to that page. In effect, the
XlsReportHandler “rewrites” the incoming request so it’s handled by an actual page. The
XlsReportHandler also loads report data from the URL into the Context object so it’s readily
available on the report page.

Because there are normal Excel files located in various areas of the application, the
XlsReportHandler only responds to requests from inside the XlsReports folder. You can see
a basic outline of the solution architecture in Figure 13-4.

6293_ch13.fm Page 570 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 571

Figure 13-4. Architectural overview of the Excel file example

Creating the Report Pages
Request processing is ultimately handled by the individual reporting pages in this example
application, so they need to return valid Excel data. The objective of this example is to demon-
strate HTTP Handlers, not report generation, so we’ll leverage Excel’s capability to read HTML
by placing hard-coded HTML tables with mock data in the design files of the report pages. This
alleviates most of the coding needed to generate reports for this example. In the real world,
however, you would need to generate useful information from these pages.

6293_ch13.fm Page 571 Monday, November 14, 2005 4:28 PM

572 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

You can find the mock reports ReportA.aspx, ReportB.aspx, and ReportC.aspx, described
in Table 13-2, in the XlsReports folder in the sample application in the Source Code area of the
Apress website.

These reports dynamically display titles and report dates, but the main report data will not
change when you alter the report parameters. Figure 13-5 shows an example report in the
Visual Studio Designer.

Figure 13-5. Report C as seen in the Visual Studio Designer

One important piece of code that exists in each of the mock reports is the line that sets the
content-type for the output stream. By default, the content-type is set to text/html. Granted,
you are in fact outputting HTML, but you need the browser to recognize the HTML as Excel
data. Thus, you’ll want to change the content-type of the output stream to application/vnd.
ms-excel. Following is the code in ReportC.aspx.vb. In the Page_Load event handler, you’ll see
the line that changes the content-type of the output stream and sets up the dynamic title and
report date in the markup (see Listing 13-4).

Table 13-2. Example Reports

Report Name Parameters File Naming Ex. Description

Report A Date WebStats.<date>.xls Displays a listing of pages on the company
website and the number of hits each page
received on the given date.

Report B Date, Room <room>.<date>.xls Displays reservation information for the
given room on the given date.

Report C Date, Employee <name>.<date>.xls Displays a detailed timesheet for the given
employee on the given date

6293_ch13.fm Page 572 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 573

Listing 13-4. Code Behind for the Example Excel report Generation Page

Partial Class ReportC
 Inherits System.Web.UI.Page

 '**
 Private ReadOnly Property ReportDate() As Date
 Get
 If IsDate(Context.Items("Date")) Then
 Return CDate(Context.Items("Date"))
 Else
 Return Now()
 End If
 End Get
 End Property

 '**
 Private ReadOnly Property Employee() As String
 Get
 If CStr(Context.Items("Employee")) = String.Empty Then
 Return "Unknown Employee"
 Else
 Return CStr(Context.Items("Employee"))
 End If
 End Get
 End Property

 '**
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 Response.ContentType = "application/vnd.ms-excel"
 Me.lblReportDate.Text = Format(ReportDate, "MM/dd/yyyy")
 Me.lblEmployeeName.Text = Employee
 End Sub

End Class

Notice that the ReportDate and Employee properties acquire their values from the Context
object. The XlsReportHandler places report data into the Context object because it has to parse
the URL to determine which report the user requested. Because the report data is stored in the
URL, the handler does everything at once to avoid re-parsing the URL on each report page.

Now that you have seen how reports are implemented, you can now focus on the HTTP
Handler that processes requests for Excel files and routes the requests to the appropriate report.

Building the XlsReportHandler
Our HTTP Handler, XlsReportHandler, is responsible for determining which report needs to be
executed and for passing the request off to the appropriate report. To do this, you need to set

6293_ch13.fm Page 573 Monday, November 14, 2005 4:28 PM

574

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

up some rules that govern how the

XlsReportHandler

 determines the report type and report
parameters.

In this example you’ll see how to store report parameters directly in the URL instead of in
the query string. Older browsers sometimes attempt to save files using everything to the right
of the last slash in the URL. As such, a request that looks like

 /XlsReports/MyReport.xls?Type=ReportA&Date=1/1/2005

the browser may attempt to save the file as

 MyReport.xls?Type=ReportA&Date=1/1/2005

which is invalid because it contains the characters

?

 and

/

, which are not allowed in file names.
Users are easily confused when the default file name is invalid, so you should avoid the situa-
tion by embedding parameters before the file name as part of the URL:

 /XlsReport/

<ReportType>/<Date>/<ReportName>

.xls
 /XlsReports/

ReportA/1-1-2005/MyReport

.xls

Notice that the URL contains the report parameters but they look like part of the folder
structure. Browsers don’t attempt to store incoming files using the folder structure, so the file
name is preserved even on older browser versions. Table 13-3 outlines the various parameters
passed to the various reports and the parameter positions in the URL.

XlsReportHandler Code Listing

After the guidelines for determine report types and parameters is defined, you can begin
creating the actual HTTP Handler. Listing 13-5 shows the entire code listing for the

XlsReportHandler

 class.

Listing 13-5.

XlsReportHandler

 class

Imports System.Web
Imports System.Web.UI

Public Class XlsReportHandler
 Implements IHttpHandler

Table 13-3.

 Report Request Examples

Report Type Report Parameters and Example URL

Report A

/XlsReports/<ReportType>/<Date>/WebStats.<Date>.xls

Example

/XlsReports/ReportA/2005-08-20/WebStats.2005.08.31.xls

Report B

/XlsReports/<ReportType>/<Room>/<Date>/<Room>.<Date>.xls

Example

/XlsReports/ReportB/Room A19/2005-06-03/Room A19.2005.06.03.xls

Report C

/XlsReports/<ReportType>/<Employee>/<Date>/<Employee>.<Date>.xls

Example

/XlsReports/ReportC/Nick Reed/2005-12-24/Nick.Reed.2005.12.24.xls

6293_ch13.fm Page 574 Tuesday, November 15, 2005 11:17 AM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 575

 '**
 Private ReadOnly Property IsReusable() As Boolean _
 Implements System.Web.IHttpHandler.IsReusable
 Get
 Return True
 End Get
 End Property

 '**
 Private Function GetReportName(ByVal UrlParts As String()) As String
 For index As Integer = 0 To UrlParts.Length - 1
 If UCase(UrlParts(index)) = "XLSREPORTS" Then
 If index < UrlParts.Length - 1 Then
 Return UrlParts(index + 1)
 End If
 End If
 Next
 Return ""
 End Function

 '**
 Private Sub ProcessRequest(ByVal context As System.Web.HttpContext) _
 Implements System.Web.IHttpHandler.ProcessRequest

 Dim ReportHandler As IHttpHandler = Nothing
 Dim UrlParts As String() = Split(context.Request.Path, "/")

 Select Case GetReportName(UrlParts)
 Case "ReportA"
 '===
 Try
 context.Items("Date") = CDate(UrlParts(UrlParts.Length - 2))
 context.RewritePath("~/XlsReports/ReportA.aspx")
 ReportHandler = PageParser.GetCompiledPageInstance(_
 "~/XlsReports/ReportA.aspx", Nothing, context)

 Catch ex As Exception
 ReportHandler = PageParser.GetCompiledPageInstance(_
 "~/XlsReports/Invalid.aspx", Nothing, context)
 End Try

 Case "ReportB"
 '===
 Try
 Dim Room As String = UrlParts(UrlParts.Length - 3)
 Dim ReportDate As Date = CDate(UrlParts(UrlParts.Length-2))

6293_ch13.fm Page 575 Monday, November 14, 2005 4:28 PM

576 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

 context.Items("Room") = UrlParts(UrlParts.Length - 3)
 context.Items("Date") = CDate(UrlParts(UrlParts.Length - 2))
 context.RewritePath("~/XlsReports/ReportB.aspx")
 ReportHandler = PageParser.GetCompiledPageInstance(_
 "~/XlsReports/ReportB.aspx", Nothing, context)

 Catch ex As Exception
 ReportHandler = PageParser.GetCompiledPageInstance(_
 "~/XlsReports/Invalid.aspx", Nothing, context)
 End Try

 Case "ReportC"
 '===
 Try
 context.Items("Employee") = UrlParts(UrlParts.Length - 3)
 context.Items("Date") = CDate(UrlParts(UrlParts.Length - 2))
 context.RewritePath("~/XlsReports/ReportC.aspx")
 ReportHandler = PageParser.GetCompiledPageInstance(_
 "~/XlsReports/ReportC.aspx", Nothing, context)

 Catch ex As Exception
 ReportHandler = PageParser.GetCompiledPageInstance(_
 "~/XlsReports/Invalid.aspx", Nothing, context)
 End Try

 Case Else 'Invalid report requested
 '===
 ReportHandler = PageParser.GetCompiledPageInstance(_
 "~/XlsReports/Invalid.aspx", Nothing, context)

 End Select

 ReportHandler.ProcessRequest(context)

 End Sub

End Class

Nothing overly noteworthy occurs in the first part of the code listing. Naturally, the
XlsReportHandler needs to implement the IHttpHandler interface just like every other HTTP
Handler with which you’ll work. Also, the IsReusable property returns true so this handler can
be pooled by the Handler Factory.

GetReportName Function

After the IsReusable property, you’ll see a function named GetReportName, which accepts an
array of strings as input. This function is designed to return the report name embedded in the
URL of the request. If you look back to Table 13-3, you’ll notice each report request has a
similar syntax:

6293_ch13.fm Page 576 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 577

/XlsReports/<Report Name>/<Param 1>/<Param 2>/.../<Param n>/<File Name>.xls

Thus, you can split the URL into an array of strings using / as the delimiter, and the string
following the “XlsReports” string will be the report name.

The UrlParts function parameter contains the split version of the URL. GetReport➥

Name iterates through each item in that array looking for the “XlsReports” string. It forces
everything into uppercase to avoid case-sensitive mismatches. When a match is found, it then
checks to make sure it isn’t at the end of the array, then returns the next item in the array. If no
match is found, the function simply returns an empty string.

ProcessRequest

ProcessRequest is responsible for determining which report needs to be run and handing off the
processing of the request to the appropriate report page. A large part of that responsibility is
acquiring report parameters and ensuring that they are available to the report when it executes, so
much of this discussion focuses on the report parameters and how they get to the report pages.

As you look at the ProcessRequest method, you’ll notice it uses two variables named
ReportHandler and UrlParts. ReportHandler holds a reference to another HTTP Handler that
ultimately processes the report request, and UrlParts is the string array that holds each section
of URL after it has been split. The URL is split on the same line on which UrlParts is declared
using the / character as a delimiter.

ProcessRequest uses the GetReportName function in its main Select Case statement to
determine which report is being requested. It then chooses the appropriate Case statement
and executes the associated code. If no Case statement match is made, or an error occurs
setting up a report for processing, then the function assigns the ReportHandler variable a refer-
ence to the compiled Invalid.aspx page instance (instead of a report page). Later on, when
ReportHandler processes the request for the report, the Invalid.aspx page display an error
message to the user instead creating a downloadable Excel report.

Each section of code in the three Case statements is fairly similar. First, the code sets up a
Try Catch block to deal with any exceptions that arise. If an exception occurs, the Catch block
sets up the ReportHandler to display the Invalid.aspx page. Inside the Try block, the method
acquires the report parameters from the URL and places them into the Context object. To do
this, it needs to know the location of the parameters in the URL, which requires a bit of
explaining. Remember, the method split the URL into the UrlParts string array using the /
character as a delimiter. So, the folders and file name from the URL exist inside the UrlParts
array, minus the / characters because the delimiter is removed when you split a string. In the
following code snippet, you’ll find example URLs for Report A and Report B showing the
UrlParts index of the various parts of the URL (parameters are shown in bold).

Report A:
 /<Application Dir>/XlsReports/ReportA/2005-8-21/WebStats.2005.08.21
0 1 2 3 4 5

Report B:
 /<Application Dir>/XlsReports/ReportB/Room/2005-8-21/Room.2005.8.21.xls
0 1 2 3 4 5 6

Notice that the URL starts off with a / character (the delimiter). Any time the Split func-
tion encounters a delimiter, it always places data from the left and right of the delimiter into
the array. In this case, there is nothing to the left of the delimiter, so the Split function places

6293_ch13.fm Page 577 Monday, November 14, 2005 4:28 PM

578 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

an empty string into the array at position 0. If you split the string “///” you would end up with
an array of four empty strings (“<empty>/<empty>/<empty>/<empty>”).

So the method pulls parameters out of the UrlParts array and stores them as named items
in the context object. Storing information in the Context object is very similar to the Session
object, but data stored in the Context object exists only for the duration of the current request.

Also note that parameter positions are not absolute. For example, on Report A, you can’t
assume that UrlParts(4) is the report date. The application folder may actually be a nested
virtual folder, which can throw off the indexing. That is, it could be something like <Parent Web>/
<Application Dir>, which would make the report date UrlParts(5). Thus, you have to work your
way backwards and reference the report date for Report A as UrlParts(UrlParts.Length - 2).

After the parameters have been loaded into the context, the code rewrites the internal path
by calling Context.RewritePath and passing in the location of the item that is to be executed.
Report A’s rewrite looks like this:

Context.RewritePath("~/XlsReports/ReportA.aspx")

Understand that this method isn’t transferring execution to ReportA.aspx, it just updates
the properties on the Request object like the Path, PhysicalPath, and QueryString (if appli-
cable). Remember, the request is ultimately handled by another page and that page may
expect these properties to contain values indicative of the page processing the request and not
of the resource the user requested. For example, say you had an error logger in ReportA.aspx
and were passing the Path variable in as the location of the error. If you don’t use
Context.RewritePath, then the error location will contain something like

 /XlsReports/ReportA/2005-08-20/WebStats.2005.08.31.xls

whereas if you use Context.RewritePath, then the error location will contain

 /XlsReports/ReportA.aspx

Unless you have a compelling reason to do otherwise, it’s a good practice to call
Context.RewritePath before allowing another page to handle a request.

■Note If you call RewritePath inside of an HTTP Module, then the path information will be changed before
the HTTP Handler Factory checks it. This means that the Handler Factory will return the handler for the page
specified in the new path. Thus, you can alter execution by changing RewritePath in an HTTP Module,
whereas it has no direct effect on execution when called from inside an HTTP Handler.

Finally, the Case statement calls PageParser.GetCompiledPageInstance from the
System.Web.UI namespace to acquire the HTTP Handler that ASP.NET would have used to
process the request had the report page been called directly. It stores this handler in the
ReportHandler variable so it can be called later.

After ProcessRequest exits the Select Case, it’s ready to execute the handler for the report
(or the Invalid.aspx page if an exception occurred). It does this by calling ReportHandler.➥

ProcessRequest and passing the context object into the method. This passes processing of the
request to the new handler, and all resulting output is sent to the client.

6293_ch13.fm Page 578 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 579

HTTP Handler Design Considerations
One thing that I have learned over the years is that the same thing can be accomplished in
many different ways, and each of those different ways has its pros and cons. So, before taking
a look at how to request files using the XlsReportHandler, let’s take a second to discuss a few
design elements that went into it and why they were chosen.

Context vs. the Querystring

As noted previously, the XlsReportHandler passes report parameters via the Context object.
Another option is to pass those parameters in the query string. Most people are more familiar
with the query string and therefore more comfortable with it, so the decision to place items in
the Context object may be a bit confusing at first.

Here’s the logic behind it. Query strings have to be parsed to be useful. You’ll notice that we
had to do our own parsing to pull out the report parameter in the first place, so putting it back into
a format that would then need to be reparsed seems wasteful. Thus, it’s a question of efficiency.

Of course, there are times when using the query string makes perfect sense. For example,
if you have already built out your reporting page and it expects parameters to be passed in
using the query string, then you may as well pass parameters to the page using the query string
to avoid having to recode the page.

Passing Parameters Using the Query String

The Querystring property of the Request object is read-only, meaning that you can’t add or
modify query string items. If you want to pass items in along the query string, you’ll need to
create a new query string and attach it to the page path you pass into the RewritePath method.
The RewritePath method removes any existing information from the Querystring property and
reinitializes it with the new query string data.

Let’s take a look at an example so you can see exactly how this is done. Report B accepts
two different parameters, a room name and a report date. Listing 13-6 shows how to create a
query string containing these two parameters and pass it into the RewritePath method.

Listing 13-6. Passing Parameters via the Query String

Dim Room As String = UrlParts(UrlParts.Length - 3)
Dim ReportDate As Date = CDate(UrlParts(UrlParts.Length - 2))
Dim QueryString As String = "?Date=" & _
 Server.UrlEncode(ReportDate.ToString() & "&Room=" & Room)
context.RewritePath("~/XlsReports/ReportB.aspx" & QueryString)

This allows the report page to acquire its parameters using the familiar syntax
Request.Querystring("Date") or Request.Querystring("Room").

Avoiding Server.Transfer

Many developers are familiar with the Server.Transfer method, which allows you to handle a
redirect on the server without having to make a round trip to the client. This method also
leaves the Context and Request objects in tact during the transfer, so it may seem tempting to
use it in an HTTP Handler such as XlsReportHandler. I didn’t use it in this example as a matter

6293_ch13.fm Page 579 Monday, November 14, 2005 4:28 PM

580 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

of efficiency. Server.Transfer makes ASP.NET treat the transfer as an entirely new request.
This means that all the components in the HTTP Pipeline get run twice. Using the technique
used by the XlsReportHandler, ASP.NET does not have to reprocess the request. Of course, you
may actually want to treat the transfer as a new request for reasons outlined in the next “Secu-
rity Considerations” section.

Security Considerations

When you use the HTTP Handler returned by the PageParser.GetCompiledPageInstance
method, you avoid having to rerun the entire HTTP Pipeline to execute the page. Of course,
many of the core security features in ASP.NET such as authentication and authorization are
implemented as part of the HTTP Pipeline, so there are some security considerations that you
need to keep in mind when you’re designing your application.

If you look at Web.config in the XlsReports folder of the sample application, you’ll notice
that access to all content is denied to all users. If you attempt to access any of the report-
generation pages directly, you’ll get an Access Denied error. But you can access the report
without any problem when you request a file using a “fake” URL such as

/XlsReports/ReportA/2005-08-31/WebStats.2005.08.31.xls

When this request goes through the HTTP Pipeline, the authorization module runs under
the assumption that you’re actually requesting a “real” file when in reality the path does not exist.
Because there are no authorization restrictions on the nonexistent path, the request passes
authorization. When you acquire a page using Pageparser.GetCompiledPageInstance, you bypass
the authorization module entirely. This means that you could accidentally display a page to a
user who does not have the appropriate permissions to view the page. One way to avoid this issue
is to use code-based authorization directly in the restricted page as shown in Listing 13-7.

Listing 13-7. Ensuring Authorization Inside a Restricted Page

If Not Context.User.IsInRole("Admin") Then
 FormsAuthentication.RedirectToLoginPage()
End If

The authorization code in the page runs even if the authorization module does not, so
your page remain secures whenever it executes. Now it’s time to look at how to use the
XlsReportHandler to get reports.

Using the XlsReportHandler to Retrieve Reports
Receiving reports using the XlsReportHandler requires two things. The first is a properly configured
Web.config file so the handler can catch requests for Excel files in the XlsReport folder. The second
thing is a way to generate the appropriate file names for each report so the XlsReportHandler can
determine which report is being requested and what parameters should be sent to the report.

■Note Make sure you update the IIS application extension mappings to allow ASP.NET to process .XLS
files. Otherwise, you’ll receive a 404 error when you try to use the XlsReportHandler. See the “Mapping
File Extensions in IIS” section earlier in this chapter for more information on these mappings.

6293_ch13.fm Page 580 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 581

Configuring the XlsReportHandler

You’ll be placing the HTTP Handler configuration for the XlsReportHandler in a Web.config file
in the XlsReport folder of your application. This will simplify the actual configuration settings
because it requires a single entry (see Listing 13-8).

Listing 13-8. Configuring the XlsReportHandler

<configuration>
 ...
 <system.web>
 ...
 <httpHandlers>
 <clear />
 <add verb="*" path="*.xls" type="Handlers.XlsReportHandler,Handlers" />
 <add path="Invalid.aspx" verb="*" type="System.Web.UI.PageHandlerFactory" />
 <add path="*" verb="*" type="System.Web.HttpMethodNotAllowedHandler" />
 </httpHandlers>
 </system.web>
</configuration>

There are four items in the <httpHandlers> section of Web.config. The first, <clear />,
ensures the folder does not inherit any unwanted handler settings. The next ensures that any
requests for an Excel file in this folder, or any subfolder of this folder, pass through to the
XlsReportHandler. The third allows the standard page handler to accept requests for the
Invalid.aspx file. We need to explicitly allow the standard page handler to accept requests for
Invalid.aspx because the final entry blocks all other request. This means people can’t directly
access ReportA.aspx, ReportB.aspx, ReportC.aspx, or Web.config.

Building File Names for the XlsReportHandler

After Web.config has been set up to route all Excel file request through the XlsReportHandler, you
need a way to build out Excel file names that the XlsReportHandler can understand. You can refer
back to Table 13-2 and Table 13-3 for file-naming conventions and examples for each report.

Following you’ll find the code to build out the file names for each report type. These method
can be found in the RequestReport.aspx code-behind in the sample application (see Listing 13-9).

Listing 13-9. Methods to Help Build the Report URLs

'**
Private Function GetReportAPath(ByVal ReportDate As Date) As String

 Return String.Format("XlsReports/ReportA/{0}/WebStats.{1}.xls", _
 Format(ReportDate, "yyyy-MM-dd"), _
 Format(ReportDate, "yyyy.MM.dd"))
End Function

'**
Private Function GetReportBPath(ByVal Room As String, _
 ByVal ReportDate As Date) As String

6293_ch13.fm Page 581 Monday, November 14, 2005 4:28 PM

582 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

 Return String.Format("XlsReports/ReportB/{0}/{1}/{0}.{2}.xls", _
 Room, _
 Format(ReportDate, "yyyy-MM-dd"), _
 Format(ReportDate, "yyyy.MM.dd"))
End Function

'**
Private Function GetReportCPath(ByVal Employee As String, _
 ByVal ReportDate As Date) As String

 Return String.Format("XlsReports/ReportB/{0}/{1}/{0}.{2}.xls", _
 Employee, _
 Format(ReportDate, "yyyy-MM-dd"), _
 Format(ReportDate, "yyyy.MM.dd"))
End Function

Each function accepts a set of parameters that matches the parameters required by the
report. Then they use the String.Format and Format methods to construct an appropriately
named file before returning the file name as the result of the function.

Downloading the Reports

Now that you have built out the GetReportAPath, GetReportBPath, and GetReportCPath func-
tions, you need to use those functions on a page to generate a link to a report. You can do this
using a redirect from a button or you can set up a clickable hyperlink.

Creating a hyperlink is as easy as dropping a Hyperlink control on your form, setting its ID
and Text properties, and then assigning one of the report path functions to the NavigateUrl
property. Listing 13-10 provides an example.

Listing 13-10. Linking to a Report Using a Hyperlink

Me.hlnkReportA.NavigateUrl = GetReportAPath(Now())
Me.hlnkReportB.NavigateUrl = GetReportBPath("Conference Room", Now())
Me.hlnkReportC.NavigateUrl = GetReportCPath("Nick Reed", Now())

You can also use the get report path functions directly in redirect. Listing 13-11 provides
the code for a button click event that will redirect the user to Report C.

Listing 13-11. Linking to a Report Using a Form Button

'**
Protected Sub btnGetReportC_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnGetReportC.Click

 Response.Redirect(GetReportCPath(txtEmployee.Text, _
 CDate(txtReportCDate.Text)))

End Sub

6293_ch13.fm Page 582 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 583

You can see all this code in action by opening up the RequestReport.aspx page in the
sample application in the Source Code area of the Apress website. It has data-entry forms for
all three reports, so you can see all of them in action.

Thumbnail Generation with an HTTP Handler
As digital photo technology has become more and more advanced, image sizes have become
larger and larger. My first digital camera took 640 x 400 pixel images when it was in high-
resolution mode. I don’t know if the camera I have right now can even take a picture that small.
Digital images can easily take up 1 or 2 megabytes and I have seen many that exceed 5 or 10.

Businesses that offer their product over the web usually take product images to give
customers some idea of what the item looks like. Of course, it’s not easy to incorporate a large
product image into the design of a product page, so a thumbnail image is used instead.
Thumbnails are just a smaller version of a picture that gives the viewer a basic idea of what the
image contains. If the user wants to see the whole image, they click on the thumbnail to down-
load the larger version. The catch, of course, is that you have to make the thumbnail image
before you can use it.

I saw the process of thumbnail creation while working with a client who sold crafts online.
The client hired a college student to come in, photograph the products, save those images to a
pictures folder, and then resize each image in Photoshop to create a thumbnail image which
was stored in a thumbnails folder. Judging by his demeanor, it had become a tedious and
mind-numbing process after the first couple of images.

Thumbnail generation using an HTTP Handler saves you the trouble of having to manu-
ally create thumbnails by generating them on-the-fly using an HTTP Handler.

Objectives and Solution Architecture
The main objectives of this example are to demonstrate how HTTP Handlers can be used to
generate and return binary data and to show how you can cache that generated data by saving the
data to disk and referencing it later. This example is not intended to be an exhaustive reference of
graphical routines that you can apply to a thumbnail image. I’ll only focus on resizing the image.

Here’s how this solution works. All pictures files will be stored in the Pictures folder, or in
subfolders located in the Pictures folder. This allows you to either have one folder full of
pictures, or a series of subfolders to help organize the pictures. There will also be a Thumbnails
folder in the Pictures folder.

When an image is requested from the Thumbnails folder, the request will be intercepted by
an HTTP Handler named ThumbnailHandler. This handler checks to see if the requested thumb-
nail exists, the corresponding full-sized image file exists, and that the thumbnail isn’t out of
date. It checks to see if the thumbnail is out of date by comparing the thumbnail’s last modified
date to the full-sized image’s last modified date. If the full-sized image has been updated more
recently than the thumbnail image, then the thumbnail is considered to be out of date. If every-
thing is in order, it will read the thumbnail file and send it back to the client. If not, it will create
a new thumbnail from the full-sized image and save the thumbnail to the thumbnails folder so
it can be used during a later request. This process is outlined in Figure 13-6.

6293_ch13.fm Page 583 Monday, November 14, 2005 4:28 PM

584 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

Figure 13-6. ThumbnailHandler architecture

Requests for thumbnail images must map to existing full-sized images in the Pictures
folder. Table 13-4 shows some example thumbnail requests and the thumbnail’s corre-
sponding full-sized image.

Table 13-4. Thumbnail Request Mappings

Requested Thumbnail Corresponding Full-Sized Image

/Thumbnails/Image01.jpg /Pictures/Image01.jpg

/Thumbnails/SubFolder/Image02.jpg /Pictures/SubFolder/Image02.jpg

6293_ch13.fm Page 584 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 585

Notice that the only difference between the thumbnail request and the actual file is that
thumbnails are stored in the /Thumbnails folder and the full-sized images are stored in the
/Pictures folder. This makes mapping the thumbnail request to the actual file fairly easy
because you just have to replace /Thumbnails with /Pictures in the string. You’ll see the code
for this in the ProcessRequest method.

■Note You are not required to place the Thumbnails subfolder inside the Picture folder. With some
minor changes, you could place it in the root folder or in another folder in your application. In this example, it
was placed in the Picture folder simply as a matter of preference.

Building the ThumbnailHandler
The code for the ThumbnailHandler class is a bit lengthier than the previous HTTP Handlers
because it processes the entire request directly in the class. You’ll find the entire code listing for
ThumbnailHandler in Listing 13-12, and a discussion on its more important methods follows.

Listing 13-12. ThumbnailHandler class

Imports System.Drawing
Imports System.IO
Imports System.Web

Public Class ThumbnailHandler
 Implements IHttpHandler

 '**
 Public ReadOnly Property IsReusable() As Boolean _
 Implements System.Web.IHttpHandler.IsReusable
 Get
 Return True
 End Get
 End Property

 '**
 Public Sub ProcessRequest(ByVal context As System.Web.HttpContext) _
 Implements System.Web.IHttpHandler.ProcessRequest

 'File info objects used to determine file existence and modified dates
 Dim Thumbnail As New FileInfo(context.Server.MapPath(context.Request.Path))
 Dim FullSized As New FileInfo(context.Server.MapPath(_
 context.Request.Path.Replace("/Thumbnails", "")))

 'Full-sized version of thumbnail should exit for thumbnail to be returned
 If Not FullSized.Exists Then
 If Thumbnail.Exists Then Thumbnail.Delete()

6293_ch13.fm Page 585 Monday, November 14, 2005 4:28 PM

586 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

 Throw New Exception("Full sized image does not exist")
 End If

 'Determine whether or not to create or retrieve the thumbnail
 If Thumbnail.Exists Then
 If FullSized.LastWriteTime > Thumbnail.LastWriteTime Then
 Thumbnail.Delete()
 CreateThumbnail(context, Thumbnail, FullSized)
 Else
 RetrieveThumbnail(Thumbnail, context)
 End If
 Else
 CreateThumbnail(context, Thumbnail, FullSized)
 End If

 End Sub

 '**
 Private Function GetContentType(ByVal FI As FileInfo) As String
 'Returns appropriate content type based on file extension

 Select Case UCase(FI.Extension)
 Case ".GIF"
 Return "image/gif"
 Case ".JPG", ".JPEG"
 Return "image/jpeg"
 Case Else
 Throw New Exception("Invalid image type")
 End Select

 End Function

 '**
 Private Function GetImageFormat(ByVal FI As FileInfo) As Imaging.ImageFormat
 'Returns appropriate image format based on file extension

 Select Case UCase(FI.Extension)
 Case ".GIF"
 Return Imaging.ImageFormat.Gif
 Case ".JPG", ".JPEG"
 Return Imaging.ImageFormat.Jpeg
 Case Else
 Throw New Exception("Invalid image type")
 End Select

 End Function

6293_ch13.fm Page 586 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 587

 '**
 Private Sub RetrieveThumbnail(ByVal Thumbnail As FileInfo, _
 ByVal context As System.Web.HttpContext)

 Dim img As Image = Image.FromFile(Thumbnail.FullName)
 context.Response.ContentType = GetContentType(Thumbnail)
 img.Save(context.Response.OutputStream, img.RawFormat)
 img.Dispose()

 End Sub

 '**
 Public Function GetSizeMultiplier(ByVal img As Image) As Single
 'Gets size multiplier used to maintain image aspect ratio

 Const MaxWidth As Integer = 150
 Const MaxHeight As Integer = 150

 Dim HeightMultiplier As Single = MaxWidth / img.Width
 Dim WidthMultiplier As Single = MaxHeight / img.Height

 If HeightMultiplier > 1 Then HeightMultiplier = 1
 If WidthMultiplier > 1 Then WidthMultiplier = 1

 If HeightMultiplier < WidthMultiplier Then
 Return HeightMultiplier
 Else
 Return WidthMultiplier
 End If

 End Function

 '**
 Private Sub CreateThumbnail(ByVal context As System.Web.HttpContext, _
 ByVal Thumbnail As FileInfo, _
 ByVal FullSized As FileInfo)

 Dim img As Image = Image.FromFile(FullSized.FullName)
 Dim imgFormat as Imaging.ImageFormat = GetImageFormat(FullSized)
 Dim SizeMultiplier = GetSizeMultiplier(img)

 img = img.GetThumbnailImage(CInt(img.Width * SizeMultiplier), _
 CInt(img.Height * SizeMultiplier), Nothing, Nothing)
 img.Save(context.Response.OutputStream, imgFormat)
 If Not Thumbnail.Directory.Exists Then Thumbnail.Directory.Create()
 img.Save(Thumbnail.FullName, imgFormat)

6293_ch13.fm Page 587 Monday, November 14, 2005 4:28 PM

588 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

 img.Dispose()

 End Sub

End Class

ProcessRequest Method

The ProcessRequest method is responsible for determining whether or not a thumbnail image
should be created or retrieved, and for returning the thumbnail image to the client.

It starts by creating two FileInfo objects named Thumbnail and FullSized. If you haven’t
worked with FileInfo objects before, then you need to know a couple of things about them. The
FileInfo constructor requires a path to a file, but that file does not have to exist. It then uses that
path information to provide you information about the file specified like whether or not the file
actually exists, the file size, creation date, folder location, and other helpful file-specific pieces of
information. The Thumbnail FileInfo object is created by passing in the following path:

Server.MapPath(context.Request.Path)

The context.Request.Path property contains the URL where the thumbnail image resides, or
where it should reside after it has been created. Server.MapPath simply translates the URL contained
in context.Request.Path into a physical file path that the FileInfo object can understand.

FullSized’s path is created in much the same way as Thumbnail, but the /Thumbnail folder
is replaced with an empty string. This effectively gives you the location of the full-sized image.
Table 13-4 (shown previously) contains mapping examples that help show why this replace-
ment correctly maps to the full-sized image:

context.Server.MapPath(context.Request.Path.Replace("/Thumbnails","/Pictures"))

After both FileInfo objects have been created, ProcessRequest checks to see if the full-
sized image exists by calling FullSized.Exists. If the file does not exist, then ProcessRequest
deletes the thumbnail image (if it exists) and throws an exception. It doesn’t make sense to
keep a thumbnail for an image that doesn’t exist.

After ensuring the full-sized image exists, ProcessRequest then determines if the thumb-
nail image exists by calling Thumbnail.Exists. If the thumbnail does not exist, then
ProcessRequest calls the CreateThumbnail method. If the thumbnail image exists, then the code
compares the LastWriteTime property of the Thumbnail and FullSized FileInfo objects. If the
full-sized image is newer than the thumbnail image, then ProcessRequest creates a new
thumbnail. Otherwise, it calls RetrieveThumbnail to retrieve the existing image.

GetContentType and GetImageFormat Methods

The ThumbnailHandler is only designed to work with JPEG and GIF files. You can extend it to
handle whatever files you so desire, but for the purposes of this example those are the two file
types it accepts. GetContentType and GetImageFormat are both helper functions that return the
specific content-type and ImageFormat settings required by the two different formats.

6293_ch13.fm Page 588 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 589

Both functions share a similar structure. Each accepts a FileInfo object as a parameter,
and then uses the Extension property of that FileInfo object in a Select Case statement to
determine whether the file is a GIF or a JPEG. The code throws an exception if any other exten-
sion is detected.

GetContentType returns a string containing either “image/gif” or “image/jpeg”, depending
on the file type. This content-type string is used to set the Response.ContentType property,
which tells the browser which type of image data to expect.

GetImageFormat returns a System.Drawing.Imaging.ImageFormat object that tells the
image-saving mechanism how to encode the image when it’s saved to disk.

RetrieveThumbnail Method

This method accepts a FileInfo object named Thumbnail, and an HttpContext object named
context as parameters. It’s responsible for reading the existing thumbnail file specified in
Thumbnail and sending it back to the client via the context object.

RetrieveThumbnail accomplishes its tasks by creating an Image object named img and
initializing it using the Image.FromFile method. Image.Load accepts the path to an image file,
reads the image file from disk, and creates an Image object containing the image data. The
physical path to the thumbnail file is in the Thumbnail.FullName property.

After reading the image from disk, RetrieveThumbnail sets the ContentType property of the
Response object using the GetContentType method. This helps the client know how to handle
the incoming data.

Next, the code calls img.Save(context.Response.OutputStream, img.RawFormat). This
causes the image data from the img object to be output to the Response.OutputStream, where it
ultimately will be received by the client. The second parameter, img.RawFormat, simply tells the
Save method to use the native image encoding for the file. This property is set up when the
image is loaded from disk using Image.FromFile. After the data has been sent to the client, the
method calls img.Dispose to ensure the data store in the img object is released immediately.

GetSizeMultiplier Function

When you create a thumbnail image, you’ll want to maintain the original image’s aspect ratio
in the thumbnail. Aspect ratio refers to the height to width ratio. If you have an image that is 100
x 50 pixels and another that is 50 x 25 pixels, then they have the same aspect ratios (2:1) because
both images are twice as wide as they are tall. If you fail to maintain the aspect ratio when
reducing an image, the thumbnail may appear distorted. Figure 13-7 shows some extreme
cases of this distortion.

6293_ch13.fm Page 589 Monday, November 14, 2005 4:28 PM

590 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

Figure 13-7. Transforming a picture of Cloe, our dog, using various aspect ratios

GetSizeMultiplier analyzes the height and width of an image, and determines a number
that you can use to multiply both the height and width by to ensure the image will fit nicely
within a predefined space while maintaining the image aspect ratio.

First, GetSizeMultiplier defines the MaxWidth and MaxHeight constants that define the
maximum height and width for an image. In the real world, you would probably want these to
be configurable, but constants will suffice for this example.

Then the function determines the appropriate value for the HeightMultiplier variable.
The HeightMultiplier variable holds the number by which the image height needs to be multi-
plied to equal the MaxWidth constant. Thus, if the MaxWidth is 100, and the image size is 200, then
the HeightMultipler will be 0.5 because 200 * 0.5 = 100. The function also determines the
WidthMultiplier value using the same logic for the image width.

The possibility exists that an image’s height or width may be smaller than the maximum
height or width. If this is the case, then HeightMultiplier or the WidthMultiplier will be greater
than one. You don’t want a multiplier that is greater than one because it will stretch the image,
so the code ensures that this will not happen.

Finally, the function determines which multiplier is smaller and returns it. You want to
return the smaller multiplier because it guarantees that both the height and the width will be
under the maximum size.

6293_ch13.fm Page 590 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 591

CreateThumbNail Method

This method accepts an HttpContext object named context, and two FileInfo objects named
Thumbnail and FullSized. FullSized holds a reference to the full-sized image location, and
Thumbnail holds a reference to the location where the thumbnail image should be saved. The
CreateThumbNail method is responsible for reading the full-sized image file, creating a thumb-
nail out of that image, sending the image to the client via the context object, and saving the
image to disk to avoid having to recreate it for future requests.

At the beginning of the method, CreateThumbNail creates a variable named img to store the
full-sized image data. The code initializes the img object it by calling Image.FromFile(FullSized),
which loads the full-sized image information from disk. Then the imgFormat variable is created
and stores the ImageFormat object returned by GetImageFormat(FullSized). Finally the size multi-
plier is acquired by calling GetSizeMultiplier(img) and stored in the SizeMultiplier variable.

After the method variables are set up, the CreateThumbNail has everything it needs to
create the thumbnail image. Conveniently enough, the Image class exposes a function called
GetThumbnailImage which, as you may have guessed, is used to create a thumbnail for an image:

img = img.GetThumbnailImage(CInt(img.Width * SizeMultiplier), _
 CInt(img.Height * SizeMultiplier), Nothing, Nothing)

GetThumbNailImage accepts four parameters: width, height, callback, and callback data.
For this example, you should only be concerned with the width and height, which is why the
last two parameters in the code are set to Nothing. To determine the width and height of the
thumbnail image, you just multiply the existing width and height by the SizeMultiplier. The
resulting thumbnail image information is then stored back into the img variable.

Next, the code sets up the appropriate content type for the response and outputs the
image to the Response.OutputStream. Notice that you need to use the imgFormat as the
second parameter of the Save method instead of the img.RawFormat property as shown in the
RetrieveThumbnail code. When the image is loaded from a file, the RawFormat property is
initialized to whatever format the file is in. When the thumbnail image was created, it lost the
encoding information stored in img.RawFormat. So, the imgFormat variable that we populated
earlier lets the Save method know how to encode the data (for example, as a JPEG or a GIF file).
If you attempt to use the img.RawFormat property here, you’ll get an error.

After the image information has been sent out to the client, the code will then save the
thumbnail to disk. First it checks to make sure the folder in which the file is to be placed exists.
If not, it creates the folder. It then saves the image using the Save method, the physical file path
information stored in the Thumbnail FileInfo object, and the imgFormat variable. Then it
disposes of the img object to clear up memory.

Configuring the ThumbnailHandler
The ThumbnailHandler needs to be configured so it only handles image requests for GIF and
JPEG images located in the Pictures\Thumbnails folder. To do this, create a Web.config file in
the Pictures\Thumbnails folder and add the configuration settings in Listing 13-13 to it.

6293_ch13.fm Page 591 Monday, November 14, 2005 4:28 PM

592 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

Listing 13-13. Configuring the Thumbnails Folder to Create Thumbnails for Specific File Types

<configuration>
 <system.web>
 <httpHandlers>
 <add verb="*" path="*.GIF" type="Handlers.ThumbnailHandler,Handlers" />
 <add verb="*" path="*.JPG" type="Handlers.ThumbnailHandler,Handlers" />
 <add verb="*" path="*.JPEG" type="Handlers.ThumbnailHandler,Handlers" />
 </httpHandlers>
 </system.web>
</configuration>

The preceding configuration explicitly sets up the handler for each file type with which the
handler can interact. Another option is just route all requests to the ThumbnailHandler and just
assume that only JPEG and GIF files will be requested (see Listing 13-14).

Listing 13-14. Configuring the Thumbnails Folder to Create Thumbnails for All File Types

<configuration>
 <system.web>
 <httpHandlers>
 <add verb="*" path="*" type="Handlers.ThumbnailHandler,Handlers" />
 </httpHandlers>
 </system.web>
</configuration>

Either method is acceptable in this example because only JPEG and GIF files should be
requested out of this folder. If, however, there were also web forms (.aspx pages) then you
would need to use the first listing that explicitly defines each file extension. Remember that
configuration will setup ASP.NET to use the ThumbnailHandler, but you’ll need to map the .GIF,
.JPG, and .JPEG file extensions to the aspnet_isapi.dll in IIS. Also make sure you do not check
the Check that file exists option in the mapping setup.

■Caution Mapping image extensions to your ASP.NET application means that ASP.NET handles all image
requests, not just the image requests in the Thumbnails folder. When you request an image from ASP.NET
running on IIS 5.0, it returns the image file as you would expect. When you request an image from ASP.NET
on IIS 6.0, however, it gives you a 404 error. As a workaround, you can set up the Thumbnails folder as its
own application in IIS 6.0, copy the bin folder from the application into the Thumbnails folder (so it has
access to the handler assembly), and set up the mappings solely for the Thumbnails folder without affecting
the other portions of the application.

Viewing Thumbnails
Now that you’ve seen how to make a thumbnail generator, it’s time to see it in action. The
Thumbnails.aspx page in the sample application contains code that looks for all the .GIF, .JPG,

6293_ch13.fm Page 592 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 593

and .JPEG files in the Pictures folder. Then it creates a Hyperlink control for each image it
finds, sets the Hyperlink control’s NavigateUrl property to the location of the picture and the
ImageUrl to the image’s corresponding thumbnail. It then adds the Hyperlink control to a
PlaceHolder control named phThumbnails and sets up some text to output the name of the
picture as shown in Listing 13-15.

Listing 13-15. Viewing Thumbnails for All Images in a Folder

'**
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load

 Dim Dir As New DirectoryInfo(Server.MapPath("Pictures"))
 Dim Files As FileInfo() = Dir.GetFiles()
 Dim img As HyperLink
 Dim lit As Literal

 For index As Integer = 0 To Files.Length - 1
 If IsSupportedExtension(Files(index)) Then
 img = New HyperLink()
 lit = New Literal()

 img.NavigateUrl = "~/Pictures/" & Files(index).Name
 img.ImageUrl = "~/Pictures/Thumbnails/" & Files(index).Name
 lit.Text = String.Format(_
 "
{0}

", _
 Files(index).Name)
 phThumbnails.Controls.Add(img)
 phThumbnails.Controls.Add(lit)
 End If
 Next

End Sub

'**
Private Function IsSupportedExtension(ByVal FI As FileInfo) As Boolean
 Select Case UCase(FI.Extension)
 Case ".GIF", ".JPG", ".JPEG" : Return True
 Case Else : Return False
 End Select
End Function

This is a relatively simple routine that uses a DirectoryInfo object to iterate through all the
files in the Picture folder. It then determines whether or not the file is supported using the
IsSupportedExtension function, which just checks to make sure the file extension is .JPG,
.JPEG, or .GIF. Then it constructs the appropriate links and thumbnail image locations, builds
text to display under the image, and adds the link and text information to the phThumbnails➥

 PlaceHolder control.

6293_ch13.fm Page 593 Monday, November 14, 2005 4:28 PM

594 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

When you run the page, you’ll see a series of thumbnails displayed on the screen. Clicking
on any of the thumbnails will link you directly to the full-sized image.

Content Management Backend
Keeping Internet and intranet content up to date is a considerable task, and that task often falls
on the shoulders of people who are not really equipped to handle it. One of my first projects
was working on a reporting module in a custom content-management project for an extremely
large company, so I’ve seen the scenario play out a number of times.

Most often, it starts when a contractor or an employee with web experience builds a
departmental intranet site. Everyone in the department begins to use it more and more exten-
sively as they realize how easy it is to find information. People get hooked. Then the inevitable
happens. The contractor or employee leaves. People still need to get information published to
the web, so someone else has to be elevated to the status of web master. This is usually decided
by looking at arbitrary technical skills that have nothing to do with web-based technologies.
Therefore, the individual with the best Excel formula and chart-making skills becomes the
departmental web master. Of course, his or her other responsibilities don’t go away, so now
the “web master” has to learn HTML, update people’s web content, publish files to the depart-
mental web server, and still do everything he or she was doing before.

Content-management systems store content information in a database, and programmat-
ically assembly pages based on that database content. Many content-management systems
offer a web-based tool for adding, updating, and removing content from the database, so
anyone who knows how to use a web page can modify information in the content-
management system. This allows the burden of updating a departmental website to be
spread out over everyone in the department.

You may even find it convenient to use a miniature content-management system in your
applications so you can easily change descriptions and instructions on web forms. There have
been countless times when customers have called me to make minor changes that they could
have done if properly equipped.

Objectives and Solution Architecture
Content management is an extensive subject involving a number of components such as user
management, security, file sharing, caching, and complex user-interface tools for creating and
updating content. Covering each of these areas could fill an entire book, so this example will
focus only on a subset of content-management functionality. Specifically, it focuses on storing
content in a database and creating a component to assemble that content into a page.

Architecturally, this solution implements the front-controller design pattern to accom-
plish its content-management tasks. A design pattern is just a well-documented solution for a
specific type of problem. Without getting into the complexities of it, the front-controller
pattern basically says that you can reduce code duplication by consolidating logic into a
component and routing all requests though that component. The front-controller pattern is a
match for this situation because all incoming requests need to be routed through a component
that can pull content information from a database and assemble a page to send back to the
client. You may find it helpful to refer to Figure 13-8 during the discussion of the solution.

6293_ch13.fm Page 594 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 595

Figure 13-8. Solution architecture

6293_ch13.fm Page 595 Monday, November 14, 2005 4:28 PM

596 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

Say there is a page named PageA.aspx stored in the content-management system. All the
pages in the content-management system are accessible through the ContentManagement folder
in the application folder, so users wanting to see PageA.aspx would request /Content➥

Management/PageA.aspx. But /ContentManagement/PageA.aspx does not physically exist in the
folder because content in the content-management system is actually stored in a database. In
other words, PageA.aspx is a virtual file.

All requests for resources in the ContentManagement folder are processed by an HTTP
Handler named ContentManagementHandler. This handler extracts the requested virtual file
name, in this case PageA.aspx, and stores it in the Context object. This makes the virtual file
name available to the FrontController.aspx page, which ultimately handles the request. After
storing the virtual file name in the Context object, the handler rewrites the path to point at the
FrontController.aspx file which resides in the ContentManagement folder. It then acquires a
standard page handler compiled instance of the FrontController.aspx page using the
PageParser.GetCompiledPageInstance method and uses the ProcessRequest method of the
standard page handler to process the request.

FrontController.aspx is a standard ASP.NET page that builds its content based on the
virtual file name stored in the Context object. When FrontController.aspx first loads, it
queries the database to check if a PageA.aspx record exists in the content-management system.
If so, it retrieves the page record containing information defining the page title and which
Master Page to use for the page layout. It then loads the Master Page, and queries the database
for the page’s content records. Content records contain information about what content to
place in which ContentPlaceHolder controls of the Master Page (see Figure 13-9).

Figure 13-9. Master Pages and ContentPlaceHolder controls (Area1, Area2, Area3)

ContentPlaceHolders in the Master Pages area always named “Area” followed by a
numeric index. Thus, the first ContentPlaceHolder on the Master Page is always named Area1,
the second Area2, the third Area3, and so on. In this simple content-management example,
there are six different types of content that can appear inside a content area: titles, paragraph
text, hyperlinks, images, hyperlinked images, and user controls.

6293_ch13.fm Page 596 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 597

After placing the appropriate content in the appropriate ContentPlaceHolder controls,
FrontController.aspx returns the PageA.aspx content to the user. From the user’s perspective,
it looks like PageA.aspx actually exists as a physical file on the server because the entire process
is transparent.

Content Database Design
Page and content information is stored in a database. Because this is a simple content-
management implementation, the database design is also fairly simple. In fact, there are only
two tables. The Page table stores page information like the Master Page to use and the title, and
the Content table stores content items that are ultimately output on the page.

Figure 13-10 shows a database diagram showing the columns and table relationships, and
Table 13-5 gives you more detail about each column and its purpose.

Figure 13-10. Content-management database design and relationship

Table 13-5. Content-Management Database Fields

Table Field Type Description

Page PageID Integer Auto-generated primary key used to identify a page record

Page Location VarChar(100) File location of the requested page, relative to the
ContentManagement folder.

Page Title VarChar(50) Page title to be displayed in the client’s browser.

Page MasterPage VarChar(50) File location of the Master Page (for example, page template),
relative to the ContentManagement\Master Pages folder.

Content ContentID Integer Auto-generated primary key used to identify a content
record.

Content PageID Integer Foreign key identifying the page to which the content
belongs.

Content Type VarChar(50) English text which identifies the type of content to be output
to the page. This example supports the following content
types: Title, Paragraph, Image, Link, ImageLink, and
UserControl.

6293_ch13.fm Page 597 Monday, November 14, 2005 4:28 PM

598

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

■

Note

In a full implementation, the content types should be defined in a separate table and the type field

in the content table should contain a link to the type instead of the name of the content type.

Creating the ContentManagementHandler

Compared with the HTTP Handlers you looked at in the last two examples, the

Content

➥

ManagementHandler

 looks very simple. Listing 13-16 is the code for the class.

Listing 13-16.

 Displaying Thumbnails for All Images in a Folder

Imports System.Web
Imports System.Web.UI

Public Class ContentManagementHandler
 Implements IHttpHandler

 '**
 Public ReadOnly Property IsReusable() As Boolean _
 Implements System.Web.IHttpHandler.IsReusable
 Get
 Return True
 End Get
 End Property

Table 13-5.

 Content-Management Database Fields (Continued)

Table Field Type Description

Content Area Integer

Index identifying the

ContentPlaceHolder

 in the
Master Page into which the content should be placed
(1 = Area1, 2=Area2, and so on).

Content Position Integer

Index identifying the order in which content appears
inside of a

ContentPlaceHolder

. You can place
multiple content items inside a single

Content

➥

PlaceHolder

 control, so you need a way to define
which items appear in what order. When returning
content records, the database sorts the records
according to the

Position

 field in ascending order, so
a content record with a

Position

value of

1

 appears
before a content record with a

Position

value of

2

,
and so on.

Content Parameters Text

Pipe (

|

) separated list of parameters used to set up
the content. Each content type has its own unique set
of parameters (discussed shortly).

Content BreaksAfter Integer

Content routinely needs to be separated by breaks.
This specifies the number of breaks that should be
added to the page after the content.

6293_ch13.fm Page 598 Tuesday, November 15, 2005 6:11 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 599

 '**
 Private Function GetVirtualPage(ByVal context As HttpContext) As String
 Return context.Request.Path.Replace(_
 context.Request.ApplicationPath & "/ContentManagement/", "")
 End Function

 '**
 Public Sub ProcessRequest(ByVal context As System.Web.HttpContext) _
 Implements System.Web.IHttpHandler.ProcessRequest

 'Store the virtual page value in context
 context.Items("VirtualPage") = GetVirtualPage(context)

 'Acquire the Front Controller HTTP Handler
 Dim FrontController As IHttpHandler = _
 PageParser.GetCompiledPageInstance(_
 "~/ContentManagement/FrontController.aspx", Nothing, context)

 'Rewrite the path and allow the Front Controller to Process the Request
 context.RewritePath("ContentManagement/FrontController.aspx")
 FrontController.ProcessRequest(context)

 End Sub

End Class

GetVirtualPage Function

FrontController.aspx uses the virtual page path to locate the page record in the database, but
the paths in the database are relative to the ContentManagement folder. The GetVirtualPage
function is responsible for removing the extraneous application path and the /Content➥

Management/ folder from the path, and returning just the virtual page as it should appear in the
database.

ProcessRequest Method

There are really only four lines of code in the ProcessRequest method. The first line stores the
virtual page value in the context object using the GetVirtualPage function. This allows the
FrontController.aspx page to access the value later on when processing the request. Next, the
method acquires a reference to the HTTP Handler for the FrontController.aspx page. After
acquiring the handler, the method rewrites the URL path using context.RewritePath, and then
allows the handler to process the request by passing the context into the FrontController.➥

ProcessRequest method.

6293_ch13.fm Page 599 Monday, November 14, 2005 4:28 PM

600

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

Configuring the ContentManagementHandler

Like all HTTP Handlers, the

ContentManagementHandler

 needs to be configured so ASP.NET
knows when and where to use it. Add it to

Web.config

 in the

ContentManagement

 folder so it only
picks up requests for virtual pages under that folder. Listing 13-17 shows how that

Web.config

file should look.

Listing 13-17.

 Configuring the

ContentManagementHandler

<configuration>
 <system.web>
 <httpHandlers>
 <add verb="*" path="*.*" type="Handlers.ContentManagementHandler,Handlers" />
 </httpHandlers>
 </system.web>
</configuration>

Notice that this will pick up

any

request that comes in for a page under the

Content

➥

Management

 folder. Thus, you can specify pages with any extension you want:

.asp

,

.aspx

,

.html

,
or even

.cfm

 or

.jsp

 if you really want to confuse people. Of course, you’ll need to map
nonstandard extension to ASP.NET in IIS or else you’ll just get a 404 Not Found error.

Creating Content Templates using Master Pages

Master Pages define templates for ASP.NET web forms. Like any template, there are regions of
the template that can be altered to display non-template content. In a Master Page, this region
is called a

ContentPlaceHolder

. You can add ASP.NET controls to the

ContentPlaceHolder

, and
those items appear in place of the

ContentPlaceHolder

 when the page renders. The content-
management code loads content from the content database, locates the appropriate

ContentPlaceHolder

 on the Master Page, and then loads the content item into that

Content

➥

PlaceHolder

. Figure 13-10 from earlier in the chapter shows a basic diagram outlining this
process.

The content-management code knows which content goes into what

ContentPlaceHolder

because of the

Area

 column on each content record (Table 8-5). This field stores an integer
representing the

ContentPlaceHolder

 into which the content is loaded. The naming conven-
tion for a

ContentPlaceHolder

is Area<index>, where <index> is an integer greater than or
equal to 1 (for example, Area1, Area2, Area3, and so on). If the

Area

 value specified in the
content record does not exist, then the content does not display

You’ll find three example Master Pages in the example application.

TemplateA.master

 has
a single content area,

TemplateB.master

 has two, and

TemplateC.master

 has three. Listing 13-18
shows the markup for

TemplateA.master

.

Listing 13-18.

 Markup for

TemplateA.master

<%@ Master Language="VB" CodeFile="TemplateA.master.vb" Inherits="TemplateA" %>
<%@ Register TagPrefix="cc" Namespace="Handlers" Assembly="Handlers" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

6293_ch13.fm Page 600 Monday, November 14, 2005 7:35 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 601

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
 <style>
 body{font-family:arial;font-size:10pt;}
 .ContentAreaHeading{background-color: darkblue;color: white;
 font-weight:bold;border-bottom: 1px solid black;}
 </style>
</head>
<body>
 <cc:ActionlessForm id="form1" runat="server">

 Content Management Template A

 <table cellpadding=3 cellspacing=0
 style="width:100%; border: 1px solid black;">
 <tr>
 <td class="ContentAreaHeading">
 Content Area #1
 </td>
 </tr>
 <tr>
 <td>
 <asp:ContentPlaceHolder id=Area1 runat=server />
 </td>
 </tr>
 </table>
 </cc:ActionlessForm>
</body>
</html>

Notice that the Master Page contains a custom control named ActionlessForm. This is an
important item that we’ll be discussing shortly. Refer to the sample application (in the Source
Code area of the Apress website) for the TemplateB.master and TemplateC.master markup.

Building the FrontController.aspx Page
The FrontController.aspx page is a fairly simple page because it should only contain the Page
directive and no other HTML or ASP.NET controls. Listing 13-19 shows the markup for the
whole page.

Listing 13-19. Markup for FrontController.aspx

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="FrontController.aspx.vb"
 Inherits="FrontController" %>

6293_ch13.fm Page 601 Monday, November 14, 2005 4:28 PM

602 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

You want the page to be completely blank because this page dynamically loads a Master
Page to define its layout and pulls its content from a database. You can’t have ad-hoc HTML on
a page that uses a Master Page; all content must go inside a Content control (which ends up
in the ContentPlaceHolder). If there is any text on the page, ASP.NET throws an exception
when the page executes. Also know that the Master Page is dynamically loaded at runtime
based on the page information from the database, so there is no MasterPageFile attribute
specified in the Page directive.

Building the FrontController.aspx.vb Code Behind
The code for the FrontController.aspx web form is fairly lengthy because it contains a number
of database access routines’ content-creation logic. It’s not difficult, just lengthy. Listing 13-20
gives the entire code-behind listing for the page. All methods and functions are discussed after
the code listing.

Listing 13-20. FrontController.aspx.vb Code Behind

Imports System
Imports System.Configuration.ConfigurationManager
Imports System.Data.SqlClient

Partial Class FrontController
 Inherits Web.UI.Page

 '**
 Private _PageID As Long
 Private _Title As String
 Private _MasterPage As String

 '**
 Private Function SqlString(ByVal text As String) As String
 Return text.Replace("'", "''")
 End Function

 '**
 Private Function AcquirePageInfo() As Boolean

 Dim DbConn As SqlConnection
 Dim SQL As String
 Dim DbCmd As SqlCommand
 Dim Dr As SqlDataReader

 DbConn = New SqlConnection(ConnectionStrings("Database").ConnectionString)

 'Create SQL command and setup parameters
 SQL = "SELECT * FROM [Pages] WHERE [Location]=@Location;"
 DbCmd = New SqlCommand(SQL, DbConn)
 DbCmd.Parameters.Add("@Location", Data.SqlDbType.VarChar).Value = _
 Context.Items("VirtualPage")

6293_ch13.fm Page 602 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 603

 DbConn.Open()
 Dr = DbCmd.ExecuteReader()
 If Dr.Read Then
 _PageID = CLng(Dr("PageID"))
 _Title = CStr(Dr("Title"))
 _MasterPage = CStr(Dr("MasterPage"))
 AcquirePageInfo = True
 Else
 AcquirePageInfo = False
 End If
 DbConn.Close()

 End Function

 '**
 Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Me.PreInit

 'Acquire the page info and setup the master page
 If AcquirePageInfo() Then
 Me.MasterPageFile = "~/ContentManagement/Master Pages/" & _MasterPage
 Me.Title = _Title
 Else
 'If the page is not found in the database, send a 404 error
 Response.StatusCode = 404
 Response.End()
 End If

 End Sub

 '**
 Protected Sub Page_PreLoad(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Me.PreLoad
 LoadPageContent()
 End Sub

 '**
 Private Sub SetupBreakLiteral(ByVal lit As Literal, ByVal Count As Integer)
 For index As Integer = 1 To Count
 lit.Text &= "
"
 Next
 End Sub

 '**
 Public Sub LoadPageContent()

 Dim CPH As ContentPlaceHolder
 Dim DbConn As SqlConnection

6293_ch13.fm Page 603 Monday, November 14, 2005 4:28 PM

604 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

 Dim SQL As String
 Dim DbCmd As SqlCommand
 Dim Dr As SqlDataReader

 'Create database connection
 DbConn = New SqlConnection(ConnectionStrings("Database").ConnectionString)

 'Create SQL command and setup parameters
 SQL = "SELECT * FROM [Content] WHERE [PageID]=@PageID " & _
 "ORDER BY [Area],[Position];"
 DbCmd = New SqlCommand(SQL, DbConn)
 DbCmd.Parameters.Add("@PageID", Data.SqlDbType.Int).Value = _PageID

 'Open database and execute command
 DbConn.Open()
 Dr = DbCmd.ExecuteReader()

 While Dr.Read

 'Store data reader values in strongly typed variables
 Dim ContentType As String = CStr(Dr("Type"))
 Dim ContentArea As Integer = CInt(Dr("Area"))
 Dim ContentParams As String = CStr(Dr("Parameters"))
 Dim ContentBreaksAfter As Integer = CInt(Dr("BreaksAfter"))
 Dim Params As String() = Split(ContentParams, "|")

 'Locate the ContentPlaceHolder into which the content should be loaded
 CPH = CType(Master.FindControl("Area" & ContentArea), _
 ContentPlaceHolder)

 'Only load the content if the ContentPlaceHolder control is located
 If Not CPH Is Nothing Then

 Select Case UCase(ContentType)

 Case "TITLE"
 Dim lbl As New Label
 lbl.Font.Bold = True
 lbl.Font.Underline = True
 lbl.Font.Size = WebControls.FontUnit.Point(12)
 If Params.Length > 0 Then lbl.Text = Params(0)
 CPH.Controls.Add(lbl)
 If ContentBreaksAfter > 0 Then
 Dim lit As New Literal
 SetupBreakLiteral(lit, ContentBreaksAfter)
 CPH.Controls.Add(lit)
 End If

6293_ch13.fm Page 604 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 605

 Case "PARAGRAPH"
 Dim lbl As New Label()
 If Params.Length > 0 Then lbl.Text = Params(0)
 Dim lit As New Literal
 SetupBreakLiteral(lit, ContentBreaksAfter)
 CPH.Controls.Add(lit)

 Case "HYPERLINK"
 Dim hlnk As New HyperLink()
 If Params.Length > 0 Then hlnk.Text = Params(0)
 If Params.Length > 1 Then hlnk.NavigateUrl = Params(1)
 CPH.Controls.Add(hlnk)
 If ContentBreaksAfter > 0 Then
 Dim lit As New Literal
 SetupBreakLiteral(lit, ContentBreaksAfter)
 CPH.Controls.Add(lit)
 End If

 Case "IMAGE"
 Dim img As New Image()
 If Params.Length > 0 Then img.ImageUrl = Params(0)
 CPH.Controls.Add(img)
 If ContentBreaksAfter > 0 Then
 Dim lit As New Literal
 SetupBreakLiteral(lit, ContentBreaksAfter)
 CPH.Controls.Add(lit)
 End If

 Case "LINKIMAGE"
 Dim hlnk As New HyperLink()
 If Params.Length > 0 Then hlnk.ImageUrl = Params(0)
 If Params.Length > 1 Then hlnk.NavigateUrl = Params(1)
 CPH.Controls.Add(hlnk)
 If ContentBreaksAfter > 0 Then
 Dim lit As New Literal
 SetupBreakLiteral(lit, ContentBreaksAfter)
 CPH.Controls.Add(lit)
 End If

 Case "USERCONTROL"
 If Params.Length > 0 Then
 Dim ctrl As UserControl = CType(LoadControl(_
 "~/ContentManagement/UserControls/" & Params(0)), _
 UserControl)
 CPH.Controls.Add(ctrl)

6293_ch13.fm Page 605 Monday, November 14, 2005 4:28 PM

606 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

 If ContentBreaksAfter > 0 Then
 Dim lit As New Literal
 SetupBreakLiteral(lit, ContentBreaksAfter)
 CPH.Controls.Add(lit)
 End If
 End If

 End Select

 End If

 End While

 Dr.Close()
 DbConn.Close()

 End Sub

End Class

Class Variables

This class has three variables—_PageID, _Title, and _MasterPage—that correspond to the PageID,
Title, and MasterPage columns in the Page table of the content database. These variables are
acquired in the AcquirePageInfo function.

AcquirePageInfo Function

This function serves two purposes. Remember the virtual page information that was stored in
the context object in the ContentManagementHandler? AcquirePageInfo uses the virtual page
information to look up the page record in the content database. The content database connec-
tion string is defined with the key “Database” in the <connectionStrings> section of
Web.config.

If the record for the virtual page is found, then the function populates the _PageID, _Title,
and _MasterPage variables with the data from the record. It also sets the return value for the
function to True because the record was located. If the record isn’t located, then the function
will return False.

Page_PreInit Method

Another new feature in ASP.NET 2.0 is the Page.PreInit event. This event fires before the
Master Page for the web form has been loaded, so you can specify or change a Master Page for
a web form in this event. Master page information is loaded directly after this event method is
executed, so any attempt to change the Master Page after the Page.PreInit event fires will
result in an error.

Before the Master Page can be specified, however, the method needs to know which
Master Page the requested virtual page wants to use. So, Page_PreInit calls AcquirePageInfo.
If the page information is acquired successfully, then Page_PreInit will set the Title and

6293_ch13.fm Page 606 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 607

MasterPageFile properties for the page. If not, the user is redirected to a page indicating that
they have requested an invalid page.

Page_PreLoad Method

After the Master Page has been loaded, the Page_PreLoad method executes. This method is new
in ASP.NET 2.0 and is a great location for setting up content because it executes after the
Master Page has been loaded, but before the Page.Load event has fired. Many UserControls
need to respond to the Page.Load event, so they have the opportunity to do so if they are added
in this method.

All the content logic is handled in the LoadPageContent method, so this method just calls
LoadPageContent and allows it to process content for the virtual page.

SetupBreakLiteral Method

Before jumping into the LoadPageContent, let’s discuss the SetupBreakLiteral method, which
accepts a Literal control named lit and an Integer named Count as parameters. A Literal
control is an ASP.NET control used to output raw HTML text.

This method is designed to add as many HTML line breaks (
) to the end of the Literal
control as are specified in the Count parameter. This method is used in conjunction with the
ContentBreaksAfter field in the Content table of the database (refer to Table 8-5) to add white
space between content elements.

LoadPageContent Method

Now we come to the lengthy LoadPageContent method that contains the page rendering logic.
It is responsible for retrieving page content records from the database, reading those content
records, assembling the appropriate controls to display that content, and outputting the
content to the appropriate ContentPlaceHolder on the Master Page. Let’s see how it works.

LoadPageContent uses a number of different variables to help execute database queries,
store database values, and maintain control references. Table 8-6 contains a listing of the vari-
ables found in the method and their purposes.

Table 8-6. Variables in the LoadPageContent Method

Name Type Description

CPH ContentPlaceHolder Holds a reference to the active Content➥
PlaceHolder in the Master Page

DbConn SqlConnection Connects to the content-management database

SQL String Stores parameterized SQL query

DbCmd SqlCommand Executes parameterized SQL query

Dr SqlDataReader Stores results of SQL query

ContentType String Stores the Type column from the content record

ContentArea Integer Stores the Area column from the content record

6293_ch13.fm Page 607 Monday, November 14, 2005 4:28 PM

608 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

The LoadPageContent method starts out by establishing a connection to the content data-
base and requesting all the content items that match the _PageID variable. Remember, _PageID
was determined in the AcquirePageInfo function. LoadPageContent then iterates through each
content item using a While loop. The first few lines of code inside the While loop store values
from the data reader into the Content variables (for example, ContentType, ContentArea, and so
on), which makes accessing the content data a bit faster and more manageable in the code.

Notice that the code splits the parameters from the ContentParams string into a string array
and stores the results in Params. This allows individual parameter values to be accessed using
Params(0), Params(1), and so forth. This method requires the parameter string in the database
to be a bit ugly (for example, value1|value2|value3|, and so on), but it works for the sake of this
example. If you so desire, you can implement your own key-value pair splitting routine if you
want to make parameter declaration in the database a bit more user friendly.

After loading the content variables, LoadPageContent uses Master.FindControl to locate
the ContentPlaceHolder into which the content should be placed. Notice that it builds the
ContentPlaceHolder control name by concatenating “Area” and the ContentArea integer value.
This produces names such as “Area1”, “Area2”, and so on, which match our naming conven-
tion for ContentPlaceHolders in the Master Page. If the FindControl method locates the
ContentPlaceHolder, then it returns a reference to the control. Otherwise, the method returns
Nothing. Either way, the FindControl result is stored in the CPH variable.

The next line in the method checks to see if the CPH variable is set to Nothing. If so, it means
the ContentPlaceHolder for the content could not be located, and the method simply moves on
to the next piece of content. If CPH points to a valid ContentPlaceHolder, then the method sets
out to add the content to the control.

Finally, we get to the content creation section of the LoadPageContent method. This section
determines which ContentType is being requested using a Select Case statement. The only
valid values for the ContentType are Title, Paragraph, Hyperlink, Image, LinkImage and User➥

Control. Each content type requires a specific ASP.NET control to be instantiated, initialized,
and added to the control referenced by the CPH variable.

ContentParams String Stores the Params column from the content record

ContentBreaksAfter Integer Stores the BreaksAfter column from the content
record

Params String() Stores the parameter list in a String array after
ContentParams is split using the pipe (|) as the
delimiter

lbl Label Holds a reference to a Label control when adding
a Title or Paragraph content to the page

hlnk Hyperlink Holds a reference to a Hyperlink control when
adding a Hyperlink or LinkImage content to the
page

ctrl UserControl Holds a reference to a UserControl when adding
UserControl content to the page

Table 8-6. Variables in the LoadPageContent Method (Continued)

Name Type Description

6293_ch13.fm Page 608 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3

■

 U S I N G H T T P H A N D L E R S

609

Each piece of content uses a specific ASP.NET control to hold the content and has a
specific set of parameters. Table 8-7 shows a list of content types, the ASP.NET controls used to
create the content, descriptions of the content, and information on their parameters.

All the content creation routines are fairly similar, so, for the sake of brevity, I’ll only cover
the creation of “Title” content. The first line of the title creation code instantiates a new

Label

object that will house the title content. It was arbitrarily determined that titles in this content-
management system should be bold, underlined, and have a 12-point font size. You can see
these properties are set for the label object right after it is created. Titles are only supposed to
have one parameter, the text that appears in the title. The code checks to make sure that the
one parameter exists by checking if

Params.Length

 is greater than

0

, and then assigns

Params(0)

to the

Text

 property of the

Label

. Then, the

Label

 object is added to the

ActiveCPH

 area using

ActiveCPH.Controls.Add(lbl)

.
After the title label has been added, the title-creation code checks to see if any line breaks

should appear after the label. If so, the method creates a new

Literal

 control, sends it to the

SetupBreakLiteral

 method (which adds

 tags to the

Literal

), and then adds the

Literal

 to
the

ActiveCPH

 area, effectively adding breaks after the title.

Web User Controls and the NoActionForm

One feature of the content-management system is the ability to load user controls. This means
that you can create server-side code for those user controls that responds to events. This
means that you’ll be dealing with postbacks that fire those events. And this means that you’ll
have a problem.

When the server-side form from an ASP.NET page is rendered, it includes an

action

attribute that identifies the page to which the form should be submitted. On normal pages this
isn’t an issue because the

action

 attribute points to a page that really exists. In the content-
management system, however, it is an issue because the

action

 attribute will be set to the page
that handled the request, not the page that was originally requested. Thus, all forms attempt to
submit to

FrontConroller.aspx

 because it handles all requests for virtual pages. When a post-
back is submitted to

FrontController.aspx

, the

ContentManagementHandler

 assumes a virtual

Table 8-7.

 Content Types in the Content-Management System

Name Object Parameters

Title Label Param(0) - Title

 text (may include HTML)

Paragraph Label Param(0) – Paragraph

 text (may include HTML)

Hyperlink Hyperlink Param(0) – Link

 text (may include HTML)

Param(1) – Link

 location

Image Image Param(0) – Image

 URL

LinkImage Hyperlink Param(0) – ImageURL
Param(1) – Link

 location

Usercontrol Usercontrol Param(0) – Usercontrol

 location relative to the

ContentManagement\UserControls

 folder

6293_ch13.fm Page 609 Tuesday, November 15, 2005 6:10 PM

610 C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S

page is being requested, so it tells FrontController.aspx to try to find a virtual page named
FrontController.aspx, which does not exist. This causes the user to be redirected to the
Invalid.aspx page.

This issue is relatively easy to get around. If a <form> tag does not contain an action
attribute, then it submits to the same page the browser requested. Because the browser is
requesting a virtual page, it submits back to that virtual page, which is the behavior you desire.
Implementing this solution requires you to implement your own HTML Form control that
outputs a <form> tag without the action attribute. Fortunately, ASP.NET already has an HTML
form control from which you can inherit, so the process is painless (see Listing 13-21).

Listing 13-21. ActionlessForm Control

Imports System.Web.UI.HtmlControls

Public Class ActionlessForm
 Inherits HtmlForm

 '***
 Protected Overrides Sub RenderAttributes(_
 ByVal writer As System.Web.UI.HtmlTextWriter)
 writer.WriteAttribute("name", Me.Name)
 writer.WriteAttribute("method", Me.Method)
 Attributes.Render(writer)
 End Sub

End Class

Creating a <form> element without an action parameter only requires that you inherit from
the HtmlForm control and override the RenderAttributes method. The HtmlForm control
normally creates the action attribute inside of the RenderAttribute method, so overriding the
method effectively omits the action attribute. There are, however, important attributes that
need to be output, such as the name and method attributes. You can see that these are explicitly
output in the overridden method. Attributes.Render(writer) will output any additional
attributes that were defined by the user directly in the control declaration.

You need to use the ActionlessForm control on all the templates that you create. This
requires that you add a reference to the control to the top of the page (or Web.config if you so
choose) as shown in Listing 13-22.

Listing 13-22. Registering and Using the ActionlessForm Control on a Page

<%@ Register TagPrefix="cc" Namespace="Handlers" Assembly="Handlers" %>

Then replace the <form runat=server> and </form> tags with the following:

<cc:ActionlessForm id="form1" runat="server">
 <!-- ASP.NET controls go here -->
</cc:ActionlessForm>

With this in place, your pages can postback to the appropriate location.

6293_ch13.fm Page 610 Monday, November 14, 2005 4:28 PM

C H A P T E R 1 3 ■ U S I N G H T T P H A N D L E R S 611

Next Steps for the Content-Management Backend
At this point, you have the backend for a content-management system and a number of
different options ahead of you. You can extend the functionality by implementing more
content types. You can build out a frontend for the system and allow people to create entire
sites using this framework. You can even use the content-management system in your applica-
tions to easily allow instructions or informative text to be changed and updated. There are a
number of different ways you can leverage content management in your application and busi-
ness, so be on the lookout for them.

Summary
It should be obvious at this point that HTTP Handlers can be used to accomplish a variety of
different tasks. In this chapter alone, you have seen them used to ensure files download with
the appropriate names, generate reports, create thumbnail images, and even implement a
content-management system.

Keep HTTP Handlers in the back of your mind when you’re analyzing business issues
because they can be very powerful solutions in certain situations. You may also want to look
into HTTP Modules and Handler Factories if you want a more in-depth understanding of the
HTTP Pipeline and how you can use it to your advantage.

6293_ch13.fm Page 611 Monday, November 14, 2005 4:28 PM

6293_ch13.fm Page 612 Monday, November 14, 2005 4:28 PM

613

Index

■

Symbols

<add>

 element 568

<appSettings

>

 section 9

<asp:WizardStep>

 element 444

<configSection

>

 element 19

<configuration>

 section 28

<connectionString>

 element 10

<credentials>

 element 530

<FieldSet>

 HTML tag 284

<form>

 element 610

<forms>

 element 156

<MachineKey

>

 element 164, 176

<Personalizable>

 attribute 288

<providers>

 element 174

<roleManager>

 section 175

<WebPartsTemplate

>

 element 280

<ZoneTemplate>

 element 277

■

Numerics

401 Unauthorized HTTP errors 507

■

A

access

content pages 101

custom configuration data 30

grouped profile property 215

least privileged 498

Master Pages 101

NTFS 522–526

roles 166

rules 5, 187

tokens 497, 501–504

Web Site Administration Tool 178

accounts 496

adding 524

delegation, configuring 534

least privileged access 498

accuracy of anonymous profiles 226

AcquireInterface function 318

AcquirePageInfo function 606

acquiring

algorithms 551

ICryptoTransform objects 552

references, Generic Web Part class 266

acquisition method (user roles) 161

ActionlessForm control 610

Active Server Pages (ASP) 1

ActiveStepChanged event 449

ActiveStepIndex property 445

actual requests 512

Add Connection screen 291

Add Employee Wizard

business objects/utility functions 457–464

creating 456–472

Add function 37, 79, 461

Add New Item dialog box 13, 95

Add New Project dialog box 21

Add Reference dialog box 27, 141

Add/Edit Application Extension Mapping
dialog box 522, 567

adding

access rules 187

accounts 524

CatalogZone control properties 278

classes 13

content pages 98

5467_IX.fm Page 613 Wednesday, November 16, 2005 5:46 PM

614

■

I N D E X

custom configuration sections 29

custom verbs to Web Parts 310–312

EditorZone control 284

groups 524

Master Pages 95

PageCatalogPart control 282

products (to shopping carts) 238–241

references 141

roles 185

steps to Wizard control 442–445

themes 105

users 181, 185, 189–190

Web Parts 272, 280, 282

Web.config files 13

Wizard controls 438–454

AddLabelText method 166

administration.

See also

 management

Web Site Administration Tool 2–6

Advanced Security Settings dialog box 525

advertisements, creating 230–233

algorithms

getAlgorithm function 551

hashing 542

Rijndael 546

allowing permissions 525

AllowSetFocus property 137

analysis, exceptions 67–91

AND-based RoleGroups 201

Anonymous authentication 506, 516, 527

anonymous profiles 221

enabling 222–226

migration code, creating 229–230

properties

avoiding nonanonymous 227

default values 228–229

defining 227

AnonymousTemplate 199

AppearanceEditorPart control 285

Application Configuration dialog box 521, 567

Application Factory 509, 562

Application tab (Web Site Administration
Tool) 6

Application_Start method 82

application-level impersonation,
configuring 533

applications

class libraries, referencing 27

classes, adding 13

configuring 9

<appsettings>

 9

<connectionString>

 10

guidelines 11–12

custom configuration section (sample) 20

Error events 66

exception management 45

analysis 67–91

customizing classes 54–57

error propagation 59–61

Finally keyword 52–53

global error handling 62–66

inner exceptions 57–59

multiple Catch statements 48–51

overview of 46–61

Throw keyword 53–54

Try Catch statements 46–48

When clause 51–52

Master Pages, defining default 102

object security 509–510

roles, viewing 164

strongly typed configuration classes 13

applying 108

anonymous profile identification 225

Config class 16

custom exceptions 55

DateTimeWebPart class 304

DateTimeWebPart2 class 309

HTTP Handlers 563–564

PageMessageControl class 147–148

AppSettings objects, caching 18

5467_IX.fm Page 614 Wednesday, November 16, 2005 5:46 PM

615

■

I N D E X

architecture

content management 594

cryptography 546

custom configuration section 19

HTTP Handlers 583

logging exceptions 68

security 504–512

skinned page-message controls 125

ArgumentNullException 53

ASP (Active Server Pages) 1

ASP.NET

authentication 511

custom error pages, defining 64–66

default error pages, defining 62

errors, 62

HTTP Handlers, configuring 568–570

ISAPI

extensions 509

filters 561

security configuration settings 526–536

ASP.NET 2.0 configuration tools 2–8

aspect ratios 589

aspnet_regiis.exe command-line utility 537

AspNetActiveDirectoryMembershipProvider
167

AspNetSqlMembershipProvider 175

AspNetSqlRoleProvider 176

assemblies, namespaces 28

asymmetric cryptography 546

attachments (email) 203

attacks, avoiding injection (SQL) 35

attributes

ConnectionProvider 315

connectionStringName 175

enableExport 323

EncType 485

HeaderText 274, 277

<Personalizable>

 288

personalizable properties 295

TagPrefix 140

ToolboxData 147

authentication 497

Anonymous 516, 527

ASP.NET 511

Basic 517

configuring 507

data stores 160

Digest 518

forms 152–155, 528

configuring 155–159

cookies 155

implementation 159–166

login 156

IIS 506–508

Integrated Windows Authentication 507,
519

Kerberos 519

methods, mixing 519

modes 153

Security Setup Wizard 184

Security tab (Web Site Administration
Tool) 181

Windows 153

Windows Authentication 527

Authentication Methods dialog box 516

authorization 5, 497, 498–504

ASP.NET, configuring 531

file modules 511

public folders 533

shared scope (Web Parts) 257

tickets 161

Auto Format dialog box 195

avoiding

broken file links 475

Server.Transfer method 579

SQL injection attacks 35

5467_IX.fm Page 615 Wednesday, November 16, 2005 6:24 PM

616

■

I N D E X

■

B

backups, databases 476

Base64 encoding 547

Basic authentication 506, 517

BasicWizard.aspx 439

behavior

ControlState, viewing 120

permissions 525

of shared scope items 256

WebPartZone control, defining 275

BehaviorEditorPart control 261, 286

binding file names (XlsReportHandler) 581

Boolean variable store flags 470

bounding regions, WebPartZone controls 274

broken file links, avoiding 475

BrowseDisplayMode 253

browsers, authentication 507

btnDelete_Click method 91

btnUpload_Click method 485

building

demo pages (shopping carts) 241–247

FrontController.aspx page 601

FrontController.aspx web form 602

login forms 160

skinned page-message controls 121–148

targeted advertisement example pages 231

ThumbnailHandler class 585

Web Parts 293–309

XlsReportHandler 573–578

business objects 457–464

buttons

Events 452

Previous 448

properties 441

Upload 487, 490

■

C

caching

AppSettings objects 18

ConnectionStrings objects 18

CancelButton 441

Cart class 236

Cascading Style Sheet (CSS) 93, 105

CatalogDisplayMode 253

CatalogPart control 282

CatalogZone control 254, 278

CategoryTracking profile properties 233

CBC (Cipher Block Chaining) 546

ChangePassword control 208–210

CheckEmpty function 76

checking shared scope authorization 257

Cipher Block Chaining (CBC) 546

class library, referencing 27

classes 459

adding 13

Cart 236

Config

applying 16

error handling 17

ControlStateExample 117

Data 457

DataConfig

creating 37

properties 39

DateDisplayWebPart 303

DateTimeWebPart 299, 304

DateTimeWebPart2 307

configuring 309

deploying 309

EmployeeCollection 462

End 237

ExceptionLog 70–77

ExceptionLogCollection 77–80

ExceptionLogger 80–84

GenericWebPart 259, 266

Hash 545

HashAlgorithm 543

HttpPostedFile 479

5467_IX.fm Page 616 Wednesday, November 16, 2005 5:46 PM

617

■

I N D E X

IconConfigurationHandler,
implementing 24

MessageData 126, 131

MessageDataCollection 126, 132–139

MustInherit 298

NegativeNumberException 55

PageMessageControl 126, 133

applying 147–148

constructors 136

creating skin files 142–147

private variables 136

referencing 141

PageMessageControlDesigner 126

Part 262

Product 234

profile property, implementing 215–217

ProfileInfo 219

ProfileManager 219–221

RegisterStartupScript 138

reusable hashing, creating 543

skinned page-message controls 126

SkinnedWebControl 126, 128–132

strongly typed configuration 12–19

System.ArithmeticException 55

System.Exception 46

ThumbnailHandler 585

variables 606

WebPart 263

WebPartManager 266

WebPartUserControl 295, 298

WebZone 273

clauses, When 51–52

clearing

ControlState 119

shopping carts 246

clients

files

servers, moving to 486

uploading 481

HTTP Handlers 558-570

applying 563–564

configuring 568–570

design 579–580

HTTP Pipeline process 559–563

IHttpHandler interface 564–566

mapping file extensions 566–567

thumbnail generation 583–594

closing Web Parts 258

code

configuration strategies 1–2

ExceptionLogger class, applying to 84

Hash class 545

Master Pages, modifying 103

migration, anonymous profiles 229–230

themes 108

Try Catch statements 47

XlsReportHandler class 574

Cold Fusion 561

COM (Component Object Model) 57

COMException 57

commands, ExecuteScalar() 461

Common Tasks menu 194

communications, encrypting 522

Component Object Model (COM) 57

components, Web Parts framework 250–259

Config class

applying 16

error handling 17

configuration

account delegation 534

Add Employee Wizard 456–472

application-level impersonation 533

applications 9

<appsettings>

 9

<connectionString>

 10

guidelines 11–12

authentication 155, 156–159, 507

authorization 5

5467_IX.fm Page 617 Wednesday, November 16, 2005 5:46 PM

618

■

I N D E X

CatalogZone controls 279

Configuration Settings tool 8

connections 288–293

content templates 600

ContentManagementHandler 598, 600

custom sections 19–33

data structures, creating 21

DateTimeWebPart2 class 309

dynamic connections 320

EditorZone control 284

Enabled property 268

ExportMode 325

files, exporting Web Parts 323–325

HTTP Handlers 568–570

ImportCatalogPart control 282

membership providers 174

Membership objects 173–177

MessageConsumer Web Past 317

MessageProvider Web Part 315

messaging Web control projects 128

modifying 8

PageControlPart control 281

Report Pages 571–573

reusable hashing classes 543

roles 175, 192

Roles objects 173–177

security 182–189, 512–536

ASP.NET 526–536

encryption 536–541

EncryptionLibrary function 554–555

hashing 541–546

IIS 513–522

NTFS 522–526

two-way encryption 546–554

settings, storing 33–43

shopping carts 233–237

static ConnectionString properties 82

static connections 267, 319

strategies 1–2

strongly typed classes 12–19

tables, creating 485

ThumbnailHandler 591

tool 2–8

user-level impersonation 534

values

reading from databases 37

writing to databases 38

Web Parts

building 293–309

connecting 313

customizing 288

properties 283

zones 277

Wizard controls 438–454

adding steps 442–445

events 440–442

layout 438–440

navigation 445–450

properties 440–442

templates 450–454

worker processes 536

XlsReportHandler 581

Configuration Settings tool 8

Connect verb 320

ConnectionDisplayMode 253

ConnectionProvider attribute 315

connections

defining 320

dynamic, configuring 320

providers 317

static

configuring 267, 319

defining 272

Web Parts 252, 313–322

ConnectionString property 82

connectionStringName attribute 175

ConnectionStrings objects, caching 18

ConnectionsZone control 255, 288–293

5467_IX.fm Page 618 Wednesday, November 16, 2005 5:46 PM

619

■

I N D E X

constructors, PageMessageControl class 136

ContactList.aspx 100

containers, Web Part zone controls 273

content management 564, 594–611

content pages, accessing 98, 101.

See also

Master Pages

content preferences, tracking 230

ContentManagementHandler, configuring
598

ContentPlaceHolderID property 99

ContentPlaceHolders property 99

context (security) 497, 509–510

Context.User object 171

ContinueDestinationPageUrl property 208

controls

ActionlessForm 610

AppearanceEditorPart 285

BehaviorEditorPart 261, 286

CatalogZone 278

ConnectionsZone 288–293

CreateUserWizard 186

customization, registering 308

DeclarativeCatalogPart 280, 281, 309

EditorZone 253, 283

HtmlInputFile 478

ImportCatalogPart 282, 323

Label 101

LayoutEditorPart 287

libraries, defining tag prefixes 139–140

login 192–210

ChangePassword 208–210

CreateUserWizard 206–208

creating templates 194–196

LoginName 205

LoginStatus 205

LoginView 199–202

PasswordRecovery 202–204

templates 193–194

MessageConsumer 313

MessageProvider 313

new features 112–115

PageControlPart 281

PasswordRecovery 194

Product User 242

ProductDisplayer.ascx 238

PropertyGridEditorPart 288

proxyWebPartManager 272

servers

defining skinned controls 122

developing with ControlState 115–121

manipulating UserControls 122

skinned page-message, building 121–148

skins 105–109, 277

creating for themes 106

disabling 107

themes 146

user

defining Catalog Parts 281

design-time rendering of 113, 140–141

inheritance 265

registering 304

Web 609

Web

configuring control projects 128

SkinnedWebControl class 128–132

Web Parts 251, 263

WebPartManager 253, 267

WebPartsListUserControlPath 281

WebPartZone 253

Wizard

adding steps 442–445

creating 438–454

events 440–442

layout 438–440

navigation 445–450

properties 440–442

templates 450–454

zones 273

ControlState, developing with 115–121

5467_IX.fm Page 619 Wednesday, November 16, 2005 5:46 PM

620

■

I N D E X

ControlStateCounter variable 117

ControlStateExample class 117

conversion

objects, XML 42

templates 451

Convert to Template menu 450

cookies

authentication 155

authorization tickets 161

creating 164

copying values 471

coupling 123

Create function 25

Create User screen (Security Setup Wizard) 189

CreateAuthenticationTicket method 164

CreateChildControls method, overriding
137, 306

CreatedUser event 208

CreateThumbNail method 591

CreateUserWizard control 186, 206–208

credentials 497

cryptography 546

CSS (Cascading Style Sheet) 93, 105

custom configuration sections 19–33

custom error pages, defining 64–66

custom exception classes, implementing
54–57

Custom Message Interface 315

customization

anonymous profiles 226

authentication, Login control 198

controls, registering 308

skinned controls, defining 122

Web Part 304–309

adding verbs to 310–312

building 293–309

connecting 313–322

controls 263

properties 288

■

D

Data class 457

data replication 476

data stores

authentication 160

Security Setup Wizard 184

data structures, creating 21

databases

backups 476

configuration

reading values from 37

writing to 38

configuration settings, storing 33–43

content management 597

files 474–477, 485–492

objects, serializing/deserializing 41

tables

creating 34, 485

ExceptionLog, creating 69–70

DataConfig class

creating 37

properties 39

Date/Time Display 294

DateDisplayWebPart class properties 303

DateDisplayWebPart.ascx file 298

DateTimeWebPart class 299, 304

DateTimeWebPart2 class 307

configuring 309

deploying 309

DeclarativeCatalogPart control 280, 281, 309

decoupling 122

DecryptByteArray function 554

decryption 546–554

default anonymous property values 228–229

default content Web Parts 256

default error pages, defining 62

default item properties 79

default Master Pages, defining 102

5467_IX.fm Page 620 Wednesday, November 16, 2005 5:46 PM

621

■

I N D E X

defining

access rules 181

anonymous profile properties 227

CatalogZone controls 279

classes, ControlState 117

connections 320

custom configuration sections 27

custom error pages 64–66

DeclarativeCatalogZone control 280

default error pages 62

default Master Pages 102

EditorZone control 284

ExceptionLogCollection class 79

IMessage interfaces 313

ImportCatalogPart control 282

PageControlPart control 281

profile properties 213–214

roles, Security Setup Wizard 185

ShoppingCart property 237–238

skinned controls 122

static connections 272

tag prefixes 139–140

Web Parts 268

properties 294–295

WebPartZone controls 275–277

delegation 497, 501

accounts, configuring 534

DeleteChain function 77

deleting

steps 444, 447

users 192

Web Parts 258

demo pages (shopping carts), building
241–247

denying permissions 525

deployment

DateTimeWebPart class 304

DateTimeWebPart2 class 309

Deserialize function 42

deserializing objects 41

design.

See also

 configuration

content management databases 597

HTTP Handlers 579–580

modes, WebPartZone control 274

DesignDisplayMode 253

design-time rendering 113, 140–141

determining user roles 161

development, server controls 115–121

dialog boxes 524

Add New Item 13, 95

Add New Project 21

Add Reference 27, 141

Add/Edit Application Extension Mapping
522, 567

Advanced Security Settings 525

Application Configuration 521, 567

Authentication Methods 516

Auto Format 195

Error Mapping Properties 65

Folder Properties 501

New Website 128

RoleGroup Collection Editor 201

Run As 503

Select a Master Page 99

Select Users or Groups 524

Difference function 455

Digest authentication 506, 518

directories, virtual 7

DirectoryInfo object 593

disabling

borders 274

control skins 107

profiles 213

ViewState 120

disk space usage, anonymous profiles 226

display modes, Web Parts 253

dissociated profiles 226

domain restrictions 514

5467_IX.fm Page 621 Wednesday, November 16, 2005 5:46 PM

622

■

I N D E X

downloading

files 491

reports 582

drawbacks of anonymous profile
identification 225

dynamic connections, configuring 320

dynamically adding file inputs 481

■

E

ECB (Electronic Code Book) 546

Edit Template menu 451

EditDisplayMode 253

editing

roles 192

steps 444

users 191–192

Web Parts 284

editors, WizardStepCollection 443

EditorZone control 253, 255, 283

Electronic Code Book (ECB) 546

elements

<add>

 568

<asp:WizardStep>

 444

<configSection>

 19

<credentials>

 530

<form>

 610

<forms>

 156

<MachineKey>

 164, 176

<providers>

 174

<WebPartsTemplate>

 280

<ZoneTemplate>

 277

email

password recovery 203

usernames, viewing 204

EmbeddedObjects property 203

Employee class 459

EmployeeCollection class 462

Enabled property 268

enableExport attribute 323

enabling

anonymous profiles 222–226

profiles 213

encapsulation, strongly typed configuration
classes 12–19

encoding, Base64 547

Encrypt method 164

EncryptByteArray function 553

encryption 536–541

communications 522

hashing data 541–546

passwords 176

two-way encryption 546–554

EncryptionLibrary function 554–555

EncryptString function 552

EncType attribute 485

End class 237

enforcing referential integrity 475

entering

text 453

text messages 315

Enterprise Library 68

enumeration

encryption 551

PersonalizationScope 258

ProfileAuthenticationOption 219

Error events 66

error handling, Config class 17

Error Mapping Properties dialog box 65

errors.

See also

 exceptions

ASP.NET 62

custom error pages, defining 64–66

default error pages, defining 62

HTTP 403 498

IIS 62

logging 54

messages 147

propagation 59–61

5467_IX.fm Page 622 Wednesday, November 16, 2005 5:46 PM

623

■

I N D E X

events

ActiveStepChanged 449

CreatedUser 208

Error 66

ItemDataBound 452

MigrateAnonymous 225

NextButtonClick 447

Page.PreInit 606

Page_Load 470

SendingMail 204

WebPartAdding 272

WebPartManager control 269

WebPartMoving 272

Wizard control 440–442

Events button 452

Exception Management Application Block 67

ExceptionID property 90

ExceptionLog class 70–77

ExceptionLog tables, creating 69–70

ExceptionLogCollection class 77–80

ExceptionLogger class 80–84

exceptions

management 45

analysis 67–91

customizing classes 54–57

error propagation 59–61

Finally keyword 52–53

global error handling 62–66

inner exceptions 57–59

multiple Catch statements 48–51

overview of 46–61

Throw keyword 53–54

Try Catch statements 46–48

When clause 51–52

rethrowing 54

reviewing 84–91

wrapping 57–59

ExecuteNonQuery method 488

ExecuteReader method 79

ExecuteScalar function 53

ExecuteScalar() command 461

existing files, transforming 563

existing records, searching 471

existing users, searching 189–191

exporting Web Parts configuration files
323–325

ExportMode 323

Extensible Markup Language.

See

XML

extensions

files, mapping 566–567

ISAPI 508–509

■

F

fields

content management databases 597, 598

ExceptionLog class 76

ExceptionLog table 69

MessageData 319

file systems

files, uploading 474–477

NTFS 522–526

FileAndPath parameter 49

FileBytes property 488

FileNotFoundException 49

files

authorization modules 511

configuration, exporting Web Parts
323–325

databases

retrieving 490–492

saving 485–490

DateDisplayWebPart.ascx 298

existing, transforming (HTTP Handlers)
563

extensions, mapping 566–567

moving 486

names, binding 581

saving 479–480

uploading 477–480

5467_IX.fm Page 623 Wednesday, November 16, 2005 5:46 PM

624

■

I N D E X

databases/file systems 474–477

multiple 480–485

virtual

processing requests (HTTP Handlers)
563

URL rewriting 570–583

Web.config

adding 13

avoiding saving configuration settings
in 33

defining profile properties 213–214

encryption 539

sections 9

<appsettings>

 9

<connectionString>

 10

Files property 485

FileUpload control 478–480

filters, IIS/ISAPI 561

Finally keyword 52–53

FindControl method 101

FinishCompleteButton 441

FinishNavigationTemplate 439

FinishPreviousButton 441

Firefox, authentication 507

Folder Properties dialog box 501

folders

Picture (thumbnails) 591

public, authorization 533

thumbnails, viewing 593

formatting.

See also

 configuration

Auto Format 195

configuration data structures 21

content pages 98

ControlState demo pages 119

cookies 164

CSS 93.

See also

 CSS

database tables 34

DataConfig class 37

icon display pages 31

Master Pages 94–104

shopping carts 233–237

simple targeted advertisements 230–233

static ConnectionString properties 82

tables, ExceptionLog 69–70

templates 194–196

themes 105

Web Parts 251

Wizard controls 438–440

forms

authentication 152–155, 528

configuring 155, 156–159

cookies 155

implementing 159–166

login 156

Security Setup Wizard 184

HTML, uploading files 477–480

login, building 160

frameworks (Web Parts components)
250–259

front-controller patterns 564

FrontController.aspx page, building 601

FrontController.aspx web form, building 602

functionality

message lists 137

system message 136

Web Parts 266

zones 273

functions

AcquireInterface 318

AcquirePageInfo 606

Add 37, 79, 461

CheckEmpty 76

Create 25

DecryptByteArray 554

DeleteChain 77

Deserialize 42

Difference 455

EncryptByteArray 553

EncryptionLibrary 554–555

5467_IX.fm Page 624 Wednesday, November 16, 2005 5:46 PM

625

■

I N D E X

EncryptString 552

ExecuteScalar 53

GenerateIV 551

GetAge 218

GetAlgorithm 551

GetCryptoTransformer 552

GetFormData 83

GetGenericWebPart 266

GetHistory() 447

GetQueryString 83

GetReportName 576

GetSection 31

GetSizeMultiplier 589

GetUserRoles 161

GetVirtualPage 599

Guid.NewGuid() 83

LoadByID 76

LoadSkin 131

MapData 77

MustOverride 295

NoActionForm 609

PassBackConsumerData 317

ProvideInterface 315

Save 76

Send 57

SerializeToXML 42

Soundex 455

utility 457–464

future of file systems 477

■

G

Gainsboro background 452

GenerateIV function 551

generating

keys 551

thumbnails 564, 583–594

GenericWebPart class 259, 266

GetAge function 218

GetAlgorithm function 551

GetContentType method 588

GetCryptoTransformer function 552

GetCurrentWebPartManager method 266

GetFormData function 83

GetGenericWebPart function 266

GetHistory() function 447

GetImageFormat method 588

GetQueryString function 83

GetRedirectUrl method 164

GetReportName function 576

GetSection function 31

GetSizeMultiplier function 589

GetToWork() method 4

GetUserRoles function 161

GetVirtualPage function 599

global error handling 62–66

global tag registration 113–115

Globally Unique Identifier (GUID) 18

gridExceptionChain_RowDataBound
method 91

GridView exceptions, viewing 85

groups

adding 524

profile property, creating 214–215

sections 28

GUID (Globally Unique Identifier) 18

Guid.NewGuid() function 83

guidelines, configuration 11–12

■

H

Handler Factory 562

hard-coding applications 1

HasFile property 485

Hash class 545

HashAlgorithm class 543

hashing data 541–546

HeaderText attribute 274, 277

height ratios 589

HelloWorldHandler example 569

5467_IX.fm Page 625 Wednesday, November 16, 2005 5:46 PM

626

■

I N D E X

hiding Web Parts 258

Home tab (Web Site Administration Tool)
178

HTML (Hypertext Markup Language)

<FieldSet>

 tag 284

forms, uploading files 477–480

HtmlInputFile control 478

HTTP 403 errors 498

HTTP Handlers 558–570

applying 563–564

configuring 568–570

design 579–580

file extensions, mapping 566–567

HTTP Pipeline process 559–563

IHttpHandler interface 564–566

thumbnail generation 583

HTTP Modules 562

HttpApplication object 510, 562

HttpPostedFile class 479

hyperlink reports 582

■

I

icon display pages, creating 31

IconConfigurationHandler class,
implementing 24

IconData property 31

ICryptoTransform object 546, 552

IDE (Integrated Development Environment) 2

identification, enabling profiles 222–226

IHttpHandler interface 564–566

IIS (Internet Information Server) 2

authentication 506–508

authorization 506

custom error pages, defining 64

errors 62

filters 561

HTTP Pipeline process 559–563

property page 6–8

security, configuring 513–522

Windows Authentication 153

images (thumbnails), generating 564

IMessage interface, defining 313

immutable Web Parts 256

impersonation 497, 500

application-level, configuring 533

examples of 501–504

user-level, configuring 534

implementation

authentication 159–166

custom Web Parts 304–309

adding verbs to 310–312

connecting 313–322

IconConfigurationhandler class 24

IHttpHandler interface 564–566

skinned controls 123–124

UserControl-based Web Parts 295–305

ImportCatalogPart control 282, 323

indexes

ActiveStepIndex property 445

zones 312

individual providers, selecting 180

inheritance

MustInherit class 298

permissions 525

user controls 265

Web Part class 263

WebPartUserControl class 298

zones 273

initial requests, sending 506

initialization

skins 139

vectors 551

InitializeSkin abstract method 130

injection attacks (SQL), avoiding 35

InnerException property 46

INSERT statement 461

Integrated Development Environment (IDE) 2

Integrated Windows Authentication 507, 519

integrity, enforcing referential 475

5467_IX.fm Page 626 Wednesday, November 16, 2005 7:00 PM

627

■

I N D E X

interfaces

AcquireInterface function 318

Add Connection screen 291

connections 313

Custom Message Interface 315

IHttpHandler 564–566

IMessage, defining 313

ISAPI 508

IWebPart 251, 295–305

IWebParts 263

Manage Existing Connections screen 290

No Active Connections screen 290

Web Parts, IWebParts 259–293

Internet Explorer authentication 507

Internet Information Server (IIS) 2

authentication 506–508

authorization 506

custom error pages, defining 64

errors 62

property page 6–8

security, configuring 513–522

Windows Authentication 153

Internet Protocol (IP)

addresses, IIS authorization 506

restrictions 506, 514

Internet Server Application Programming
Interface.

See

 ISAPI

intranets, Security Setup Wizard 184

IP (Internet Protocol)

addresses, IIS authorization 506

restrictions 506, 514

ISAPI (Internet Server Application
Programming Interface) 508

extensions 508–509

filters 561

ItemDataBound event 452

items

default properties 79

shared scope, behavior of 256

IWebParts interface 259–293

■

J

Java Server Pages (JSP) 561

JavaScript, dynamically adding file input 482

JSP (Java Server Pages) 561

jumping, disallowing 471

■

K

Kerberos authentication 506, 519

keys, generating 551

keywords

Finally 52–53

Throw 53–54

■

L

Label control 101

labels, adding text 166

LANs (local area networks) 184

LayoutEditorPart control 287

layouts.

See also

 formatting

Web Parts 251

Wizard control 438–440

least privileged access 498

libraries

classes, referencing 27

controls, defining tag prefixes 139–140

encryption, creating 547

EncryptionLibrary function 554–555

links

broken file, avoiding 475

modifying 453

reports 582

lists

groups, adding accounts/groups 524

message functionality 137

ShowExceptionList.aspx 84

Web Parts 281

LoadAll method 80

LoadByID function 76

LoadChain method 79

LoadControlState method 118

5467_IX.fm Page 627 Wednesday, November 16, 2005 5:46 PM

628

■

I N D E X

loading ControlState 118, 119

LoadPageContent method 607

LoadSkin function 131

local area networks (LANs) 184

Log method 83

Log4Net 68

logging

errors 54

exceptions 67–91

logic, adding product 239

logical backward navigation 471

login

authentication 156

controls 192–210

ChangePassword 208–210

CreateUserWizard 206–208

creating templates 194–196

LoginName 205

LoginStatus 205

LoginView 199–202

PasswordRecovery 202–204

templates 193–194

forms, building 160

LoginName control 205

LoginStatus control 205

LoginView control 199–202

■

M
maintenance, Web Site Administration Tool

2–6

Manage Existing Connections screen 290

management

content 564, 594–611

exceptions 45

analysis 67–91

customizing classes 54–57

error propagation 59–61

Finally keyword 52–53

global error handling 62–66

inner exceptions 57–59

multiple Catch statements 48–51

overview of 46–61

Throw keyword 53–54

Try Catch statements 46–48

When clause 51–52

forms authentication 152–155

configuring 155, 156–159

cookies 155

implementing 159–166

login 156

login controls 192–210

ChangePassword 208–210

CreateUserWizard 206–208

creating templates 194–196

LoginName 205

LoginStatus 205

LoginView 199–202

PasswordRecovery 202–204

templates 193–194

Master Pages 94–104

Membership objects 167–170

configuring 173–177

programming 173

profiles

creating property groups 214–215

defining properties 213–214

enabling/disabling 213

implementing property classes 215–217

overview of 212

Profile object 212–213

ProfileManager class 219–221

strongly typed properties 218–219

ProxyWebPartManager control 272

Roles objects 171–173

configuring 173–177

programming 173

Web Parts 274

Web Site Administration Tool 2–6,
178–192

WebPartManager control 253, 267

5467_IX.fm Page 628 Wednesday, November 16, 2005 5:46 PM

629■I N D E X

manipulating UserControls 122

ManualFormAuthWebsite 153

manually implementing Forms
Authentication 159

MapData function 77

mapping

file extensions 566–567

thumbnail requests 584

markup

content templates, creating 600

DateDisplayWebPart.ascx file 298

Master Pages 94–104

accessing 101

code, modifying in 103

content templates, creating 600

default, defining 102

nested 103

Master property 101

MasterPage type 101

members, WebPart class 263

membership

configuring 174

providers 3

Membership objects 167–170

configuring 173–177

programming 173

menus

Convert to Template 450

Edit Template 451

Message property 46

MessageConsumer control 313

MessageConsumer Web Part, configuring
317

MessageData class 126, 131

MessageData field 319

MessageDataCollection class 126, 132–139

MessageProvider control 313

MessageProvider Web Part, configuring 315

messages

Custom Message Interface 315

errors 147

list functionality 137

pages 147

skinned page-message controls 121–148

system 136, 148

text, entering 315

Messaging Components section 141

messaging Web control projects, configuring
128

methods

AddLabelText 166

Application_Start 82

authentication, mixing 519

btnDelet_Click 91

btnUpload_Click 485

CreateAuthenticationTicket 164

CreateChildControls, overriding 130–131,
137–138, 306–309

CreateThumbNail 591

Encrypt 164

ExecuteNonQuery 488

ExecuteReader 79

FileUpload control 478

FindControl 101

GetContentType 588

GetCurrentWebPartManager 266

GetImageFormat 588

GetRedirectUrl 164

GetToWork() 4

gridExceptionChain_RowDataBound 91

HttpPostedFile 479

InitializeSkin abstract 130

LoadAll 80

LoadChain 79

LoadControlState 118

LoadPageContent 607

log 83

Membership objects 169

MoveNextZoneClick 312

MovePrevZoneClick 312

5467_IX.fm Page 629 Wednesday, November 16, 2005 5:46 PM

630 ■I N D E X

OnPreRender 309

Page_Load 91

Page_PreLoad 607

Page_PreRender 233

pageParser.GetCompiledPageInstance 580

ProcessRequest 577, 588, 599

ProfileManager class 220

RedirectFromLoginPage 161

RemoveSystemMessage 148

Render, overriding 304

RetrieveThumbnail 589

Roles object 172

SaveControlState 118

Server.Transfer 579

SetupBreakLiteral 607

SetupRepeaterAndPanel 139

SideBarList_ItemDataBound 453

ToggleScope() 258

UserIsInRole 166

verbs 312

WebPartManager control 269

Microsoft authentication, Security Setup
Wizard 184

Microsoft Passport Authentication 154

MigrateAnonymous event 225

migration

code, anonymous profiles 229–230

products (with shopping carts) 247

mixing authentication methods 519

modes

authentication 153

design, WebPartZone control 274

ExportMode 323

portal page display 253

modification

configuration settings 8

display modes 253

encryption 541

links 453

Master Pages (in code) 103

modules

ASP.NET authentication 511

file authorization 511

HTTP Modules 562

URL authorization 511

MoveNextZoneClick method 312

MovePrevZoneClick method 312

moving

CatalogZone controls 279

files 486

forward one step at a time 445

multiple Catch statements 48–51

multiple files

databases, saving to 488

uploading 480–485

multiple zones 277

MustInherit class 298

MustOverride function 295

MyHashAlgorithm 542

■N
Name Not Found dialog box 524

named pipes 561

namespaces, assemblies 28

naming

files, binding 581

roles 185

navigation

logical backward 471

Wizard control 445–450

NegativeNumberException class 55

nested Master Pages 103

networks, Security Setup Wizard 184

New Technology File System. See NTFS

new users, adding 185, 189–190

New Website dialog box 128

NextButtonClick event 447

No Active Connections screen 290

NoActionForm function 609

Notepad.exe 503

5467_IX.fm Page 630 Wednesday, November 16, 2005 5:46 PM

631■I N D E X

notification 48

NT LAN Manager. See NTLM

NTFS (New Technology File System) 522–526

NTLM (NT LAN Manager) 506, 519

■O
objects

application security 509–510

AppSettings, caching 18

business 457–464

ConnectionStrings, caching 18

Context.User 171

databases, serializing/deserializing 41

DirectoryInfo 593

HttpApplication 510, 562

ICryptoTransform 546, 552

Membership 167–170

configuring 173–177

programming 173

Profile 212–213

Roles 167, 171–173

configuring 173–177

programming 173

SqlCommand 37

XML, converting 42

one-way encryption 541–546

OnPreRender method 309

opening Web Site Administration Tool 178

optimization

anonymous profiles 226

files, uploading 476

overriding

CreateChildControls method 131, 137, 306

Render method 304

Verbs property 312

■P
page variables 90

Page.PreInit event 606

Page_Load event handler 303, 470

Page_Load method 91

Page_PreLoad method 607

Page_PreRender event handler 303

Page_PreRender method 233

PageCatalogPart control 258, 281

PageMessageControl class 126, 133, 141

applying 147–148

constructors 136

private variables 136

skin files, creating 142–147

PageMessageControlDesigner 126

PageMessageDefault.ascx skin 126

PageMessageIcons.ascx skin 126

PageMessageJScriptAlert.ascx skin 126

PageParser.GetCompiledPageInstance
method 580

pages

content 98, 101

demo (shopping carts), building 241–247

Master Pages 94–104

accessing 101

defining default 102

modifying in code 103

nested 103

WebPartManager control 272

messages 147

skinned page-message controls 121–148

targeted advertisement example, building
231

themes, applying 108

parameters

<add> element 568

Create function 25

FileAndPath 49

passing 579

RegisterStartupScript class 138

Parameters collection 37

Part class 262

PassBackConsumerData function 317

passing parameters 579

5467_IX.fm Page 631 Wednesday, November 16, 2005 5:46 PM

632 ■I N D E X

Passport Authentication 154

PasswordRecovery control 194, 202–204

passwords. See also security

encrypting 164

encryption 176

login form, building 160

viewing 204

PathTooLongException 49, 51

patterns, front-controller 564

performance. See also optimization

anonymous profiles 226

files, uploading 476

permissions 497

allowing/denying 525

behavior 525

inheritance 525

least privileged access 498

lists, adding accounts/groups 524

NTFS 522–526

personalization

DateDisplayWebPart class 303

providers 3

Web Parts 267, 288, 294–295

Personalization.Scope property 258

PersonalizationScope enumerator 258

phonetic searching 454–456

Pictures folder 591

pixels 589

planning configuration 1–8

portal frameworks 250–259

portal page display modes 253

preferences, tracking content 230

prefixes, defining tags 139–140

Previous button 448

principal 496

private variables, PageMessageControl class
136

processes 498–500, 512

HTTP Pipeline 559–563

virtual files with URL rewriting 570–583

worker 508–509, 536

ProcessRequest method 577, 588, 599

Product class 234

Product User control 242

ProductDisplayer.ascx control 238

products (shopping carts)

adding to 238–241

migrating 247

ProfileAuthenticationOption enumeration
219

ProfileInfo class 219

profiles

anonymous 221

avoiding nonanonymous properties
227

creating migration code 229–230

default property values 228–229

defining properties 227

enabling 222–226

dissociated 226

management

creating property groups 214–215

defining properties 213–214

enabling/disabling 213

implementing property classes 215–217

overview of 212

Profile object 212–213

ProfileManager class 219–221

strongly typed properties 218–219

providers 3

shopping carts

adding products 238–241

building demo pages 241–247

clearing 246

creating 233–237

defining 237–238

migrating products 247

simple targeted advertisements 230–233

5467_IX.fm Page 632 Wednesday, November 16, 2005 5:46 PM

633■I N D E X

programmatic complexity 477

programming

authentication, Login control 197

configuration strategies 1–2

Hash class 545

Master Pages, modifying 103

Membership objects 173

Roles objects 173

themes 108

Try Catch statements 47

XlsReportHandler class 574

propagation, errors 59–61

properties

ActiveStepIndex 445

AllowSetFocus 137

anonymous profiles

avoiding nonanonymous 227

default values 228–229

defining 227

AppearanceEditorPart control 285

BehaviorEditorPart control 286

buttons 441

CatalogZone control 278

ConnectionString 82

ConnectionsZone control 288–293

content, tracking 230

ContentPlaceHolderID 99

ContentPlaceHolders 99

ContinueDestinationPageUrl 208

custom exceptions 56

DataConfig class 39

DateDisplayWebPart class 303

default item 79

EditorZone control 283

EmbeddedObjects 203

Employee class 459

Enabled 268

ExceptionID 90

ExceptionLog class 76

FileBytes 488

Files 485

FileUpload control 478

Folder Properties dialog box 501

HasFile 485

HttpPostedFile 479

IconData 31

InnerException 46

LayoutEditorPart control 287

Login controls 197

LoginStatus 205

Master 101

Membership objects 167

Message 46

Part class 262

PasswordRecovery control 202, 206, 209

PersonalizationScope 258

ProfileInfo 219

ProfileManager 220

profiles

creating groups 214–215

defining 213–214

implementing classes 215–217

strongly typed 218–219

ProviderName 268

QueryString 579

Roles objects 171

ShoppingCart, defining 237–238

SkinFileName 130

Title 285

Verbs, overriding 312

viewing 7

ViewStateCounter 117

Web Parts

configuring 283

customizing 288

defining 294–295

WebPartManager control 269

WebPartZone control 275

5467_IX.fm Page 633 Wednesday, November 16, 2005 5:46 PM

634 ■I N D E X

WebZone class 273

Wizard control 440–442

WizardStep Collection Editor 443

property page (IIS) 6–8

PropertyGridEditorPart control 288

protocols

IP restrictions 514

SOAP 41

TDS 476

ProvideInterface function 315

Provider tab 3, 178

ProviderName property 268

providers 4

connections 317

membership, configuring 174

roles, configuring 175

selecting 176

ProxyWebPartManager control 272

public folders, authorization 533

Public Key Encryption 546

■Q
queries

strings 579

XPath 26

Querystring property 579

Quick Links section 100

■R
records

saving 472

searching 471

recovery control 194, 202–204

RedirectFromLoginPage method 161

references 141

class libraries 27

Generic Web Part class 266

PageMessageControl class 141

parameters, RegisterStartupScript class
138

referential integrity, enforcing 475

regions

ConnectionsZone control 288–293

EditorZone control 283

WebPartZone control 274

RegisterStartupScript class 138

registration 610

ControlState 118

custom controls 308

global tag 113–115

user controls 304

relationships, Web Part components 260

Remember Me check box 160

RemoveSystemMessage method 148

Render method, overriding 304

rendering

ControlState 119

design-time of user controls 113, 140–141

replication, data 476

Report Pages, creating 571–573

reports

downloading 582

retrieving 580–583

XlsReportHandler, building 573–578

requests

actual, processing 512

HTTP Handlers 558–570

applying 563–564

configuring 568–570

design 579–580

HTTP Pipeline process 559–563

IHttpHandler interface 564–566

mapping file extensions 566–567

thumbnail generation 583–594

security context of 509–510

sending initial 506

virtual files (HTTP Handlers) 563

restrictions

domains 514

IP 506

5467_IX.fm Page 634 Wednesday, November 16, 2005 5:46 PM

635■I N D E X

rethrowing exceptions 54

RetrieveThumbnail method 589

retrieving 490–492

files from databases 490–492

reports 580–583

Return statement 53

reusable hashing classes, creating 543

reviewing exceptions 84–91

Rijndael algorithm 546

RoleGroup Collection Editor dialog box 201

RoleGroup templates 199, 201

roles 496

accessing 166

adding 185

authorization tickets 161

configuring 192

defining (Security Setup Wizard) 185

least privileged access 498

naming 185

providers 3, 175

Security tab 5, 181

user, determining 161

viewing 164

Roles objects 167, 171–173

configuring 173–177

programming 173

RSAProtectedConfigurationProvider 538

rule access 5

adding 187

defining 181

Run As dialog box 503

runtime, HTTP Pipeline process 561

■S
Sarbane Oxley Act 475

Save function, ExceptionLog class 76

SaveControlState method 118

saving 485–490

ControlState 118

databases 476

files 479–480

creating tables 485

databases 485–490

records 472

scope

toggling 257

Web Parts 255

screens

Add Connection 291

Manage Existing Connections 290

No Active Connections 290

searching

phonetic 454–456

records 471

users 189–191

sections

<configuration> 28

configuration (Web.config file), encrypted
539

custom configuration 19–33

groups 28

Messaging Components 141

Quick Links 100

<roleManager> 175

Web.config file 9

<appsettings> 9

<connectionString> 10

security 496

architecture 504–512

authentication 498–504

authorization 498–504

configuring 182–189, 512–536

ASP.NET 526–536

encryption 536–541

EncryptionLibrary function 554–555

hashing 541–546

IIS 513–522

NTFS 522–526

two-way encryption 546–554

5467_IX.fm Page 635 Wednesday, November 16, 2005 5:46 PM

636 ■I N D E X

files, uploading 475

HTTP Handlers 580

passwords, encrypting 176

terminology 496–497

Security Setup Wizard 182–189

Security tab (Web Site Administration Tool)
5, 181

roles, configuring 192

users

adding 189–190

deleting 192

editing 191–192

searching 189–191

Security Wizard 5

Select a Master Page dialog box 99

Select Case statement 446

Select Users or Groups dialog box 524

selecting

exception logging tools 67–68

individual providers 180

providers 176

single providers (all site management
data) 179

Send function 57

sending initial requests 506

SendingMail event 204

SerializeToXML function 42

serializing objects 41

Server.Transfer method 579

servers

controls

defining skinned controls 122

developing with ControlState 115–121

manipulating UserControls 122

files, moving clients 486

IIS 2

authentication 506–508

authorization 506

configuring security 513–522

defining custom error pages 64

HTTP Pipeline process 559–563

property page 6–8

Windows Authentication 153

JSP 561

multiple files, saving 484

SetupBreakLiteral method 607

SetupRepeaterAndPanel method 139

shared scope (Web Parts) 255, 257

shopping carts

clearing 246

creating 233–237

defining 237–238

demo pages, building 241–247

products

adding 238–241

migrating 247

ShowException.aspx 87

ShowExceptionList.aspx 84

sidebar template 439

SideBarList_ItemDataBound method 453

SideBarTemplate 439, 451

Simple Object Access Protocol (SOAP) 41

simple targeted advertisements, creating
230–233

single files, saving to databases 486

single providers, selecting 179

site maintenance 2–6

SkinFileName property 130

skinned page-message controls, building
121–148

SkinnedWebControl class 128–132

skins

control 105–109, 277

disabling 107

themes 146

initializing 139

PageMessageDefault.ascx 126

PageMessageIcons.ascx 126

PageMessageJScriptAlert.ascx 126

skipping steps 446

5467_IX.fm Page 636 Wednesday, November 16, 2005 5:46 PM

637■I N D E X

SOAP (Simple Object Access Protocol) 41

Soundex function 455

SQL Server 33. See also databases

SqlCommand object 37

SqlException 51

SqlMembershipProvider 167

StackTrace 46

StartNavigationTemplate 439

StartNextButton 441

statements

INSERT 461

multiple Catch 48–51

Return 53

Select Case 446

Try Catch 46–48

static connections

configuring 267, 319

defining 272

static ConnectionString property 82

static Log method 83

static Web Parts 304. See also Web Parts

StepNavigationTemplate 439

StepNextButton 441

StepPreviousButton 441

steps, adding to Wizard control 442–445

storage

configuration settings 33–43

Sarbane Oxley Act 475

tables, creating 485

UserControl skins 127

variables, ControlState property 117

strategies, configuration 1–8

strings

Base64 547

ConnectionStrings objects, caching 18

queries 579

strongly typed profile properties 218–219

strongly typed configuration classes 12–19

submitting text messages 315

substitution 48

support, transactional 474

system messages 136, 148

System.ArithmeticException class 55

System.Exception class 46

System.IO.DirectoryNotFoundException 49

System.IO.FileNotFoundException 49

System.IO.PathTooLongException 49

System.Web.UI.WebControls.WebParts
namespace 251

■T
tables

creating 485

databases, creating 34

ExceptionLog, creating 69–70

tabs

Application (Web Site Administration
Tool) 6

Configuration Settings tool 8

Home (Web Site Administration Tool) 178

Provider (Web Site Administration Tool) 3,
178

Security (Web Site Administration Tool) 5,
181

adding users 189–190

configuring roles 192

deleting users 192

editing users 191–192

searching users 189–191

tabular data stream (TDS) protocol 476

TagPrefix attribute 140

tags

<FieldSet> HTML 284

global registration 113–115

prefixes, defining 139–140

Task Manager 503

TDS (tabular data stream) protocol 476

templates

content, creating 600

controls 193–196

5467_IX.fm Page 637 Wednesday, November 16, 2005 5:46 PM

638 ■I N D E X

Convert to Template menu 450

converting 451

Edit Template menu 451

sidebar 439

Web Configuration File 13

Web Parts 280

Wizard control 450–454

zones 277

text

entering 453

HeaderText, viewing 274

labels, adding 166

messages, entering 315

passwords, viewing 204

themes 105–109

control skins, creating 106

CSS, adding 105

formatting 105

pages, applying 108

programming 108

skins, controls 146

threads 498–500

Throw keyword 53–54

ThumbnailHandler class 585, 591

thumbnails

generating 564, 583, 594

viewing 598

tickets 161, 497

Title property 285

ToggleScope() method 258

toggling scope 257

tokens 498–500

ToolboxData attribute 147

tools

aspnet_regiis exe command-line utility 537

configuration (ASP.NET 2.0) 2–8

Configuration Settings 8

exception logging 67–68

Membership objects 167

Web site Administration 176–192

tracking content preferences 230

transactional support, uploading files 474

transforming existing files (HTTP Handlers)
563

troubleshooting

Add Connection screen 291

Manage Existing Connections screen 290

No Active Connections screen 290

Try Catch statements 46–48

two-way encryption 546–554

types, MasterPage 101

■U
unencrypted Web.config files 539

Upload button 487, 490

uploading files 474–492

URL authorization modules 511

URL rewiring, virtual files 570–583

user controls

Catalog Parts, defining 281

design-time rendering of 113, 140–141

inheritance 265

registering 304

web 609

User.IsInRole method 166

UserControl

control/ID requirements for 127

server controls, manipulating 122

storage 127

UserControl-based Web Parts 295–305

user-level impersonation, configuring 534

user-management

forms authentication 152–155

configuring 155–159

cookies 155

implementing 159–166

login 156

login controls 192–210

ChangePassword 208–210

CreateUserWizard 206–208

5467_IX.fm Page 638 Wednesday, November 16, 2005 5:46 PM

639

■

I N D E X

creating templates 194–196

LoginName 205

LoginStatus 205

LoginView 199–202

PasswordRecovery 202–204

templates 193–194

Membership objects 167–170

configuring 173–177

programming 173

Roles objects 171–173

configuring 173–177

programming 173

Web Site Administration Tool 178–192

users

adding 181–190

deleting 192

editing 191–192

roles, determining 161

scope (Web Parts) 255

searching 189–191

Security tab (Web Site Administration
Tool) 5

utility functions 457–464

■

V

validating data in Wizard control setups 448

values

configuration

reading from databases 37

writing to databases 38

copying 471

default anonymous profile property
228–229

variables

classes 606

ControlStateCounter 117

Create function 25

LoadPageContent method 607

page 90

private, PageMessageControl class 136

storage, ControlState property 117

vector initialization 551

verbs

adding custom to Web Parts 310–312

Connect 320

Verbs property, overriding 312

viewing

Add Connection screen 291

ControlState behavior 120

exceptions 85

HeaderText 274

Manage Existing Connections screen 290

No Active Connections screen 290

passwords 204

products, Product User control 242

properties 7

roles 164

thumbnails 592, 598

usernames (in email) 204

ViewState, disabling 120

ViewStateCounter property 117

virtual directories, viewing properties 7

virtual files

HTTP handlers, processing requests 563

URL rewriting 570–583

Visual Studio IDE 452

■

W

Web applications, class libraries 27

Web Configuration File template 13

Web controls

messaging projects, configuring 128

SkinnedWebControl class 128–132

Web Parts

adding 272, 280, 282

building 293–309

Catalog items 278

closing 258

configuration files, exporting 323–325

customizing 304–309

adding verbs to 310–312

connecting 313–322

5467_IX.fm Page 639 Wednesday, November 16, 2005 6:28 PM

640 ■I N D E X

deleting 258

editing 284

framework components 250–259

functionality 266

hiding 258

interfaces, IWebPart 259–293

lists 281

MessageConsumer, configuring 317

MessageProvider, configuring 315

personalization 267

properties

configuring 283

customizing 288

defining 294–295

static 304

UserControl-based, implementing
295–305

zones 273, 277

Web Site Administration Tool 2–6, 176–192

Web user controls 609

Web.config file

adding 13

configuration settings, avoiding saving
in 33

encryption 539

profiles, defining properties 213–214

sections 9

<appsettings> 9

<connectionString> 10

WebPart class 263

WebPartAdding event 272

WebPartManager class 266

WebPartManager control 253, 267

WebPartMoving event 272

WebPartsListUserControlPath control 281

WebPartUserControl class 295, 298

WebPartVerbCollection objects, creating 312

WebPartZone control 253

WebZone class 273

Welcome introductory screen (Security
Setup Wizard) 183

When clause 51–52

width ratios 589

Windows Authentication 153, 527

Windows Explorer, configuring NTFS 522

Windows Vista 477

wizards

Add Employee Wizard

business objects/utility functions
457–464

creating 456–472

Security 5

Security Setup Wizard 182–189

Wizard control

creating 438–454

events 440–442

layout 438–440

navigation 445–450

properties 440–442

steps, adding 442–445

templates 450–454

WizardStep Collection Editor 443

worker processes 508–509, 536

wrappers, GenericWebPart class 266

wrapping exceptions 57–59

■X
XlsReportHandler

building 573–578

reports, retrieving 580–583

XML (Extensible Markup Language) 3, 42

XPath queries 26

5467_IX.fm Page 640 Wednesday, November 16, 2005 5:46 PM

641■I N D E X

■Z
zones

CatalogZone control 278

ConnectionsZone control 288–293

EditorZone control 283

indexes 312

inheritance 273

LayoutEditorPart control 287

multiple 277

Web Parts 273, 277

Web Parts Framework 254, 255

WebPartZone 274

5467_IX.fm Page 641 Wednesday, November 16, 2005 5:46 PM

5467_IX.fm Page 642 Wednesday, November 16, 2005 5:46 PM

5467_IX.fm Page 643 Wednesday, November 16, 2005 5:46 PM

5467_IX.fm Page 644 Wednesday, November 16, 2005 5:46 PM

5467_IX.fm Page 645 Wednesday, November 16, 2005 5:46 PM

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

5467_IX.fm Page 646 Wednesday, November 16, 2005 5:46 PM

	Pro ASP.NET 2.0 Website Programming
	Table of Content
	Chapter 1 Configuration Strategy
	Chapter 2 Exception Management
	Chapter 3 Master Pages, Themes, and Control Skins
	Chapter 4 Developing Reusable Components: The Skinned Page-Message Control
	Chapter 5 User Management Tools and Login Controls for Forms Authentication
	Chapter 6 Managing Profiles
	Chapter 7 Building Portals Using the Web Parts Framework
	Chapter 8 Effective Search Tools and Techniques for Your Business Applications
	Chapter 9 Building a Reusable Reporting Framework
	Chapter 10 Web-Based Wizards: Avoiding Duplicate Data Entry
	Chapter 11 Uploading Files
	Chapter 12 Security and Encryption
	Chapter 13 Using HTTP Handlers: Request Processing, Image Generation, and Content Management
	Index

